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On the formation of simplified theories of solid mechanics

CZ. WOZNIAK (WARSZAWA)

By THE ssMpLIFIED theories of mechanics we usually mean the theories in which all basic
unknowns 1) either depend on only one or two material coordinates, 2) are only time-depedent
functions or 3) constitute finite sets of numbers. Thus, to the simplified theories of solid mechanics
belong all theories of structural mechanics (shell, plate or rod theories), mechanics of rigid and
discretized bodies, finite element approaches, the approximate methods of the Galerkin type,
etc. We are to show that all simplified theories of solid mechanics are special cases of the field
theory based on the concept of abstract constraints, [1]. Such any approach gives a new inter-
pretation of the well-known theories of structural mechanics and approximative methods as well
as enable us to formulate new schemes of describing different problems of mechnics.

Uproszczonymi teoriami w mechanice nazywamy zwykle teorie, w ktorych wszystkie podsta-
wowe niewiadome funkcje albo zaleza od tylko jednej badZ dwoch wspotrzednych materialnych,
albo s3 funkcjami tylko czasu lub sprowadzaja si¢ do zbiorow liczb. Takimi teoriami sa teorie
diwigarow powierzchniowych, ciat sztywnych lub dyskretyzowanych, podejécia oparte na meto-
dzie elmentéw skoriczonych oraz innych metodach przyblizonych. W pracy pokazano, ze wszyst-
kie teorie uproszczone sg przypadkami szczeg6lnymi jednej teorii otrzymanej z mechaniki ciala
stalego przy wykorzystaniu wigzébw abstrakcyjnych, [1]. Przedstawione podejécie umozliwia
nows interpretacj¢ tak znanych teorii mechaniki konstrukcji jak i r6znych metod przyblizonych
oraz ulatwia formulowanie nowych spososbéw opisu réznych zagadnieri mechaniki.

YnpollleHHBIMY TEODHAMY B MEXAHMKE HA3bIBAeM OOLIUHO TEOPHH, B KOTOPBIX BCE OCHOBHBIE
HEH3BECTHBIE QYHIIMM WM 38BHCAT TONBLKO OT ONHOH MJIM BYX MATEDHAIBHEIX KOODIHHAT,
MM ABNAIOTCA QYHIGMAMH TONBKO BPEMEHH, MM CBOOATCA K MHOMECTBaM YMCEN.
TaxKuMH TEOPHAMH ABIAIOTCA TEOPHH MOBEPXHOCTHBIX DAIOK, MECTKHX AJIH MHCKPETHIHPO-
BaHHBIX TeJ, MOXOAbI, OMMPAIOLUIHECHA HA METOM KOHEUHBIX 3JIEMEHTOB M HA JpYrue mpubim-
JKeHHble MeToAbl. B paGore mokasane, 4TO BCE YNMPOIIEHHbIE TEOPHH ABJIAIOTCA YaCTHBIMH
CIyYanAMH OJJHOH TEOPHH, MONYYEHHOH M3 MEXaHWKH TBEPAOro Tesa NPH HCIOIL30BAaHMH a0-
crpakTHbIX cBased [1]. IlpeacraBnenHbIil NOAXOX MaeT BOIMOXKHOCTh HOBOH MHTEpHpETALAM
TaK M3BECTHBIX TEOPHMil MEXaHMKHM KOHCTPYKLIHI, KAK M PasHbIX NPHOMIDKEHHBIX METOIOB,
a Taroxe obseruaer HopmMyITHPOBKY HOBBIX CIIOCODOB ONHCAHWA PASHBLIX BONPOCOB MEXaHMKM.

1. Abstract D-constraints for operators

THE CONCEPT of constraints which up to now has been applied almost exclusively in me-
chanics or thermomechanics, has a more general sense. In this section we shall introduce
the concept of constraints independently of any problem of theoretical physics.

Let A be the known mapping with the domain D(A) in the linear space X and with
the range R(A) in the linear space ¥: A(x) = y.

