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On the effective transport coefficients 
Part 11. The effective viscosity of suspensions 

R. HERCZYNSK.I and I. PIENKOWSK.A (W AR.SZAWA) 

THE EFFECTIVE viscosity of suspensions depends on the viscosities of suspended particles and 0' 

the ambient fluid and also on the structure of suspension. In the first part of the paper the 
conditions necessary for determining the scalar effective viscosity are examined. In the second 
part an approximate method (being a modification of cell model approach) for calculating 
the effective viscosity is presented. 

Lepkosc efektywna zawiesiny zalezy od lepkosci fazy sp6jnej, lepkosci fazy rozproszonej oraz 
geometrii zawiesiny. W pierwszej cz~sci tej pracy przedyskutowano warunki konieczne dla zde­
finiowania skalarnego wsp6lczynnika lepkosci efektywnej. W drugiej cz~Sci pracy przedstawiono 
przyblizonll metod~ obliczenia tego wsp6lczynnika, ~dllell zmodyfikowanll wersj!l modelu 
kom6rkowego. 

34>4>el<THBHaH BH3KOCTL cycneH3HH aaBH:CliT OT BH3KOCTH:B HeiimeH <!>a3bl, OT BH3KOCTH: ,lUfCne­
pcHOH <l>a3bi, a TaJOKe OT reoMeTpH:H cycneuaHH. B nepsoii 'laCTH 3Toii pa6on.1 o6cymAeHbi 
He06XOAHMbie YCJIOBM ,rum onpeAeJieHH:R: CKaJIHPHOro K03<!>4>H:~H:eHTa 3<l><!>eKTH:BHOH BH3-
KOCTH. Bo BTOpoH 'laCTH paOOTbl npeACTaBJieH npH6JIH>KeHHbiH MeTOA paC'IeTa 3TOro KOO<i>­
<i>~HeHTa, 6y,lzy'llfii MO.r:ut<!>lfiUlPOBaHHbiM BapHaHTOM Ji'lee'IHOH MOAeJIH. 

1. Introduction 

THE MAIN distinction between composite materials which were discussed in the first part 
of this paper and suspensions, what will be presently discussed here, is that in the former 
case the distribution of inclusions is determined by the process of manufacture whereas. 
in the latter the distribution of particles depends on the bulk flow. Therefore one cannot 
assume the form of the distribution function but it should result from the solution of the 
considered hydrodynamical problem. The first steps in this direction were done in series 
of papers by BATCHELOR and his eo-workers [1, 2]. The relation between a distribution 
function and a type of flow is proposed and it enables, at least in principle, to consider 
flows and distribution functions lacking isotropy. The isotropy is the necessary condition 
for introducing the notion of a scalar effective viscosity. 

The results obtained so far are confined to the cases of non-interacting suspended par­
ticles, and to the first-order effects of hydrodynamic interactions. In the latter case the 
interations between pairs of particles are considered, and thus results concern only dilute 
suspensions. It was shown that for some types of flows i.e. a simple straining motion, flows 
with strong Brownian motions, the distribution of spheres is an isotropic one, and for these 
cases the effective viscosity up to the term 4> 2{4>- the volume density of suspended 
spherical particles) has been calculated. The above approach gives a deep insight into the 
flow of suspensions, but it is not well suited to deal with dense suspensions. 
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112 R. HERCnNSD AND I. PIENKowsiCA 

In this paper we assume a priori that the flow of suspension considered can be treated 
as a flow of a simple Newtonian fluid and thus that there exists for it an effective vis­
cosity. Keeping in mind the fact that this assumption is based on the statistical properties 
-of flowing suspensions, we named it statistical similarity. Provided this assumption is 
-obeyed, the so-called momentum or Maxwell approach, and the energy or Einstein 
:approach (see Sect. 2) lead to the same results. 

It should be noted that in contrast with the papers mentioned above, where the suspen­
·sion occupied the whole space, we consider the finite region with an appropriate homoge­
neous boundary condition, thus the complications related to non-convergent integrals are 
avoided. 

Due to Brownian motion and, first of all, to hydrodynamic interactions between sus­
pended particles, any flow of suspension which is steady in the macroscopic scale is unsteady 
in the scale of individual particles. This unsteadiness contributes to the dissipation of 
energy, and thus to the value of the effective viscosity coefficient. 

