
Archives of Mechanics • Archiwum Mecbaniki Stosowanej • 31, 6, pp. 897-905, Warszawa 1979 

On the formation of simplified theories of solid mechanics 

cz. WOZNIAK (WARSZAWA) 

BY THE SIMPLIPIED theories of mechanics we usually mean the theories in which all b;,isic 
unknowns 1) either depend on only one or two material coordinates, 2) are only time-depedent 
functions or 3) constitute finite sets of numbers. Thus, to the simplified theories of solid mechanics 
belong all theories of structural mechanics (shell, plate or rod theories), .mechanics of rigid and 
discretized bodies, f;.nite element approaches, the approximate methods of the Galerkin type, 
etc. We are to show that all simplified theories of solid mechanics are special cases of the ·fietd 
theory based ·OD the concept of abstract constr~ints, [1]. Such any appr.oach gives a new inter­
pretation of the well-known theories of structural mechanics and approximative methods as well 
as enable us to formulate new schemes of describing different problems of mechnics. 

Uproszczonymi teoriami w mechanice nazywamy zwykle teorie, w kt6rych wszystkie podsta· 
wowe niewiadome funkcje albo zalei.cl od tylko jednej ~di dw6ch wsp6Jrz~ych materialnych, 
albo s~ funkcjami tylko czasu lub sprowadzaj~ si~ do zbior6w liczb. Takimi teoriami ~ teorie 
diwigar6w powierzchniowych, cialsztywnych lub dyskretyzowanych, podej8cia oparte na meto­
dzie elment6w skonczonych oraz innych metodach przyblii:onych. W·pracy pokazano, i:e wszyst· 
kie teorie uproszczone ~ przypadkami szczeg6lriymi jednej teorii otrzymanej z mechaniki ciala 
stalego przy wykorzystaniu wi~z6w abstrakcyjnych, [1]. Przedstawione podej8cie urno:iliwia 
now~ interpretacj~ tak znanych teorii mechaniki konstrukcji jak i r6:inych metod przyblii:onych 
oraz ulatwia formulowanie nowych spososb6w opisu r6i:nych zagadnien mechaniki. 

YnpomCHHbiMH TeOPWIMH a MeXaHm<e Ha3hiB&al OObi'IHO TeOpHH, a KOTOpbiX ace OCHOaHbie 
ue}{3aeCTHhle $~ HJIH 3aaHCHT TOJThKO OT O,nHOH HJIH Aayx MaTepH8JIJ.HbiX Koop.z:umaT, 
HJJH .RB~ cl>yma:nmMH TOJII>KO apeMeHH, HJIH CaO,IVITCH K MHO>KeCTBaM liHCeJI.­
TaKHMH TeopuMH .RBJUIIOTCH TeopHH noaepXHOCTHbiX 6anoK, >KeCTKHX HJIH roiCKpeTH3MpO­
aamn.IX TeJI, no.rocoJU>I, OimpaiOmHeCH Ha MeTOA KoueqHbiX :meMeHToaH ua APyrue npHfiJIH­
>KeHHb'Ie MeTO.z:tbi. B pa6oTe noKa3aue, qTo ace YilPOmeHHble TeopHH· . .RBmnoTCH qaCTHbiMH 
cnyqaHMH OAHOH TeOpHI{, no.nyqeHIIOH H3 MexaHHKH TaepAoro TeJia npH HCIIOJII>30Bamm a6-
CTpaKTHbiX caH3eA [1]. llpeACTaBJiellllblii nOJ:tXOA A3eT ao3MO>KHOCTI> HOBO:i HHTePIIpe'l'aUHH 
T8K H3aeCTHbiX Teopd MeXaHHKH KOHCTpYKUHH, KaK H pa3HbiX npH6JDOKCHHbiX MeTOAOa, 
a TaK>Ke OOJiei"''aeT cl>opMy JIHpoaKY HOabiX cnoco6oa onHcaHIDI paam.IX aonpocoa Mexamn<H. 

1. Abstract D-constraints for operators 

THE CONCEPT of constraints which up to now has been applied almost exclusively in me­
chanics or thermomechanics, has a more general sense. In this section we shall introduce 
the concept of constraints independently of any problem of theoretical physics. 

Let A be the known mapping with the domain D(A) in the linear space X and with 
the range R(A) in the linear space Y: A(x) = y. 

