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Boundary problems in nonlocal continuum models
of large engineering structures(*)

J. HOLNICKI-SZULC and D. ROGULA (WARSZAWA)

THE PAPER continues the considerations concerning nonlocal models of large discrete structures.
Using a hexagonal rod structure as an example, the problems related to adequate modelling of
boundary value problems have been discussed.

Praca stanowi kontynuacj¢ rozwazan dotyczacych ciaglych nielokalnych modeli duzych struktur
dyskretnych. Na przykladzie heksagonalnej struktury pretowej omdwiono zagadnienia zwigzane
z adekwatnym modelowaniem zagadnien brzegowych. Przedyskutowano réine przypadki
warunkow brzegowych zwiazanych z réznymi sposobami podparcia badz obcigzenia brzegu.

Pafora cocraBaser NpoRO/DKEHHE PACCYKACHUH, KACAIOMIMXCH CIUIOLIHBIX HETOKAIBHBIX MO-
aeneii GOMBIIMX AUCKPETHBIX cTpyKTyp. Ha mpuMepe rexcaroHambHOH CTepyKHEBOMH CTPYKTYPBI

€HBI BOIIPOCHI, CBA3AHHLIE C aJIEKBAaTHBEIM MOIJEeNMpOBaHUEM KpaeBbIx 3amad. Obecymk-
JleHB] pasHble CIyYaH PaHMYHBIX YC/IOBHH, CBASAHHBIX C PASHBIMH CHOCODAMH ONMMPAaHMA
WMJIH HATPY)KEHHMA IPaHMIBI.

Introduction

THE PURPOSE of the paper has been to continue considerations of the possible use of
various nonlocal continuum models describing engineering structures. The problem was
put forward in the paper [1] where the possibility of describing an infinite plane rod lattice
structure was discussed in terms of an integral and a gradient nonlocal model. The example
of the structure being analysed (Fig. 1) has been selected so that an effect of short- and
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(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland,
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long-range interactions can be obtained without complicating needlessly our study. The
structure under analysis can be naturally resolved into substructure I of shorter-range
interactions and substructure II of longer-range interactions.

In the previous paper [1] the forms of internal energy of the structure were determined
for the cases of the two models under discussion, i.e. integral and gradient.

This paper discusses the formulation of boundary problems for structures with strictly
defined edge support and load conditions.

In the case of definite boundary conditions and external loads (acting upon the internal
nodes of the structure), it is possible first to determine their continuous distributions being
their equivalents in the continuum model and, then, to determine continuous model fields
of displacements.

Given the forms of internal energy, external loads and boundary conditions, use can
be made of the principle of minimum potential energy to obtain stationary conditions
describing displacement fields in the continuous model under consideration.

In Chapter 1 this analysis was carried out for the case of the integral model, in Chapter
2 for the gradient model. Irrespectively of determining the displacement field in continuous
models, which allows the displacements of discrete structure nodes (= u) to be determin-
ed, the problem of determining internal forces in the rods (P) has been discussed. This is
very important from the engineering point of view. Internal forces in the rods of substructure
I or II (P', P") can be determined in two ways. Firstly, using the determined node dis-
placements (u) and employing the constitutive relationships of the discrete model [1]

P
(ii =u < P") , and secondly, using the auxiliary definition of states of stresses related to the

individual substructures (¢',6") and determining their corresponding components
_ /5’ =P
"\t s pr

The discussion of boundary problems associated with various methods of supporting
and loading an edge of the structure makes it possible to employ the technique mentioned
for calculating the statics of rod structures on the one hand, and allows the concepts used
in the theory of nonlocal bodies to be strictly determined and to be given a mechanical
sense, on the other hand.

The second way will be described in the subchapters 1.2 and 2.3.