In the second part of this paper we introduce, similarity as we have done it in [3], 
a new version of cell model. The model proposed in this paper is in many respects sim­
ilar to other cell models and shares their efficacies and their deficiencies. It allows, how­
ever, to calculate the effective viscosity coefficient not only for monodispersed, but also 
for polydispersed suspensions. Apart from the effective viscosity, it gives also a dispersion 
-of this magnitude, which can be related to experimental scattering. 

2. Statistical similarity 

As in [3], by the statistical similarity we understand that for a particulate suspension 
there exists a constitutive relation of Newtonian form. In the case of suspensions it is much 
more restrictive than in the case of solid particulate materials with fixed structures. The 
similarity of flows of suspensions is valid only in the bulk of the flow, far from the walls 
and only when the flow itself does not impose any ordering of particles and, especially, 
does not change their concentration. 

The notion of similarity of flow fields (here only Stokes flows will be considered) inclu­
des variations of parameters not only spatial but temporal as well. Thus the proper aver­
aging procedure would be the time averaging of quantities of interest at a given point. 
The relevant question, how to apply an ensemble average to deriv_e the bulk equations of 
motion for fluid suspensions, has been considered by several authors, most recently by 
HINCH [4). 

Let the volume G be divided as previously into G 1 occupied by the particles with vis­
cosity P, and G2 occupied by the ambient fluid with viscosity Jl. We assume that both 
inside the particles and in the ambient fluid the Stokes equation holds and that on the 
boundary F 1 of the particles the velocity and the tangential component of normal stress 
are continuous: 

(2.1) 

(2.2) 

[v,]rl = 0, 

[<T11nJ-n,nA:n1<Tk;]r
1 

= 0, 

http://rcin.org.pl



ON THE EFFECllVE TRANSPORT COEmCIENTS. PART IT 

and further that the particles are not deformable, that is 

(2.3) v,n, = 0 on rl. 
We may define 

(2.4) v,1 = ~ f v1n1dS. 
. r 

For any function ~ continuous in G we have 

(2.5) J (~au). 1dV = J ~.1 audV+ J ~.1 audV+ f [aun1 ~]dS = f ~aiJnidS. 
a ~ ~ n r 

113 

The above formula differs from that for composite materials (the occurrence of the 
integral ~ [aiini~]ds-), due to the allowed here discontinuity of normal components of 

r1 
stress. 

The expression (2. 5) can be used for obtaining the rate of dissipation of kinetic energy: 

(2.6) D = J (v1au), 1dV = f v1aun1dS . 
G r 

The average stress is defined by 

(2.7) - If au =V x 1a1knkdS. 
r 

(It should be noted that this formula differs from the volume average of ali over the re­
gion G). 

Now, the assumption of statistical similarity reads 

(2.8) 

where 

Here p.* is assumed to be a scalar magnitude independent of au. This assumption is 
equivalent to the so-called momentum approach. 

An alternative way of introducing the effective viscosity through the energy dissipa­
tion is (the so-called energy approach) 

(2.9) D = 2p.*au"ii,1 V. 

The notion of the effective viscosity is physically meaningful if the definitions of p.* 
given by Eqs. (2.8) and (2.9) coincide. Here again, as in the case of heat conductivity, the 
positive answer is obtained only for two types of homogeneous boundary conditions. 

For 

(2.10) rt.u lr = ex~ = const 

8 Arch. Mech. Stos. nr 1/80 

http://rcin.org.pl
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or 

(2.11) 

we get from Eq. (2. 7): 

(2.12) 

(i.e. in this case the averaged stress is equal to the imposed one). Equation (2.6) gives 

(2.13) 

and hence from Eqs. (2.8) the relation (2.9) follows. 
Homogeneous boundary relations for velocity read 

(2.14) 

From Eq. (2.4) it follows that in this case the averaged velocity gradient remains 
unchanged: 

(2.15) v,,1 = c,1. 

Further, according to Eq. (2.7), 

(2.16) D = cu, f x"aun1dS = vi,kiiib 
r 

and again the effective viscosity which follows from Eqs. (2.8) and (2.9) coincide. 
No restrictions were imposed so far on the region G. Physically, however, G should 

be understood as large enough compared with the characteristic length of the flow. In 
this sense, locally, we can always assuine homogeneous boundary conditions on r. 

3. The effective viscosity of mono- and polydispersed systems 

The model described in Sect. 4 Part I is used here to calculate the effective viscosity of 
suspensions. We assume that each suspended spherical particle of radius a is enveloped by 
a reference sphere (of radius R) concentric with it. 

As previously we introduce the characteristic length of the suspension (P = 3t/Jmf4nn), 
and . the non-dimensional variables s = afl, Z = Rfl. 