DEFINITION 1. The relation D A c D(A), where D A is the known non-empty subset 
of X, will be called the D-constraints relation for A. If A(DA) is a proper subset of R(A), 
then the D-constraints relation for A will be called strong, otherwise it will be called weak. 
If D A = D(A), then it will be called trivial. 

If the D-constraints relation is strong, then the right hand side of A(x) = y, provideo 
that only the elements x belonging to D A are taken into account, is restricted by the con-
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dition y e A(D .J, where R(A)"A(D ... ) #: c/J. Now assume that in the problem under consid­
eration we have to deal with all the elements y, ye R(A), and with the elements x, x e D A 

(the latter will be call~d admissible by the constraints for A). to reconcile these two oppo­
site requirements we must modify the.mapping A(x) = y to the new form of a 'certain 
relation between the elements of D..t and these of R(A). To this aid we shall introduce the 
concept of the realization of D-constraints. 

DEFINITION 2. The multi-function: r9 : D ... 3 x--. Yx c Y, Yx #: c/J, such that for every 
y, ye R(A), there exists at least one pair (x, r) e D..t X Yx, satisfying the relation A(x) 
~ y + r and such that y e A(D ... ) implies r = · 8, will be called the . realization of D-constraints 

for A. 
We can easily prove that the following statement holds: 
PR.oPOSITION. For every x eD"' there is 8 e Yx. If D..t = {x0 }, then YSo = Y. If the 

D-constraints relation for A is weak, then Yx = {8}for every xeD .... 
CoROLLAR.Y. The problems with the weak constraints relation are governed by A(x) = y 

and x e D ... c D(A). 
Now suppose that X = X(JJ), Y = Y(JJ) are linear spaces of the vector-valued func­

tions defined on the manifold JJ and that A ( x) = y describes a certain field theory of physics, 
(the field equation of this theory). Assuming that a certain class of problems of this theory 
requires that only the fields x, x e D"', be taken into account, we obtain what will be called 
the D-constrained field theory governed by 

(1.1) A(x) = y+r, x e D ... , re Yx, 

where D A c D(A), y e R(A) c Y(JJ) and Yx c Y(JJ) for every x e D A.. Every field r, 

r e Yx, will be called the reaction which can maintain the admissible field x, x e D"'. 
Independently of the concept of D-constraints for A we can define R-constraints for A 

(introducing the inclusion R"' c R(A) and the suitable realization of R-constraints), 
D-R-constraints for A and constraints for an arbitrary binary relation, cf. {1]. 

2. Simplified field theories of mechanics 

Let B be the continuous body, "t its time-dependent configuration and "R its reference 
configuration. We denote by u(8, t), 8 e "R(B), t e I c R, where I is the known time 
interval, the displaCement field from the configuration "t. Denoting by JJ = "R( B) xI 
the domain of the definition of u, let us assume that the smooth bijection ii -.[[x J 
is given where, li is either the n-th dimensional difFerentiable Jllanifold, n ~ 3, or a one 
point set. Moreover, let us take into account the body B for which the equations of motion, 
the kinetic boundary conditions, the constitutive equations and the equations defining 
the external loads in terms of the motion lead to the system of three equation in JJ and three 
boundary conditions almost everywhere on aD""ai, for the field u{8, t). This system 
of six equations can be written down in the form · 

(2.1) A(u) = y, 

where y(8, t) stands for three volume forces and three boundary tractions which are inde­
pendent of the. motion of B. Equation (2.1) includes the governing equations of bodies 
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made of an arbitrary simple material (then we can put "t = "R for every t, e I) as well 
as the equations of the incremental theories of elastic-plastic bodies (then u(e, t) is the 
small increment of the deformation function). 

Now the problem arises how to formulate the simplified theory of the problems governed 
by Eq. (2.1) in which all unknown functions are defined exclusively on the manifold /1. 
This problem has an exact solution (which is of course not unique) if we use the concept 
of the constrained field theory, which was developed in Sect. 1. We shall see that the sim­
plified theory we are going to formulate is the D-constrained field theory for the operator 
A, with the special case of the D-constraints relation and a special realization of these 
constraints. To this end we shall denote by; and ~the points of II and LJ, respectively, 
(if II = {;0 } then ; = ;0) and we assume that the following objects are known: 

1. The Banach spaces X(Il), Y(Il) of the vector functions~ = (1p,{;)), a = 1, ... , n, 
and y = (jiA(;)), A = 1, ... , N, respectively, ; e/1. 