1. Integral nonlocal model
1.1. Description of the state of displacements

Let us consider a structure bounded by the edge 4 = 4,04, (Fig. 2).
The potential energy of the system can be written as follows:

D W= yf yf Cupule, F)ec, ()6 (r)dr

_% ff é”“(s’ r')e;;(8)ew (x)dr'ds — ffl udr— fpiuj ds
AV ; P
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for fields of displacements u; and deformations ¢;; conforming to geometric constraints
of the system
&y=uy,, in V,

(1.2)

U = ﬁ, on A,,.

The stress tensor Cy;(r, r') has been determined for a homogeneous infinite structure
in the paper [1]. The expression

l A
(1.3) Wi = ?,!! Cipu(s, v')ey(s)en(r')dr'ds

appearing in Eq. (1.1) describes equivalent surface energy whose introduction is advan-
tageous in that it provides for the description of the entire heterogeneity of the structure
in the boundary layer, leaving the tensor Cjj(r, r') homogeneous within V.

Mechanical interpretation of boundary energy is provided by the total internal energy
associated with the rods removed from the boundary layer of the full structure and must
be determined individuaMy for every boundary problem.

For example, in the case of perfect clamping along a part 4, of the edge (Fig. 3a)
and for loading along a part of the edge 4, pr(zvided with a membrane keeping the rods
in their original position (Fig. 3b), the tensor C(s, r’) vanishes, and the properties of the
structure are homogeneous dver the entire region V. Essential here is the fact that the rods
intersected by the edge cooperate with the entire structure as if they were not intersected.
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In the case of clamping only the nodes located along A, (Fig. 4a) and loading only
the nodes located on A4, (Fig. 4b), the situation is different. The rods intersected by the
edge do not cooperate with the entire structure and can be neglected in the analysis.

AR

FiG. 4.

The tensor é, ;x(r) describing deviation of the elastic features ofa real structure in bound-
ary layer from those of a homogeneous structure assumes in these cases the following
form (cf. the definition of Cj}y(r) in [1]).

3
- ~ —__G" fDl’ f==k=f=2
(1.4)  Ciu(r) = Cllu) = = a2z — 14/3 i
V3 0 in the remaining cases

for
re !3’”,

where B
{2 the region of the boundary layer (Fig. 4),

a'l = fli the rigidity of the rods of substructure II,

t1'2 = [0, 1] the directional unit vector of the rods of substructure II orthogonal to the
edge.

Using the definition of the distribution of the tensor with respect to the second coordin-
ate [1], we obtain:

3 éuu(s: N = C—mi(%::;@ﬂ,

where
SEA,
re v
A% — the characteristic function of the region on,
Let us locus our attention on the fact that in the case of specifying the volume forces
f and surface forces p when passing from a discrete to a continuous model (f=>f) we have
at our disposal certain arbitrariness in their definition in the neighbourhood of the edge.

Depending on the case under consideration it is more convenient to treat the forces
loading the nodes located along the edge as volume forces or surface forces.
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It follows from the principle of minimum potential energy (1.1) that among all the
geometrically permissible fields & satisfying Eq. (1.2) the field minimizing W, will be actu-
ally determined (under the load f, p).

Stationary conditions of the potential energy functional W, = 0 are obtained in the
form

[f (CU“(I', l")—éi_m(l’, l"})EU(r')df’]_'-}—ﬂ(r) = 0 |“. V,
vV
(1.6) « ) s
[f(Cum(l', r) —Ciu(r, ¥) ), (r)dr ]"r =p on A,
| 4

The relations (1.2) and (1.6) describe the field of u displacements of equivalent continu-
ous medium.

1.2. Description of the state of stress of the structure

The apalysis of the state of strain of the structure makes it possible to analyse in a formal
way its state of stress o;;(r), although the state of stress classically defined here has no direct
mechanical interpretation and does not allow internal forces in rods to be determined.

In Chapter 1.3, another method for determining the state of stress will be shown, which
allows forces in rods to be directly determined.