Further, instead of the Cartesian coordinates x1, and the radius r, r2 = x,xh we use 
z1 = x;/1, z = rjl. · 

Now, our assumptions similar to these used in [3] are: 
(i) the velocity field in the particle-free region, i.e. outside the reference spheres and 

inside the reference spheres in the shells 1 ~ z ~ z is the same as the imposed ·one; 
(ii) the velocity field inside reference spheres of radii Z ~ 1 is calculated as the solu· 

tion. of the system of Stokes equations with the boundary conditions imposed on Z = 1. 
The second part of (i) means that for "large" radii of reference spheres, greater than 

the characteristic length of the suspension, the velocity field remains unchanged. This 
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allows us to introduce (ii), and to assume the boundary conditions for all reference sphe­

res at Z = 1. 
As the quantity of interest will be the average rate of energy dissipation artd as the 

only component of motion contributing to the dissipation (in the problem considered) is 
the straining motion, we take the boundary condition on the /-sphere in the form 

(3.1) 
v? = cux1 or w? = cuzb 

cu = c1, c11 = 0, w, = v,fl. 

Here we quote the solution in the form given by KELLER, RUBENFELD and Mo­
LYNEAUX [5): 

1 
w,(z) = M(s, A) {K(s, z, A)cun1+L(s, z, ).)c11n1n1n1}, 

(3.2) p(z) = p 0 + M(:, A) P(s, z, A)cun1nb z < s, 

p(z) = Po+ M(:, A) P(s, z, A)cun1nb s ~ z ~ 1, 

A denotes the viscosity ratio, A = PI fl· 
The coefficients K(s, z, A), L(s, z, A}, P(s, z, A) and M(s, A) introduced above with 

the aid of the auxiliary functions 

(3.3) 

were expressed by 

l/10 = 5s1 -7s5 +2, 

l/11 = -[5(2-5A)s7 +21s5A+4(1+A)], 

l/12 = s5 [5As2 -(2+5A)], 

l/13 = (1-A)s5 +A, 

l/14 = 5(1-A)s7 +2+5A, 

(3.4) K = (- :~· +3z) r/> 0 , 

and for s ~ z ~ 1 

(3.5) 

and for 0 ~ z ~ 1 

for 0 ~ z ~ s, 

(3.6) M= 4(1-A}s10 -5(2.-5A)s7 -42A85 +5(2+5A)s3 -4(1+A). 

An important property of this solution is that under the assumed conditions the net 
force and torque acting on spherical particles vanish. 

8* 
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According to (i), for z e [1, Z], 

(3.7) 

Let us consider now the volume-averaged rate-of-strain tensor afi (compare Sect. 2). 
For the reference spheres of radius Z ~ 1, we have 

(3.8) 

where V(Z) = ~ nZ3
, K the sphere of radius Z, and 

s~Z~l. 

In the reference sphere of a radius equal to the characteristic length I ( Z = 1): 

(3.9) 

A similar condition holds for reference spheres of a radius Z > 1; the volume-averaged 
rate-of-strain tensor alJ is by Eq. (3.9), and (i) equal to the imposed cii. 

From the obtained velocity field in the reference sphere with an arbitrary Z, the expres­
sion for the mean value of the tensor a1i over a set of all reference spheres is calcu­
lated: 

(3.10) 

where ( ) denotes averaging with the distribution functionf(s, Z) to the nearest neighbour 
particle (see Part 1). Further, we introduce the kinematic coefficient B which is aimed at 
adjusting the mean rate-of-strain tensor to the imposed one. 

The boundary conditions (3.1) are changed to 

(3.11) 

where the kinematic coefficient B is by definition equal to 

(3.12) B(s, J.) = ~~<0 = M(~'+ I) {<J>, + (- : </>o+ ~I </>2 ) As' 

+ (-</>,+M- ~I A<J>2 s-•) e"''"- 1
l- ~I <J>2 A-•13s-•e"'" [r(:, As') -r(:, A)]}. 

Here A= -8if>mln(l-s3)/s3, and F(x,y) denotes the incomplete gamma function, 
ao 

F(x, y) = f e-tt:~:- 1dt. 
y 

Using the boundary conditions (3.11), the demanded property 

(3.13) (alJ V) = c,J(V) 

follows. 
The effective viscosity will be calculated by the energy method. 
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For that purpose we calculate the energy dissipation D(s, Z) averaged over a set of all 
reference spheres: 

(3.14) - 4 J (DV)= 3" nP D(s, Z)Z3/(s, Z)dZ. 