DepNITION 1. The relation D, = D(A), where D, is the known non-empty subset
of X, will be called the D-constraints relation for A. If A(D,) is a proper subset of R(A),
then the D-constraints relation for A will be called strong, otherwise it will be called weak.
If D, = D(A), then it will be called trivial.

If the D-constraints relation is strong, then the right hand side of -4(x) = y, provided
that only the elements x belonging to D, are taken into account, is restricted by the con-
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dition y € A(D,), where R(A)\A(D,) # ¢. Now assume that in the problem under consid-
eration we have to deal with all the elements y, y € R(4), and with the elements x, x € D,
(the latter will be called admissible by the constraints for 4). To reconcile these two oppo-
site requirements we must modify the mapping A(x) = y to the new form of a certain
relation between the elements of D, and these of R(A). To this aid we shall introduce the
concept of the realization of D-constraints.

DEFINITION 2. The multi-function: rp: Dy3x = Yz c ¥, Yy # ¢, such that for every
Y.y € R(A), there exists at least one pair (X,r) € Dy XYy, satisfying the relation A(x)
= y+r and such that y € A(D ) impliest = 0, will be called the realization of D-constraints
Jor A.

We can easily prove that the following statement holds:

ProprosITION. For every x € D, there is 0 € Y,. If D, = {X,}, then Y, = Y. If the
D-constraints relation for 4 is weak, then Yy = {0} for every x € D,,.

CoroLLARY. The problems with the weak constraints relation are governed by A(x) =y
and x € D, = D(4).

Now suppose that X = X(Q), Y = Y(£2) are linear spaces of the vector-valued func-
tions defined on the manifold Qandthat 4 (x) = y describes a certain field theory of physics,
(the field equation of this theory). Assuming that a certain class of problems of this theory
requires that only the fields x, x € D, be taken into account, we obtain what will be called
the D-constrained field theory governed by

(1.1) A(x) =y+r, xeD,, rely,

where D, = D(A4), y € R(4) = ¥(2) and Y; < Y(Q) for every x € D,. Every field r,
r € Y,, will be called the reaction which can maintain the admissible field x, x € D,,.
Independently of the concept of D-constraints for A we can define R-constraints for 4
(introducing the inclusion R, = R(4) and the suitable realization of R-constraints),
D-R-constraints for A and constraints for an arbitrary binary relation, cf. {1].

2. Simplified field theories of mechanics

Let B be the continuous body, ¥, its time-dependent configuration and xy its reference
configuration. We denote by u(®, ), 8 € xx(B), t €I = R, where I is the known time
interval, the displacement field from the configuration x,. Denoting by Q = wx(B)XI
the domain of the definition of u, let us assume that the smooth bijection Q-ITxa
is given where, 7 is either the n-th dimensional differentiable manifold, n< 3, or a one
point set. Moreover, let us take into account the body B for which the equations of motion,
the kinetic boundary conditions, the constitutive equations and the equations defining
the external loads in terms of the motion lead to the system of three equation in 2 and three
boundary conditions almost everywhere on 9Q2\4dl, for the field u(@, ¢). This system
of six equations can be written down in the form

(2.1) Aw) =y,

where y(0, ) stands for three volume forces and three boundary tractions which are inde-
pendent of the motion of B. Equation (2.1) includes the governing equations of bodies
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made of an arbitrary simple material (then we can put x», = x, for every ¢ € I) as well
as the equations of the incremental theories of elastic-plastic bodies (then u(@, ¢) i§ the
small increment of the deformation function).

Now the problem arises how to formulate the simplified theory of the problems governed
by Eq. (2.1) in which all unknown functions are defined exclusively on the manifold 7.
This problem has an exact solution (which is of course not unique) if we use the concept
of the constrained field theory, which was developed in Sect. 1. We shall see that the sim-
plified theory we are going to formulate is the D-constrained field theory for the operator
A, with the special case of the D-constraints relation and a special realization of these
constraints. To this end we shall denote by & and § the points of 7 and 4, respectively,
(if IT = {§,} then E = E,) and we assume that the following objects are known:

1. The Banach spaces X(IT), Y(IT) of the vector functions § = (y,(), a =1, ...,n,
and y = (Ju(§)), 4 = 1, ..., N, respectively, § 1.

