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Yielding on inclined planes at the tip of a crack
B.L. KARIHALOO (NEWCASTLE)

A sivpLE, albeit approximate, solution is given for the anti-plane strain yielding from a crack
in an infinite elastic body on two planes inclined to the crack plane. Approximate analytical
expressions, similar to those for a coplanar yield model, are obtained for the plastic zone spread
and the crack opening displacement as functions of the applied shear stress inducing an anti-
plane strain condition and the angle of inclination of the yield planes. It is shown that the
range of applicability of the small-scale yielding approximation for crack tip plasticity is sub-
stantially reduced. The in-plane component of the external shear stress which is completely
without effect on a coplanar yield model is also taken into account. The results are in good
qualitative agreement with those obtained by far more complicated exact methods:for a body
loaded in uniform tension.

Podano proste choé przybh?nne rozwigzanie problemu uplastycznienia ofrodka nieskoficzonego
zachodzacego wzdhiz dwoch plaszczyzn nachylonych do plaszczyzny szczeliny w antyplaskim
stanie odksztaicenia. Otrzymano przyblizone wyrazenia analityczne, podobne do wyrazed
uzyskiwanych w przypadku uplastycznienia w plaszczy/nie szczeliny (model koplanarny),
a opisujace propagacje strefy plastycznej i rozwieranie si¢ szczeliny w zaleimoédci od przylozo-
nych naprezen écinajacych; wyraZenia te uwzgledniaja warunki antyplaskiego stanu odksztal-
cenia i katy nachylenia plaszczyzn, w ktérych zachodzi uplastycznienie. Wskazano na istotng
redukcje zakresu stosowalnosci przyblizenia malych odksztalcend plastycznych. Uwzgledniono
skladowa styczng zewnetrznych obcigzei écinajacych, ktéra nie ma Zzadnego wplywu w przy-
padku modelu koplanarnego uplastycznienia. Wyniki sg jakoéciowo zgodne z wynikami uzy-
skiwanymi za pomoca duzo bardziej zlozonych metod &cistych w przypadku cial poddanych
réwnomiernemu rozcigganiu.

IlpuBeneHo mpocroe, XoTA NPHOMDKEHHOE, PellieHHE 3a/1aUH IepeXofa B ILTACTHIECKOE CO-
croanne GecKoHeTHON Cpelb!, MPOHCXOAALNHE BAOIH ABYX IUIOCKOCTEH HAKJIOHEHHBIX K IO~
CKOCTH IIE/IM B aHTHIUIOCKOM JedopmanmonHom cocrosuu. [Tomydeno aHaImTHuecKoe mMpH-
G/ODKeHHOE BRIPRXKEHHE, AHATIOTHYHOE BBIPDKEHHAM TOJYYeHHEBIM B CJIydae Mepexoa B IUia-
CTHYECKOE COCTOSHHE B IUIOCKOCTH INesiH (KOILTAHAPHASA MOJEb), H OIACHIBAIONIee PACTIPOCTpa-
HeHWe TUIACTHYECKOH 30HEI M PACKPLIBAHKE ILENH B 3ABHCAMOCTH OT MPHJIOMKEHHBIX HANPSIHEe-
HUMIi COBWIa; 3TH BBIPAYKEHHs YUMTHIBAIOT YCJIOBHS AHTHIUIOCKOTO Aedopmanmomsoro co-
CTOAHMA H YIJIbI HAKIOHEHHS TUIOCKOCTEN, B KOTOPEIX ITPOMCXOJHT IIepeXol] B ILTACTHYECKOe
COCTOHME. YHA33HO Ha CYIIECTBEHHYIO PEAYKIMIO 00/ACTH MpUMeHEeHuA TPADIHKEHHA MATBIX
miacTH4eCKuX Aedopmamuii. Yurena KacaTelbHas COCTABNAIONIAA BHEIIHWX HATPY3OK CIBHATS,
KOTOpas He MMeeT HUKAKOIO BIWAHNA B C/Iyyac KOIUIAHADHON MOME/IH mepexoia B ILIACTHYEC-
Koe COCTOAHEE. Pe3yneTaThl KaUeCTREHHO COBNANAIOT C Pe3YJ/ILTATAMH MOJIyYeHHLIMH IPH mo-
MOLIM SHAYMTEJLHO GOJiee CNOMMHBIX TOUHBIX METOJOB B CIyYae Tel HOABEPIHYTHIX PaBHO-
MEPHOMY PACTSKEHHIO.