Thus, for the number density n, we have in the unit volume 

(3.15) n(i>V) = (:) nnl3(D(s, Z)Z3
) = r/>.(D(s, Z}Z3

). 

The effective viscosity we are looking for can be expressed in the form 

(3.16) 

or 

~ = 1-r/>,. (•'+ ~) + !; {•''"-'' [b,s10 
+b2 s

8 
+b3 s

6 

where 

+ b5 s -b6 + b7 r 2 + b8 s- 4 + ~ ] + e••' [b1 s10 A1
'
3G -•J• + b2 s• A '''G- 21, + b, s6 AGo 

+b5 sA-2' 3G,13 +b1 s-2 A-'i3G813 +b8 s-4A- 7~3G1013] +b.s'+b6 (s'+ ~ )} , 

b 192 ,~,. ,~,. M- 2 
2 = -5-o/3o/4 ' 

b 42 ,1,. ,1,. -2 
7 = - s<vtovzM , 

The use of the explicitly given distribution function enables us to compute also the 
higher moments of the magnitude of interest. The most important is the value of the dis­
persion a, which characterizes the fluctuations of the bulk viscosity in the suspension. 
This value is given by the expression 

(3.17) 

where the second moment is 
00 

(p:~* = f H 2/(s, Z)dZ. 
s 
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As described in Part I, the approach can be generalized to calculate the effective vis­
cosity of polydispersed suspensions. In the particular case of the suspension built up of 
spherical particles of radius au the viscosity ratio A.1 , with the number density n1 and of 
spherical particles of radius a2, the viscosity ratio A.2, with the number density n2, we 
arrived at the foll_owing formula: 

(3.18) p,* ~ !1151 

{ 3 tPm [ ( S )10 ( S )8 ( S )6 - = ~ d1d1 1-tf>mZij+ Jj2 hu Z +h21 Z +h3t Z 
fl i,j 1141 IJ tJ lJ 

+b.,(;,J +bs, (;,,)+b.,+b7, ( ; 1 r +bs, ( ; 1 f]z,~}M</>; Z)dZ 

+{.;I d,d} {I -</>mZ,}+ t~ [bu ( st r +b2i ( st r +b3, ( ~~ r +b .. (st r 
+bs,( st )+bo,+b7,(:{ r +bs, ( :ln +</>m [zo- (lrJ}t.M; Z)dZ. 

Above, the following notation is used (for details- see Part I): 

(3.19) '~'4t = aL, -, vs 1 = Ll, , s3 = ,~..4> , d, = n, for i = 1, 2, L 3 = d11~ +d2lt 
'I'm n1+n2 

b1h b2 ;, ... , b81 are defined by Eqs. (3.16) with A., entering the formulae (3.3), and (3.6) 
for tf> 0 ,t/>1, ... ,t/>4 , and M in place of A.. 

4. Results 

We shall examine first the effective viscosity of dilute suspensions. The asymptotic ex­
pansion of p,* f p, for s --. 0 is 

p,* 1 2+5A. { -81/1 [ 5 21 32 1344,1..21: ] 
(4.1) --;;-= 1+T~4> 1+e "' 8</>m +s-2ftPm-~'l'm"BJ3 

-161/1 ( 168 )} 4 ( 2+5A. )
2 

2 ,1- 21A. ( 4> )
513 

-e m 1 + 25t/>m + S 1+T t/> In 'I'+ 2(1+A.) tPm 

x {e-••· [</>!Es}J-{] + e-•••· [<i>m + ! ]} + ···, 
where E813 - the numerical coefficient is given by the fdllowing series: 

00 

t: _ ~ ( -1 }n(8tf>m)'' 
"B/3 - L_; 

•·• n! (: +n) 

and its numerical value is close to 0.375. 
Taking tf>m = 0.74, one gets 

..!!!__ ~ 1 + _!_ 2
+ 5A. tf>[l-0.02] + ~( 2+5A. )

2 

tf>2 ln 4>+0.003 _A._t/>5' 3 + .... 
JL 2 1+A. 5 l+A. l+A. . 
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Practically, this result coincides with the classical Einstein-Taylor formula because the 
ratio of the second term in the bracket to the first one is of the order I0- 2 • The important 
feature of the formula is the presence of terms proportional to cp 2 lnf/J, anq f/J 5/ 3 ; it is ,attrib­
uted to the presence of multiple interactions in the entire two-phase medium~ . The appear• 
ance of these terms shows also that even for not very dense suspensions the statistics 
of the suspended particles has a significant influence on the 'effective viscosity(!). 