2. The smooth mapping ®: X(IT) > D(®)s¢ —~u ED(A) c X(9).

3. The multi-function D(®)> ¢ - ¥, < Y(II).

4. The Banach space Y(4) and thesystem of N linear independent functionals f% € Y*(Zﬁ "
A=1,..,N.

Now let the D-constraints relation for the operator 4 be assumed in the form

2.2) D(4) > D,: = {ulu = ®(Y) for some P € D(®) < X(IT)},
and the realization of D-constraints for 4 be given by

(23) Yu={rKrg,f> =74, A=1,...,N, forsome T= ()€Y},

where we have denoted y¢ = yl{E} x4, for an arbitrary y € ¥(2), Eell. Let us also
denote

AY) = (Ao OW)):, 2, A= (40,
yAE<YE!f:>! gEH, A=1,..,N

Thus we obtain finally the following system of relations:

A ) =Fatrs, A=1,..,N,
b= (v)eD@) c X(I), t=()eY, < Y(),

in which for every ¥ € Y(IT) there exists ¢ & D(®) and t € Y,, such that Egs. (2.5) hold.
Moreover, if § € A(D(®)), then T = 6 (cf. Sect. 1). Equations (2.5) represent the D-con-
strained field theory of mechanics which, at the same time, constitutes the simplified
field theory. All fields in Egs. (2.5) are defined exclusively on the manifold 7, i.e. on a cer-
tain sub-manifold of @ (if IT is one, two or three-dimensional differentiable manifold)
or are finite systems of numbers (if I7 is a single point set, IT = {Eo}). In the latter case
Eqgs. (2.5) are the algebraic relations for the system of numbers ¢,, @ = 1, ..., n. We have
either n = N (if y, are numbers or only time-dependent functions) or N = 2n in other
cases, when we deal with the field equations and the boundary conditions.
If D(A) = D(®), then r = 6 and the problem reduces to

(2.6) AW =7 A=1:N,

(2.4)

(2.5)
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which has to have at least one soliition for every ¥ € Y(IT). If Y(4) is the Hilbert space

with the scalar product (|) and if ®W) = Y oy, where § = (y,) € D(®) < X(IT)
a=1

and a° € X(A4), then Eq. (2.6) has the form

2.7 (A (2) “a'}’a)dfa) = (ﬁlfa), E ell, A4=1,..,N.
a=1

Here f, are linear independent elements from Y(AT) (they can also dépend on E, E efi‘_’).
If =0 and N =n (ie. Ya,a =1, ..., n, are numbers), then putting f, = A(a?) we
obtain Eq. (2.7) as the system of equations of the least square method. Moreover, if
X(4) = Y(4) and a® = 3*f,, then Eq. (2.7) constitutes the equations of the Bubnov-
Galerkin method. If JT = IT,x I and II, is the two-dimensional differentiable manifold
(one dimensional manifold), then Egs. (2.5) include all well-known shell theories (rod
theories). If I7 = I, then from Eq. (2.7) we obtain the system .of n ordinary differential
equations representing different theories of the discretized bodies (including finite element
and finite difference methods as well as the mechanics of rigid bodies).

In the foregoing analysis the positive integers n, N have been fixed. If » — oo, but
n/N is the fixed number and the objects defined above as 1-4 are known, for every n, then
we deal with a certain sequence of the simplified theories of mechanics. It must be stressed
that even if Eq. (2.1) has the unique solution for the fixed y = y,, then the solutions
of Eq. (2.6) for y, = {Yo,f %>, A =1, ..., N, may not exist. Moreover, if for each N such
a solution exists and is unique, then the sequence x, = ®,({), ¥ = (v, ..., yn), 1 =1,
2, ..., may not be convergent to the solution x of Eq. (2.1). In nonlinear continuum mech-
anics all these problems seem to be open.