By introducing the final definition of the state of stress of the structure

(1.7) o2 [ e, r)eulr)ar,
vV

where
Cim(, ¥) = Ci(®, ) ~Cim(r, ¥)
it is possible to define complementary energy of the structure

9 W= [ [ Gt rIauonrinit ~ [ aneueas

for the fields of statically permissible stresses:

G'ul_f'i‘ﬁ =0 in V,

(1.9
) ayhy = py on A’-

The inverse stress tensor é‘g,ﬁ, introduced in the relation (1.8) should be adopted from the
definition such that it satisfies the condition

(1.10) J' Catut, ¥ Come, ¥)dr = 3¢, ¥ (Bt OB,

It can be proved that by acting with it on the constitutive Eq. (1.7)

W [ &aEramd = [ Ealymr) [ [ Cun ¢eutd)dr |dr
14 V | 4
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we obtain the inverse constitutive relation:
(1.12) emn(r”) = [ Caliy(r, ¥") 0 (D) d.
v

Allowing for the definition (1.10) and the relation (1.12), (1.4) and (1.5) and neglecting
the effect of heterogeneity in boundary layer, i.e. equating C,,;(r, r') = 0 we obtain:

w l
(1.13)  Canij(r,¥) = AT (815 Oxa+ Ok 0504 8,y O ) h'(r, ¥')

1
o+ Fi (045 0kt + Oui 84041 85 [A"(x, ¥') —H'(r, X))

It follows from the principle of minimum complementary energy (1.8) that among
all the statistically permissible fields o;; satisfying Eq. (1.9) the field minimizing W, will
in reality be determined.

The stationary conditions of the complementary energy functional W, = 0 are ob-
tained in the form

J Coule, ) =Cinae, )0y (0)de =, in Y,
v
The relations (1.9) and (1.14) describe the state of stress of an equivalent continuous
medium. However, in order to make it possible to determine directly internal forces in rods
from the state of stress, it is necessary to decompose the state o;; into the components
related to substructures o}; and o}, as described in Chapter 1.3.

1.3. Description of the state of forces in rods of the structure

Making use of the decomposition of the stress tensor of an equivalent continuous
medium into components describing the rigidity characteristics of the individual substruc-
tures Ciju(r, r') = Cliu(r, ')+ Cliu(r, r') [1], the states can be defined:

ol & f Cvlljil(r: r)ea(r)dr’,
v

(1.15)

dr b/ I I
)= f Clhu(r, ¥)ey(r)dr’, o = of;+0f]
v

associated with individual sublattices. This allows forces in the rods of sublattices I and II
to be determined from o}; and of}, respectively. Here it is assumed that the states ¢! and "
are logally homogeneous.

And thus, for a rod belonging to family I and connecting the nodes r and r’, we obtain
the force
(1.16), Pi(r,x') = lajy(n) """,

By analogy, for a rod of family II we obtain
(1.16), P((r,¥) = Mo,
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As mentioned above, it can be seen that, given the solution to the problem of the con-
tinuous model, the technically interesting force values can be arrived at in two manners,
i.e. either by using the quantities o' and " (cf. Eq. (1.15)) ér by determining the field
of displacements o: the nodes of discrete structure in conformity with that of the continuous
medium, followed by using the constitutive relationships of discrete description [1].

2. Nonlocal gradient model

2.1. Description of the state of strain

Let us now carry out an analysis analogous to that in the case of the nonlocal integral
model.

Considering the body bounded by the edge A = A,uA4, (Fig. 2), the potential energy
of the system can be written in the general (three-dimensional) case as follows:

1
21 Ww,= 5 f (Ciyua BisBra+ Ciyximn Y 15V 1mn) dV
v

1 A A
-3 f (Cigur BuisBra+ CritmnV1sxVimn) dA — fﬂ“:d‘” =5 fPi“tdA = fm;ﬂg__,ﬂ,dd .
A v Ap Ap

The form of the stress tensors Cij and Cijums Was introduced in the paper [1].