2. The smooth mapping •= X(Il) => D(•) 3 ~-+ u e D(A) c X(.Q). 
3. The multi-function D(•) 3 ~ -+ Y, c Y(Il). 
4. The Banachspace Y{L1) and the system of Nlinear independentfunctiomilsf~ e Y*(J), 

A= 1, ... ,N. 
Now let the D-constraints relation for the operator A be assumed in the form 

(2.2) D(A) => DA: = {ulu = tiJ(~) for some ~ e D(tiJ) c X(Il)}, 

and the realization of D-constraints for A be given by 

(2.3) Yu: = {rl(r~,/!) = rA, A= 1, ... ,N, for some r = {rA) e Y~}, 

where we have denoted y~ = yl{;} xLf, for an arbitrary ye Y(.Q), ; ell. Let us also 
denote 

(2.4) 
AA(~)= ((A o 4J(~))e,/~), A= (AA), 

YA = (y~ ,f:>, ; e II, A = 1, .. . , N. 

Thus we obtain finally the following system of relations: 

L(~) = .Y.t+rA, A= 1, ... ,N, 

~:: (1p,) eD(tP) c X(Il), r = (rA) e Y"' c Y(Il), 
(2.5) 

in which for every ye Y(Il) there exists~ e D(•) and re Y"' such that Eqs. (2.5) hold. 
Moreover, if yE A(D(4t)}, then r = 8 (~f. Sect. 1). Equations (2.5) represent the D-ean­
strained field theory of mechanics which, at the same time, constitutes the simplified 
field theory. All fields in Eqs. (2.5) are defined exclusively on the manifold II, i.e. on a cer­
tain sub-manifold of .Q (if II is one, two or three-dimensional differentiable manifold) 
or are finite systems of numbers (if II is a single point set, II = {;0 }) • In the latter case 
Eqs. (2.5) are the algebraic relations for the system of numbers 1p,, a = 1, ... , n. We have 
either n = N (if 1p, are numbers or only time-dependent functions) or N = 2n in other 
cases, when we deal with the field equations and the boundary conditions. 

If D(A) = D(•}, then r = 0 and the problem reduces to 

(2.6) 

http://rcin.org.pl



900 Cz. WozNIAK 

which has to have at least one solution for every y e Y(ii). If Y(J) is the Hilbert space 
n 

with the scalar product (I) and if •<~) = ~ tt'1p
0

, where~ = ('Pa) e D(•) c X(Il) 
tJ=l 

and a.a eX(.J), then Eq. (2.6) has the form 
n 

(2.7) (A (,I) rJ.0 'Pa)~lfA) = (y~lfA), '(ell, A = 1, ... , N. 
a=l 

Here fA are linear independent elements from Y(Li) (they can also depend on'(, ~elf). 
If .I= D and N = n (i.e. 1p0 , a = 1, ... , n, are numbers), then putting fA = A(a.A) we 
obtain Eq. (2.7) as the system of equations of the least square method. Moreover, if 
X(J) = Y(J) and a.0 = ~aAfA, then Eq. (2.7) constitutes the equations of the Bubnov­
Galerkin method. If fl = Il0 xI and Il0 is the two-dimensional differentiable manifold 
(one dimensional manifold), then Eqs. (2.5) include all well-known shell theories (rod 
theories). If Il = I, then from Eq. (2.7) we obtain the system .of n ordinary differential 
equations representing different theories of the discretized bodies (including finite element 
and finite difference methods as well as the mechanics of rigid bodies). 

In the foregoing analysis the positive ·integers n, N have been fixed. If n -+ oo, but 
n/N is the fixed number and the objects defin~d above as 1-4 are known, for every n, then 
we deal with a certain sequence of the simplified theories of mechanics. It must be stressed 
that even if Eq. (2.1) has the unique solution for the fixed y = y0 , then the solutions 
of Eq. (2.6) for YA = <Yo ,f!>, A = 1, ... , N, may not exist. Moreover, if for each N such 
a so~ution exists and is unique, then the sequence Xn = •n(~), ~ = (1p1 , ... , 'Pn), n = 1, 
2, ... , may not be convergent to the solution x of Eq. (2.1). In nonlinear continuum mech­
anics all these problems seem to be open. 