Now let us return back to Egs. (2.5) and give some examples of the sets Yy, € ¥
= D(®), of reactions to constraints ¥ < D(A).

Let the functional ° € X*(IT) be assigned to every y € Y(/]) in such a way that<v, 3°>
is the work of the kinetic field ¥ on an arbitrary kinematic field ve X(IT). If X(IT) = Y(IT),
then y° = y*. Moreover, let C,, be for every $ € ¥ the known subset of Xi (IT). The reali-
zation of constraints ¥ < D(A4) which is given by
(2.8) Yy: = {fl<h,7°) > 0 for every heCy}
will be calle dquasi-ideal; elements of C,, are said to be the quasi-virtual fields. From Eq.
(2.8) and Egs. (2.5) we obtain the fuctional equation of the simplified theory of mechanics:
(2.9 <h, A°W)) > <h,3° > for every heCy,
where § = (3.4), 4 = (4.)) and 4°() = (4¢))°. _ _

If ¥ is the convex set in X(/T), then assuming Cy:= {hjh = =1 for some ¢ e ¥}
we obtain
(2.10) Yo: = {fl<p—,7° >0 for every g e ¥}.

The realization of constraints given by Eq. (2.10) will be called ideal. If ¥ is the subspace
of X(IT), then putting $ — € ¥ we also have —h € ¥ and Y,: = {F|<h, r%) = Oforevery
he¥}.

Now let B, be, for every Y € ¥, the known linear mapping from X(IT) to a certain
Banach space Z(IT). Then the sets C,, in Eq. (2.8) can be defined by C,, = KerB,,. Moreo-



ON THE FORMATION OF SIMPLIFIED THEORIES OF SOLID MECHANICS 901

ver, if the constraints relation-¥' < D(A) is determined by ¥' = Ker M, M being the differ-
entiable mapping from X() to Z(IT), and B, = M'({), then the realization is also said
to be ideal, provided that ¢ is the regular point of M.

Let A(IT) be the Banach space of vector functions 4 and let L, be for every € ¥
the known linear operator from A(IT) to Y(IT). If

(2.11) Yo: = {flf = Ly(\) for some AeA(D)},

then the realization will be referred to as defined by the constraints functions 4, 4 € A(T).
If <h, (Ly(4))°> =0 for every he Cy and if Cy = KerM'({), ¥ = KerM, then Eq.
(2.11) determines the ideal realization of constraints. The example of such realization will
be given in Sect. 3.

3. Examples: structural mechanics and mechanics of discretized bodies

By structural mechanics we shall mean such a constrained field theory of mechanics
(such simplified theory) in whichJI =11, % I, where I, is one or two-dimensional differ-
entiable manifold (which can be immersed in R?), and in which the constraints relation
for the operator A and the realization of constraints are ideal (cf. below) and local in time.
Thus structural mechanics includes the rod and shell theories. In what follows we shall

. give the governing equations of structural mechanics. To this aid we shall assume that
#x(B) = IyxA, IT =Iyx1I, and n = (0¥ ell,, { = (6% ed, tel, where either
K=1,2and R=30or K=1and R = 2, 3. We shall also use the denotations

f)dl=[leos if A@b and f()dl=[leeo if o= (0,Hh.
a4 ad

The D-constraints relation for the operator A, i.e. the relation (2.2), will be postulated
in the form

(8, )~ D0, 9, 1)) =0, Bexp(B),
(3.1) h(t,n,$, V) =0, »=1,..,N, wnell,
Rx(’s“a"l‘):o's -73:]9-'-:}7% n, 'ﬂeano,

where @,(°), h,(*), R.(*), are known independent differentiable functions, det®, , > 0,
and ¢ = (y.(n,1)), a=1,...,n, are unknown differentiable functions. Putting
r = (r*, s¥), where r* are the volume and s* the boundary reaction to constraints, we shall
postulate the realization (2.3) of the D-constraints (3.1) in the form of the condition

f « 9P JdA+f ;dS =r® nell,,
(3.2)