The second integral describes, just as before, the effect of heterogeneity in boundary
layer caused by the removal of rods. :

In the case shown in Fig. 3 C;j; = 0 and Cjjyms = 0 whereas in that shown in Fig. 4:
b“_ r{"r}"r{"t}",

Cim = }Jlu = —2;}0

22)

A A CI
Ciskimn = C}}khu P 2V, r‘ll_'zr}udlzhllzdl'?.f:lz.

where " = EAl, ¢" = EAI® —the rigidity parameters of the rods of substructure II.
The introduction of the new term f myu; ;jn;dA in relation to the integral model notation
A

is suitable for those cases in which the edge is loaded by couples of forces with arms of the
order of the lattice parameter /, and where we are interested in a solution in its neighbour-
hood, m; then describes the external moment load along the edge.

It follows from the principle of minimum potential energy (2.1) that among all the
geometrically permissible fields 8;; and y;, i.e. those satisfying the relationships

Biv.v = '}’Uk} in v,

(2.3) Bu = “u;n
u;=u; on A,

the field minimizing W, will in reality be determined (under the load f;, p;, m;).

4 Arch. Mech. Stos. nr 679
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The stationary conditions dW, = 0 will assume the form

[(Cip— émi) Bul, s+ [(Cipimn— éutluu) Yimdy+fi =0 in V,
[(Cipu— él.m)ﬁnl] ny+ [(Cipemn— éun-u) Vimal, k15 = Py
[(Coprmn— éljtlm) Vimal. k7 = my

2.4)

on A,

The relations (2.3) and (2.4) allow for the determination of u;, f;;, ¥i;. The boundary
displacement conditions (for the part 4, of the edge, cf. Figs. 3a and 4a) are taken into
account by the condition (2.3),.

The boundary load conditions for the part 4, of the edge, (cf. Figs. 3b and 4b) are taken
into account by the conditions (2.4); ;.

2.2. Description of the state of forces in rods of the structure

By analogy to the considerations given for the integral model, a direct way will be dis-
cussed to determine the internal forces in rods of the structure by defining states of stresses
in the substructures.

And thus, we will define the states of stresses:

(2 5) O}J‘ = Cbllﬁlls m}t = C}J'lluu}'im’
) 0‘1} = C:Exrﬁm mﬁt = i}tln?’lﬂ:

the stress tensors having been resolved into the components related to the features of
substructures I and IT Cuu = ikt Cgu, Cijximn = Cgl_m,“'f' C!}u,“, in the paper [1].

By assuming local homogeneity of distributions o;; and M,y it is possible to deter-
mine the forces in rods belonging to substructure I by projecting them suitably onto
their directions:

. ;
26, 2} = Vol (df+ 5 ).
By analogy, for rods belonging to substructure 1I
. 1 ..
(2.6)3 P}l == Voﬂu (Oﬁf}l-l- 7 m‘}gf}ld‘) .
3. Conclusions

In the examples discussed for formulating boundary value problems in nonlocal contin-
uous models describing cases of rod structures, the term of equivalent surface energy has
been introduced to account for all the heterogeneity of material properties appearing in
the boundary layer of the structure due to the perturbation of regular rod distribution
by boundary conditions. It is convenient to isolate this term since, given its mechanical
interpretation it is possible without any trouble whatsoever to complete the definition
of boundary conditions by determining the heterogeneity tensors (1.5) and (2.2).
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By analogy, using nonlocal models to describe other objects, such as crystal lattices,

physical interpretation of the tensor C should be determined and then its components
should be specified depending on concrete forms of boundary conditions.

In the case of describing an object for which it is interesting to determine internal
forces, it is convenient to introduce, just as in the present paper, states of stresses related
to individual substructures provided that they can be isolated. The determination of internal
forces is then instantaneous. On the other hand, equilibrium equations for the object
comprise complete states of stresses obtained by superposition of stresses in the individual
substructures.
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