Further discussion of the results is based on numerical results bbtained using the for­
mulae (3.16) and (3.18). 

I 
~j'~ 

A-=104 

I Volfl 
10 

I I 
1/ I 

V I 
/ / /B 

V I / 
1"-- ...t--' 

I 

I ~ vk 
~ 

y/ V 

0.1 1 
I 
I 

0 o.z 0.4 0.6 

FIG. 1. The effective viscosity p.*, the dispersion fl, the kinematic coefficient Q, and the average volume 
of reference spheres Vk as the function of volume concentration •· fo~ rigid particles. 

-----
(1) In our earlier paper [8] the kinematic coefficient was introduced locally, i.e. we demanded the local 

adjustement of the field and we used a distribution function introduced ad, hoc. Due to the different 
asymptotic behaviour of this function, fors-+ 0, the term of ord~r f/J 2 lnf/J was abSent. As a result, the follow­
ing expression for the dilute limit was obtained: 

p.* 5A+2 
- = 1+--f/J+o(f/J). 

p. 2(1 +A) 

The qualitative behaviour of the investigated functions was the same as that obtained in this paper. 
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In Fig. 1 we illustrate the features of the functions p,*fp,, B, Vk, and ufp, for the vis­
cosity ratio 104, as the function of 4> (Vk denotes the averaged volume of reference spheres). 

In the next figure (Fig. 2) it can be seen that the effective viscosity is a rapidly increasing 
function of the concentration, when ). = 104 and ). = 1, but it is even not monotonic 
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0.4 0.6 

FIG. 2. The effective viscosity p.* as the function of volume concentration •· for different viscosity ratios 
(A = 104

, A = 1, A = 0). 

w~--~----+----+--~+-~~--~~--~ 

8~--~--~----+-~~~~F===~==~ 

0.2 0.4 0.6 

FIG. 3. The comparison of the effective viscosity coefficient for rigid suspended particles, with the theoret­
ical results of HAPPEL (6], and LUNDGREN (7]. 
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for A = 0. It should be noted that the results for A = 0, i.e. for the suspension of gas­
bubbles, are doubtful because in such a suspension the deformation of particles plays pro­
bably an important role. 

We have compared in Fig. 3 our results with the results of HAPPEL [6] and LUNDGREN 
[7], obtained by different methods. Lundgren's results seem to be too high for higher con­
centrations, whereas Happel's approach gives too high results for the concentration range 
up to 0.2. 
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FIG. 4. The comparison of the effective viscosity coefficient p.* with available experimental data, collected 
by THOMAS (9]. 

The next figure (Fig. 4) shows the results and the available experimental data collected 
by THOMAS [9]. 

Let us discuss briefly the results for polydispersed suspensions. 
Figure 5 presents the effective viscosity of suspensions which consist mainly of sus-· 

pended particles of the viscosity ratio A= 104, and only 20% of suspended particles have 
the viscosity ratio A = 1.0, or A = 0.0. The presence of suspended particles with a lower 
viscosity ratio reduces the effective viscosity of suspension. This result is closely related 
to the increase of the rate of energy dissipation in a reference sphere with the rise of 
the viscosity ratio A. 
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wr----r----r----r----r.~~----+----; 

Br---~----~--~----~~-r~--~--~ 

0.2 0.4 0.6 

FIG. 5. The effective viscosity coefficient p,* for suspensions built up of particles of different materials. 
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FIG. 6. The effective viscosity coefficient p,* for suspensions built up of particles of two different radii. 

The next figure (Fig. 6) shows the #* of a suspension, built up of particles of two differ­
·ent radii (P = (a2a1)/2). For polydispersed suspension, the only available data were reported 
by CHONG, CHRISTIANSEN, BAER [10], and the effective viscosity has a minimum in con­
trast to our results. However, it should be noted, that the radii ratio of spheres used in 
these experiments was about 20, and d1 - 0.2, 0.5, 0.75. One can expect that for such 
suspensions the value of l/J,. increases. In the frames of the proposed model we are unable to 
relate l/J,. to the concentration ratio of fractions of binary mixture. It was ·suggested 
already in [10] that a different value of l/J,. should be taken for polydispersed suspensions. 
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In [10] the changes of 4>m (or, in the original notation cf>ocJ for the binary mixtures are 
very great, much greater that one can expect on the basis of purely geometrical conside­
rations. 
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