1. Introduction

THE PROBLEM of plastic yielding near a crack tip confined to zones coplanar with the
crack plane was first studied by DUGDALE [1] for a body loaded in uniform tension (so-
called Mode I in the terminology of fracture mechanics) and by BILBY, COTTRELL and
SWINDEN [2] for a body under anti-plane shear stress (Mode III). The latter described
the plastic zone by an array of screw dislocations coplanar with the crack. LARDNER [3]
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used a tedious procedure to extend this model to yielding on an inclined slip-plane —a phe-
nomenon often observed in single crystals and in polycrystalline aggregates. Plastic de-
formation in these materials is usually confined to planes inclined to the crack plane.
In single crystals the angle of inclination is determined by their crystallographic structure
and in polycrystalline aggregates it often ranges between 60° and 70°.

Plastic yielding under plane-strain tension on slip-planes inclined to the crack plane
has been treated approximately by RICE [4], numerically by BiLBY and SWINDEN [5] for
an angle of inclination of 45° and more exhaustively by VITEK [6] and RIEDEL [7].

The study of a non-coplanar yield model is useful in another sense, too. From the
point of studying the fracture characteristics — yield zone length and crack opening dis-
placement — of a solid, attention is normally concentrated on low levels of applied stress
when the plastic zones are small — so-called small-scale yielding — and the solution is
simple [8]. However, the small-scale yielding approximation [8] has a limited range of
applicability as suggested by the finite-element results of LARSSON and CARLSSON [9]. It
was shown that the deviations from small-scale yielding approximation at substantially
lower levels of applied stress are caused by the portion of the non-singular but non-
vanishing stress field at the crack tip that results in a stress T acting parallel to the crack
plane. It transpired that the deviation of the plastic zone length and the crack opening
displacement is linear in 7" and not quadratic as had hitherto appeared from solutions
of the type proposed by DUGDALE [1] and BiLBY, COTTRELL and SWINDEN (BCS) [2].
These planar yield models are completely without effect: from T To take the latter into
account it is necessary to let the yield spread off the plane of the crack. However, it is
well known that the BCS planar yield model gives, in a rather simple manner, a quan-
titative estimate of the plastic zone length in plane-strain conditions and crack opening
displacement that is perfectly analogous to that obtained by a more involved macroscopic
analysis [4].

It was therefore thought highly desirable to reconsider the BCS model in the light
of its above-mentioned deficiencies and to try to modify it in such a way as to allow for
the yield to spread off the crack plane and to take into account the T-stress effect without
jeopardizing its inherent simplicity. Thus, to avoid the inevitable complicated calcula-
tions [3, 6, 7] the screw dislocations representing the inclined slip bands are replaced by
superdislocations of appropriate Burgers vectors. It is expected that such a superdisloca-
tion approach [10-13] will give an upper bound to the plastic zone length and the crack
.opening displacement.

2. Theory

Before proceeding with the description of the plastic yielding on inclined planes at
the crack tip and the effect of the in-plane stress component (7-stress) it is worth mention-
ing that the effect of this stress in the anti-plane shear mode has been undetected simply
because this non-vanishing but non-singular stress at the crack tip is present only when
-either the external loads are unsymmetrical relative to the crack plane or the boundary
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conditions are such as to hinder displacement along the z-axis (i.e. the effect of the finite
dimensions of the body).