Now let us return back to Eqs. (2.5) and give some examples of the sets Y~, ~ e lJf 
= D((/>), of reactions to constraints lJf c D(A). 

Let the functional y0 e X*(Il) be assigned to every y e Y(Il) in such a way that< v, y0
) 

is the work of the kinetic field y on an arbitrary kinematic field v e X(IJ). If X(Il) = Y(Il), 
then y0 = y*. Moreover, let C~ be for every~ e lJf the known subset of X(Il). The reali­
zation of constraints lJf c D(A) which is given by 

(2.8) Y ~: = {rl<h, r 0
) ~ 0 for every h E C~} 

will be calle dquasi-ideal; elements of C~ are said to be the quasi-virtual fields. From Eq. 
(2.8) and Eqs. (2.5) we obtain the fuctional equation of the simplified theory of mechanics: 

(2.9) <h, AO(~)) ~ <h,y0 > for every hE c~, 

where y = (VA), A= (AA(~)) and AO(~) = (.4{~))0• 
If lJI is the convex set in X(Il), then assuming C~:= {hlh = \li;:-~ for some \li elJf} 

we obtain 
(2.10) Y~: = {rl<"' -~, r0

) ~ 0 for every \ii e lJ'}. 
The realization of constraints given by Eq. (2.10) will be called ideal. If lJI is the subspace 
of X(Il), then putting \ii-~ e lJI we also have-he lJI and Y~: = {rl<h, r0

) = Oforevery 
be lJ'}. 

Now let B~ be, for every ~ e lJI, the known linear mapping from X( /I) to a certain 
Banach space Z(IJ). Then the sets C~ in Eq. (2.8) can be defined by C~ = KerB~. Moreo-
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ver, if the constraints relation· tJI c D(A) is determined by lJI = Ker M, M being the differ­
entiable mapping from X(Il) to Z(II), and B~ = M'("'), then the realization is also said 
to be ideal, provided that "' is the regular point of M. 

Let A(Il) be the Banach space of vector functions A and let L~ be for every "' e tJI 
the known linear operator from A(II) to Y(Il). If 

(2.11) Y"': = {rli = L"'(A) for some A e A(Il)}, 

then the realization will be referred to as defined by the constraints functions A, A e A(II). 
If <h, (L"'(A))0

) = 0 for every hE C"' and if C~ = Ker M'("'), tJ1 = Ker M, then Eq. 
(2.11) determines the ideal realization of constraints. The example of such realization will 
be given in Sect. 3. 

3. Examples: structural mechanics and mechanics of discretized bodies 

By structural mechanics we shaH mean such a constrained field theory of mechanics 
(such simplified theory) in whichll = Il0 x /, where Il0 is one or two-dimensional differ­
entiable manifold (which can be immersed in R3

), and in which the constraints relation 
for the operator A and the realization of constraints are ideal (cf. below) and local in time. 
Thus structlllal mechanics includes the rod and shell theories. In what follows we shall 

. give the governing equations of structural mechanics. To this aid we shall assume that 
xR(B) =Il0 xf1, Il=Il0 xl, and 1J = (OK)effo, ~=(OR) elf, tEI, where either 
K = 1, 2 and R = 3 or K = 1 and R = 2, 3. We shall also use the denotations 

f ( · )dl = [ · ]o3 = o,b if L1(a, b) and f ( · )d/ = [ · Jo1 = o, if Il0 = (0, h). 
~ ~ 

The D-constraints relation for the operator A, i.e. the relation (2.2), will be postulated 
in the form 

Ut(8, t) -~t(8, "'(Y), t)) = 0, 8 E xR(B), 

(3.1) h,(t,Y),"',V"')=O, P=1, ... ,N, Y)Ell0 , 

Rw.(t,Y),"') = 0, n = 1, ... ,P~ n, Y)EOI10 , 

where ~1( ·), h,( ·), Rw.( ·), are known independent differentiable functions, det(/)k,cz > 0, 
and "' = ( 'PQ( fJ, t)), a = 1, ... , n, are unknown differentiable functions. Putting 
r = (r", s"), where r"· are the volume and s" the boundary reaction to constraints, we shall 
postulate the realization (2.3) of the D-constraints (3.1) in the form of the condition 