0y,
where % 5% a=1,...,n, stand for r , A =1, ...,2n, and J = dv/dvg, j = ds/dsg,
where dv, dug, ds, dsg, are elements of y(B,t), xx(B), dx(B,t), dxr(B), respectively,
% = %;+u being the deformation function. To define the set Y, in Eq. (3.2) let us first

fa-* i jan =5, nedlly, ¥=("s")eYy,
¥
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denote by y*(o, #) the boundary value of y.(n, ) on I, (only if I1, = R?), where
0€0,1) is the coordinate on 9II,. Moreover, let &, be the boundary values of these
functions A,( ), which at n € a1, can be represented in the form h,(n, P, P ). Let Y,
be the set of all T = (r% s°),a = 1, ..., n, which have the form (cf. Eq. (2.8)):

oh,
S | B TN , m,,
r 3\” ( 5%.&).: W&

. oh, R,
5= 3':”:: x+ﬂ' a'Pu (FQ avaw)u-l-P a‘Pﬁ neaﬂo’
where 2°(m, 1), €1l,, @°(n, 1), u*(n,t), € oIl,, are unknown constraints functions and
n = (ng) is either the unit vector normal to oI, (if I, = R%) or n; = +1 (if II, < R).
If IT, = R?, then the functions %° have to satisfy the extra conditions

(3.4) [* 3"*] 0,

a0
in all points of 417, in which the function ® is uncontinuous (the square bracket denotes
the jump of the function).
It can be easily proved that the realization of constraints given by Egs. (3.2) to (3.4)
is ideal, i.e. the work of the reaction forces on an arbitrary virtual displacement field is
equal to zero:

(33)

§ popdse [ Pogdo=0
ax(B.1) z(B,)
for an arbitrary dy, defined by

Opa = ity = gg; Mer Opur =0, Bcxe(B),

e‘l’a Oy + ' a'}’ex"o nelly, 39), Oy, =0, wnedll,.
To obtain Eq. (2.5) we shall assume that y = (f%, p®), r = (r%, 5%), and we shall write
down the equation A(u) = y+r in the explicit form
Q'z-lal.’k_w/ﬁ -fg =f\!+ru’ o € xR(B)$
Nﬂﬂﬂps = p“+s“, 0 eaxR(B),

where T = T%(u), f& = f%(u), p& = p3(u), are the known functionals of the constitutive
type. Substituting r* = y*r% s* = y*, 5% into Eqgs. (3.2) and using Egs. (3.5), we arrive at

39 f (@~ Tt -

(3.5

k jds

JdA+ fT"“nﬂx, v

(ffo . JdA+ fPo

f a¢*jdA s, nedl,.

JdS) =r% mell,

f”?ﬁx*a
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Then, taking into account Egs. (3.3) and introducing the quantities

oP* oD 3P 0P,
o™ = fg k dA, g% = f@s k da,
i

a'P- a b - A a'Pb c a
f Ik ‘w‘ JdA + f Pé ;dS w‘
— o 0P
K = | P TE__L Jdd, K= - | P, ( ") , 1,,
H ! ; . J. % . deA nell,

yzfpg ﬁ';dd n € dll,,
4

after rather complicated calculations (cf. [2]), we obtain finally

o
39 (H“w b ) re— i P pe ek it e ™inpe, mello

ax ) x W
and

oh ah - a;; R,
3.9 H 4} ')n 4 ) + +p5, € oll,.
( ) ( a'pﬂ,x &= a‘Pﬂ ‘u a‘Pﬂv o ‘u a'Pﬂ pO n e

The equations of motion (3.8) and the kinetic boundary condition (3.9) constitute the
explicit form of Eq. (2.5) and together with Egs. (3.1),,5 and (3.4) describe the basic
system of relations of structural mechanics. Let us observe that by virtue of Eq. (3.1),,
all integrands in Egs. (3.7) are known functions of the argument { €4 (we have tacitly
assumed that x, is known) and all integrals can be calculated.