The situation is much simpler to visualize in the former case, when the loads relative
to the crack plane are unsymmetrical. Let the mode III crack (along y = 0) contained
in an infinitely long (along z-axis) body with a finite rectangular cross-section (2B x 24)
be modelled by a distribution of long straight screw dislocations parallel to the z-axis
and lying along the plane y = 0. The relative displacement is, of course, in the z-direc-
tion. Let the faces of the body y = + 4 be acted upon by stresses oy, and o;;* respectively,
(o1:# 0;). Note that the external shear stress is not acting at “infinity”. Then, by re-
solving the loading on the two faces, as usual, into a symmetrical part (oj;+05;/)/2 = o
and an antisymmetrical part (0;—05:¥)/2 = v and allowing for the moment equilibrium
of the latter, it is easy to show that there must exist a uniform shear stress along the faces
X = +B equal in magnitude to o,; = 74/B = T. In particular, T’ 0 as B— o or
-0

Now, the external shear stress ¢ symmetrical relative to the crack plane subjects the
screw dislocations to a force in the x-direction. The antisymmetrical forces = on the
faces y = + A subject them to equal and opposite forces in the x-direction that cancel
each other. The net effect so far as the dislocations in plane y = 0 are concerned is that
the force in the x-direction due to an unsymmetrical external loading is the same as due
to its symmetrical part o.

It is also well known that an external shear stress o,; = T subjects screw dislocations
to a force acting in the y-direction. Thus it is evident that in such a situation a-planar
yield model is deficient since there is bound to be some spreading of the plasticity off
the crack plane. This seems to be in perfect agreement with experimental observations
since experiments are, of necessity, performed on specimens with finite dimensions where
the boundary conditions play an important role. It is thus clear that the resistance to
the motion of the dislocations modelling the slipped region ahead of the crack tip will
be altered because of their being subjected to forces in both the x and y directions. It
is obvious, therefore, that any realistic model should permit spreading of the plasticity
off the crack plane.

As in the original BCS model let the mode III crack of length 2¢ within the region
|x] < ¢ be represented by “crack” dislocations of screw orientation each of Burgers
vector b. Because of symmetry the crack is slipping freely, and there will be no resistance

Yy

mb
slip plane, ‘Ih
fprack e
N_P X
Fig. 1. Schematic picture of the crack and inclined slip planes. The i
crack extends over —c<x<e¢, —0<z< 0, y=0. b

to the motion of the “crack™ dislocations. Furthermore, let the plastic bands ahead of
the crack tips and lying within the regions —a < x < —c and ¢ < x < a make an angle
+6 with the crack plane. These bands are also assumed to be represented by screw dis-
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locations each of Burgers vector b. However, to avoid tedious computations involved in
arriving at the influence of the dislocations in the inclined slip planes on the “crack”
dislocations, the former are replaced by superdislocations of Burgers vector mb situated
at x = +a on a parallel plane a distance +h from the crack plane (tanf = &/(a—c)).
Such a replacement overestimates slightly the interaction forces [10-12], but the error
involved is insignificant. Likewise, an estimate of the influence of “crack” dislocations
on the dislocations representing the inclined slip band is obtained by replacing the former
by superdislocations of Burgers vector nb (n is the number of dislocations in the region
0 < x < ¢) situated at x = +c, y = 0. It is further assumed that the superdislocations
replacing the screw dislocations in the slip bands are of a very short range nature such
that their influence is felt only in the slipped regions directly ahead of the crack tips. The
simplified yield model thus obtained is a fairly accurate representation of the true picture.
It should be mentioned that the yield is assumed to take place according to von Mises’
criterion (¢f = o2, +02,).

As in the original BCS model let there be f(x)dx dislocations in a distance dx. The
aim is to determine f(x) and the relation between ¢ and a as a function of the physical
parameters o, o, and 7. The shear stress o,, at x due to the dislocations at x' is

0y:(x) = Af(x)dx’'[(x—x'),
where the constant 4 has the value ub/2n, u being the shear modulus. The requirement
that the resultant shear stress on any dislocation in the distribution along y = 0 be zero
when the system is in equilibrium leads to a singular integral equation
P _ iy,

3§ =)