f " o(/)" Fd' A f " o(/)k 'dS- Q II T -
0
-JILJ+ S .-

0
-j -T fJE 0 , 

A 'PQ oA 'PQ 
(3.2) 

f k o(/)k 'd' A Q s -
0
-1 LJ = s, 

A 'PQ 

where rQ, sQ, a= 1, ... , n, stand for '"''A= 1, ... , 2n, and J = dvfdvR, j = dsfdsR., 
where dv, dvR, ds, dsR, are elements of z(B, t), xR(B), oz(B, t), OXR(B), respectively, 
z = x,+u being the deformation function. To define the set Y~ in Eq. (3.2) let us first 
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denote by tp"(u, t) the boundary value of tp.,{Y), t) on oll0 (only if ll0 c R 2), . where 
u ·e (0, 1) is .the coordinate on oll0 • Moreover, let~ be the boundary values of these 
functions h,.( ·), which at') e.oll0 can be represented in the form. ~(YJ, "''"',a). Let Y"'· 
be the set of all r = (r•, s"), a = 1, ... , n, which have the form ( cf: Eq. (2.8)): 

,a = -A" oh., +(.A.· oh.,) ' ') Ello, otp., otp.,," . K 
(3.3) . 

a 1 ,.. oh" -~~ oh.12 (~ . oh(! ) ~ oR~ s = -,.. -o-nx+P. --- ,..-o-- +p -_-, 
'Pa,K Otp, 'Pa,a ,a Otp., 

where .A."(Y), t), ') eii0 , f.it~(YJ, t), u~r(lf, t), YJ e oii0 , are unknown constraints functions and 
n = (nK) is either the unit vector normal to oll0 (if ll0 c R2) or n1 = ± 1 (if ll0 c R). 
If ll0 c R2

, then the functions Ji11 have to satisfy the extra conditions 

(3.4) 

in all points of oll0 in which the function~ is uncontinuous (the square bracket denotes 
the jump of .the function). 

It can be easily proved that the realization of constraints given by Eqs. · (3.2) to (3.4) 
is ideal, i.e. the work of the reaction forces on an arbitrary virtual displacement field is 
equal to zero: 

f s"~xa;ds+ f r"~x"dv = 0 
ox(B,t) x(B,t) 

for an arbitrary ~Xt defined by 

oh., ~ oh, n oR!( A... ~ 
-()- 'Pa+ -0-.-. ~'Pa,K = 0, 1J E o, ;c;:- V'f'a:::;:: 0, YJ e u. 0• 

'P11 'P11,K v.'t'a 

To obtain Eq. (2.5) we shall assume that y = (p, p'''), r = (r«, s«), and we shall write 
down the equation A(u) = y+r in the explicit form 

e.'i"O~t-]WJfp-_ro = r+r«, 8 E "R(B), 
(3.5) 

]WJnp -p~ = p«+s«, 8 E O"R(B), 

where Ta.fJ = Ta.P(u), /3 = _ro(u), p~ = p~(u), are the known functionals of the constitutive 
type. Substituting r" = ~a.r«, s" = X~a. s«, into Eqs. (3.2) and using Eqs. (3.5), we arrive at 
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Then, taking into account Eqs. (3.3) and introducing the quantities 

(3.7) 

"- f t at~>" ·..lA P = Po~)uLJ, 
.o!f V'f'll 

hQ = - f tf>l .-rP ( at~>") JdLJ n-
.cc . 0'" ' YJ e o' 

£1 TG .fJ 

after rather complicated calculations (cf. [2]), we obtain finally 

(3.8) (w"+.l.• ~;.,).., +lr'-.1.• ~ +I~= w"+e .. iPo+t><;,.;,., 'l ello 

and 

(3.9) 

903 

The equations of motion (3.8) and the kinetic boundary condition (3.9) constitute the 
explicit form of Eq. (2.5) and together with Eqs. (3.1h,3 and (3.4) describe the basic 
system of relations of structural mechanics. Let us observe that by virtue of Eq. (3.1)1 , 

all integrands in Eqs. (3.7) are known functions of the argument ~eLf (we have tacitly 
assumed that Xt is known) and all integrals can be calculated. 