If the material the body is made of is hyperelastic, T = 2090/dC where o = o(8, C)
is the strain energy function and C = V 2T V z(x = x,+%®( *) in the presence of constraints
(3.1),), then after introducing the functions

1 G e :
=7 fex(x':+¢*) (% +P)dA — fexudd —Xh, =2, 1,9,V¢, 1),
(310) A Fi |
8 = @hy+ 1Ry = 600, §, b, B 1),
we can transform Egs. (3.8) to the form

d 0% 0% ) 0
e =+ * s = a! EH s
dt a‘f’a a'Pa.K K a?’n /s " ’

The kinetic boundary conditions (3.9) at the same time will be given by

Equations (3.11), (3.12), (3.1),,3 and (3.4) are the governing equations of the structural
mechanics of hydroelastic bodies.

If IT, < R?ie. g = (0%,0%), then the equations of structural mechanics embrace
different theories of the shell-like bodies, if IT, = R, i.e. n = 6%, then they include different

@3.11)

n € dll,.
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theories of the rod-type bodies. Assuming that IT, = {»,} is the one-point set, aIT, = ¢,
A = xg(B), and using the same approach as before, we arrive at the system of equations

(3.13) po g 2o = . S W+ 0™y + 0" Ps P

for the time-dependent functions y,(¢),a = 1, ..., n. For the hyperelastic bodies Eqs.
(3.13) reduce to

3.14) e
‘where
(3.15 L =29, 4).

Equations (3.13) or (3.14) together with hqo(f, ) = 0 represent what is called mechanics
of discretized bodies.

Structural mechanics and mechanics of discretized bodies are two special examples
of the simplified theories of mechanics; a general approach to these problems was outlined
in Sect. 2.

It must be stressed here that there are known shell or rod theories which can be
obtained from the general scheme of Sect. 2 but are not included in the special scheme
of Egs. (3.8) and (3.9).

At the end of the section let us give an example of the functional equation (2:12). From
Egs. (3.3) and (3.4) it follows that

(3.16) J redy.dil, + f $°0y,dS, = 0

ITs ally

for every dy, defined by

GBI G byt o g =0, mello, Gtoy,=0, medll.
K a

Equation (3.16) is the cxample of <h, 7% = 0 where T = (r°, s“) and h = (dy,), cf. (2.10).
Substituting into Eq. (3.16) r* = w*+ 0™+ 0" Ppy.—f6— HE—h* and 5s° = H*®ngx—pf,
we arrive at the special case of Eq. (2.12) which can be called the functional equation of
structural mechanics:

(318)  f phoy.dS,+ f (18 =W =™y — 0Py 02) dedlT,

élly

= f (H*® 0y, x —hOpg)dll,.

Iy

For the unilateral constraints, i.e. if* instead of R, = 0 we have R, > 0, the sign R =0
in Eq. (3.18) has to be replaced by R > 0.

Final remarks

Among the features of the simplified theories of mechanics based on the concept of
abstract constraints we can mention the following: 1. All simplified theories are consistent
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with the classical theories (in classical theories we deal as a rule with the boundary con-
straints and very special cases of internal constraints). 2. The constraints approach com-
prises in one formal scheme many theories which up to now have been treated separately. 3.
Abstract constraints enable us to interpret different approximate methods of mechanics
as exact constrained field theories with the special case of constraints. 4. Abstract constraints
constitute the formal tool for setting up simplified theories in thermomechanics and othet
branches of theoretical physics. Moreover, the constraints approach to the formation
of simplified theories of solid mechanics makes it possible to compare different simplified
theories by comparing the corresponding reaction forces maintaining the constraints,
cf. {2].
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