@.1)

where D covers the whole region —a < x < @, and P(x) is the resultant external shear
stress at x (o,, for dislocations along y = 0). In view of the fact that the crack is slipping
freely and the assumption regarding the short-range nature of the superdislocations (this
restriction can, however, be relaxed), P(x) can be written as

2.2 Px)=ga; |x|]<ce,
= g—0 e TR c<|x|<a
° (r—aP+h’ *

symmetry consideration being taken into account. The variable part in the expression
for P(x) within the regions ¢ < |x| <.a'is the influence of the super-dislocations situated
at |x| = a, |y| = h on the distributed dislocations within the plastic regions ahead of the
crack tips. It is clear that relaxation of the restriction on the short range nature of super-
dislocations would introduce a corresponding variable term into the expression for P(x)
within the freely slipping crack |x| < c.

The general solution of the singular integral equation (2.1) is given by (MUSKHELISHVILI
[14)

Vo—a f P(x)dx’
2 &

i W=~ ) ey
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subject to the condition

a5 f P()dx

| Vxi=a®

which assures vanishing of the function f(x) (no relative displacement of the crack faces)
at x = ta.

Like the dislocations in the plane y = 0, the superdislocation of Burgers vector mb
representing the inclined slip band is subject to equilibrium considerations. Furthermore,
the stresses at its site must fulfil the yield criterion. The superdislocation is in equilibrium
under the action of external stresses o and T and the repulsive stress from dislocations
of like sign in the plane y = 0. An approximate estimate of the latter (indeed, the super-
dislocation technique gives the upper bound) can be obtained by replacing the disloca-
tions in |x| < ¢ and y = 0 by a superdislocation of Burgers vector nb situated at |x| = ¢,
y = 0. If this is done, it is easy to show (WEERTMAN and WEERTMAN [15]) that the re-
pulsive force between two like dislocations of Burgers vectors mb and nb, respectively,
situated a distance r (r = h/sinf) apart is equal to

A-nb-mb oz
F= = (cosbi+sinfj),
whence it follows that the stresses induced at mb are
_ _ Ancos® _  An(a—c)
%= = r (a—cP+h?’
_ Ansinf Anh
R =2 (a—c)*+h*’

with A = ub/2n. Moreover, the yield criterion would require

2.9) (a— Aniosﬂ ) (T+ Ansmﬂ) ey
whence it follows that
2
(2.6) An _ %o [_a_ cosﬂ——T—sin6+ ]/1-— (i sin8+£cosﬂ) ]
r Oo 0o g 0o

For small-scale yielding, when;“;,-; <1, Eq. (2.6) is simplified to
Q a

2.0 gy [1— (1 sinf— — cosﬂ)]
r d Gy
An approximate relation between 4 and (a— ) could be established by following arguments
from dislocation kinematics (KARmALOO [11, 12]).
However, without loss of accuracy, it is reasonable to assume that the number of
dislocations in the crack, », and in each of the slip bands, m, is proportional to the length
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of the crack and the slip band, i.e. nfm = c/r. With these remarks in mind, Eq. (2.6)
may be rewritten as

An (a—c)?

) mA = oo

Now, from Eq. (2.2) it is evident that the resistance to the movement of dislocations
in the plastic regions ahead of the crack tips reduces progressively as we move from the
crack tips |x| = ¢, vanishing ultimately at the plastic zone tips |[x| = a. In analogy with
the BARENBLATT model [16] the cohesive force between the crack faces is a function of
the distance from the crack tip. However, SMITH [16] has recently shown that the cohesive
zone size and the crack opening-displacement are relatively insensitive to the form of the
stress-displacement relationship within the cohesive zone. Thus, within permissible limits
of accuracy it is reasonable to replace the variable resistance force by a certain average
value. The latter is obtained by equating the actual plastic dissipation energy (area under
the variable resistance force curve over the plastic zone) with that due to an average,
constant resistance force
5 4n An (a c)
w = T e cos?h

From Eq. (2.7) it follows that
; 2
28)  0w=200 o (" 2 2 In(sin®) [_ cos— 3: sinf + ]/1 = (Ui sinf+ 61 cosa) ]
1] (1]