If the material the body is made of is hyperelastic, T = 2eaa;ac where a= a(&, C) 
is the strain energy function and C = V zT V z(z = Xr + 4'-( ·)in the presence of constraints 
(3.1) 1), then after introducing the functions 

!l' =. ~ f eR(ie~+d>*) (iettc+cPtc)dLJ- f (!RadLJ -l"h, = !l'(YJ, t' ~'V"',)!), 
(3.10) L1 £1 

~ ::: ftp~+ p,"Rn = ~(YJ, ~'~,a, /lP, p,"), 

we can transform Eqs. (3.8) to the form 

(3.11) _!!___ o!l' + (_1!!__) - o!l' = !o YJ eiio. 
dt tnpa OVJa,K ,K OVJa ' 

The kinetic boundary conditions (3.9) at the same time will be given by 

(3.12) YJ E Ofio. 

Equations (3.11), (3.12), (3.1h. 3 and (3.4) are the governing equa~ions of the structural 
mechanics of hydroelastic bodies. 

If II0 c R 2
, i.e. YJ = (01, 02), then the equations of structural mechanics embrace 

different theories of the shell-like bodies, if II 9 c R, i.e. '1 = 01, then they include different 
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theories of the rod-type bodies. Assuming thatll0 = {1'Jo} is the one-point set, oJ10 = t/J, 
Ll = xR(B), and using the same approach as before, we arrive at the system of equations 

(3.13) ha-)." :;: +/~ = W'+e"bifob+eabc,pb,pc 

for the time-dependent functions VJ0 (t}, a= 1, ... , n. For the hyperelastic bodies Eqs. 
(3.13) reduce to 

(3.14) 
d oft' oft' ,. 
dt~--!1- =fo, 

v1p,. V1/)a 

-where 

(3.15) !i' = !i'(t,~, A). 

Equations (3.13) or (3.14) together with h0 (t, ~) = 0 represent what is caJJed mechanics 
of discretized bodies. 

Structural mechanics and mechanics of discretized bodies are two special examples 
of the simplified theories of mechanics; a general approach .to these problems was outlined 
in Sect. 2. 

It must be stressed here that there are known shell or rod theories which can be 
obtained from the general scheme of Sect. 2 but are not included in the special scheme 
of Eqs. (3.8) and (3.9). 

At the end of the section let us give an example of the functional equation (2ll2). From 
Eqs. (3.3) and (3.4) it follows that 

(3.16) J r"mp,.dlio + f S
0 mp,.dS0 = 0 

Ho ollo 

for every ~" defined by 

(3.17) oh., .i oh, .i JI oR"' .i _ 0 !lfl 
-!:l- U1/Ja+ -~-- U'IJa,K = 0, YJ E o, -!I- U1p11 - , YJ E V O• 
vtp11 v1/)a,K vtp11 

Equation (3.16) is the example of (h, ?0 ) = 0 where r = (ra, sa) and h = (~a), cf. (2.10). 
Substituting into Eq. (3.16) ,a= W0 +eabipb+eabc,pbipc-!8-H~:.-ha and sa= naKnK-p~, 
we arrive at the special case of Eq. (2.12) which can be called the functional equation of 
structural mechanics: 

(3.18) f P~ ~,dSo + J (Jg -W' -eab;pb -e"bc,pbipc) dtp,dllo 
ollo Ho 

J (H"K~'Pa,x-h"mp,)dllo. 
no 

For the unilateral constraints, i.e. if• instead of Rn = 0 we have R. ~ 0, the sign R = 0 
in Eq. (3.18) has to be replaced by R ~ 0. 

Final remarks 

Among the features of the simplified theories of mechanics based on the concept of 
abstract constraints we can mention the following: 1. All simplified theories are consistent 
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with the classical theories (in classical theories we deal as a rule with the boundary con­
straints and very special cases of internal constraints). 2. The constraints approach com­
prises in one formal scheme many theories which up to now have been treated separately. 3. 
Abstract constraints enable us to interpret different approximate methods of mechanics 
as exact constrained field theories with the special case of constraints. 4. Abstract constraints 
constitute the formal tool for setting up simplified theories in thermomechanics and othet 
branches of theoretical physics. Moreover, the constraints approach to the formation 
of simplified theories of solid mechanics makes it possible to compare different simplified 
theories by comparing the corresponding reaction forces maintaining the constraints, 
cf. [2]. 
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