Therefore, Eq. (2_2) may be rewritten as

29 P(x)=90; |x]<e,
=0—-0*% c<|x]<a

where, in the absence of T-stress,

(2.10) o* = 0p+0,,

- {1_'_2 (a—c) ln(Slne) [— cosﬂ+'/ —(—“ 5“16) ]}

Note that the second term within the radical is always negative. It is interesting to make
the following two important remarks on Egs. (2.9) and (2.10). Firstly, the form of the
resistance force in the plastic zones is similar to that used in the original BCS model if
we replace o, in that model by the modified resistance stress o*. Secondly, and what is
more important, the resistance encountered by the dislocations in the slipped regions
ahead of the crack tips is always less than o, — the yield stress — irrespective of the
existence or, otherwise, of the stress 7. In fact, by working backwards it is easy to show
that if the resistance to the movement of dislocations in the regions ¢ < |x| < a were
assumed to be equal to o, as in the original BCS and Dugdale models, the yield criterion
would be violated along yield bands not coplanar with the crack plane.

From the first of the above two remarks it follows that the formulae derived in the
original BCS paper are directly applicable to the generalized BCS model if one replaces

In(sinf).
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0, in these formulae by ¢*. In particular, the expressions for the projection of the plastic
zone on the crack plane r, = (a—c) and the crack opening displacement &,, which is
directly related to the number of dislocations representing the crack, would take the form

.11)

Note, however, that the expression for the projection of the plastic zone on the crack
plane, r,, is an implicit one because o/o* also contains r,/c. In fact, the first of the two
expressions (2.11) can be rewritten as

(2.12) ofo* = %cos"[l/(l+r,/c)],
whence it follows that
1 A, o2
v ¥ R, i 3 WS e -4 =
(213)  (o/oy) (A% 2A1 cosﬂ-l-A,) % (A1 2Azcosﬂ)+(1 A =0,

where

A = % cos™[1/(1+r,/c)],

= » :
A, =2 P In(sin6).

Note, if 6 = 0 (coplanar yield model), o/, = 4,.
Thus the length of the plastic zone is found in an inverse manner whereby, for a given
0,r,/c is assumed and the corresponding value of o/g, is calculated from Eq. (2.13).

3. Conclusions

Figure 2 shows the variation of r,/c with o/o, for various values of the angle of
inclination of plastic bands, 6.

Although the exact significance of mode III anti-plane shear crack to that of mode I
tensile crack is as yet uncertain, some similarities are easily observed as is clear from
a comparison of Fig. 2 with Fig. 3 of Vitex [6] and Fig. 2 of RiEDEL [7]. The results
obtained by the present superdislocation technique seem to be in good qualitative agree-
ment with those of [6,7] for small-scale yielding, The results diverge with increasing
a/o,. Likewise, the results diverge as @ increases. This may be a consequence of the sim-
plifying assumptions made in the present analysis. However, for the practically important
range of the external stress level the results are in reasonable agreement. More importantly,
the simple nature of the BCS model is retained.

It should be mentioned that inclusion of the T-stress in the analysis gave results similar
to those of RICE [4] and RIEDEL [7]. In particular, the deviation of r,/c from the planar
yield model ¢/0q = A, was linear in T/o, and not quadratic, as would follow from an
expansion of Eq. (2.12) in powers of ¢/o, with o* replaced by o,.
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FiG. 2. Variation of the projection of the plastic zone on the crack plane, r, with the externally applied
shear stress, @ for various values of 8, ¢ — half the crack length, 0, — yield stress of the material. Dashed
line corresponds to the coplanar yield model[2].

Finally, it may be pointed out that the present technique has an added advantage
in that it can be used to simulate a stress-displacement law (flow-characteristics) in the
plastic regions different from the ideal plasticity relationship (¢* = const) if P(x) is
treated as a variable. The resulting analysis would be further complicated. However, such
a possibility has important implications inasmuch as the flow characteristics of real
materials deviate substantially from the theoretical ideal plasticity approximation.
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