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Nonlocal, continuum models of large engineering structures(*)

J. HOLNICKI-SZULC and D. ROGULA (WARSZAWA)

THE AM of the paper has been to analyse the possibilities of modelling large engineering struc-
tures by nonlocal continua. An example of rod structure is discussed in some detail. The discrete
description of the structure is known and can be made use of to estimate the accuracy of the
results obtained by using individual continuum models. The integral and gradient nonlocal
models of the discrete structure have been constructed. The modelling maps and the associated
ways of determining the forces in the rods have been discussed.

Celem pracy jest analiza mozliwosci modelowania duzych struktur inzynierskich przez nie-
lokalne kontinuum. Dyskutowany jest przyklad struktury kratowej. Dyskretny opis ustroju
jest znany i moze byé uzyty w celu oszacowania dokladnosci wynikow uzyskiwanych przy sto-
sowaniu poszczegdlnych modeli kontynualnych. Konstruowane sa catkowy i rézniczkowy nie-
lokalny model struktury dyskretnej. Dyskutowane s3 odwzorowania modelowe i zwigzane
z nimi sposoby okreélenia sit w pretach. )

Ilemeio paGoTel ABJIAETCA AHAIN3 BO3MOMHOCTH MOJENWPOBAHHA GOMBIIMX HIDKEHEPCKHX

CTDPYKTYp Uepes HeIOKAMBHOE KOHTHHYyM. OBCY)XIAeTCA NpEMep peuleTuatoft CTPYKTYpHI.

JncKpeTHOe ONMACAHME YCTPOMCTBA M3BECTHO H MOMET OBITH HCIIONB3IOBAHO C LEBIO OLEHKH

TOUYHOCTH De3yJIBTATOB IIONY4aeMbIX, MDUMEHAA OTJeNbHbIE KOHTHHyalIbHble momermu. ITo-
CTpoeHsI MHTerpansHan 1 audxbepenimansnas Mofenu QUCKPeTHOH cTpyKTypbl. Obcy)aatorca

MOJIeNIbHBIe OTOOPaKEHHA M CBASAHHBIC C HUMH CIIOCOOB! ONpPe/IeIeHHA CHII B CTEPYHHAX.

In lmducti.o n

THE PURPOSE of the paper has been to analyse the possible use of various nonlocal, con-
tinuum models for describing engineering structures. Detailed considerations have been
restricted to the case of a plane rod lattice structure and to the discussion of its integral
and gradient models. The gradient model of higher order is considered to be a nonlocal
model, although in a weaker sense [5).

The use of nonlocal models for describing large engineering structures provides a con-
venient tool for analysing these structures on the one hand. On the other hand, it makes
it possible to test the various aspects of constructing nonlocal models using the example
of a structure about which complete information is available. The second reason has been
the main purpose of undertaking the present considerations.

If, from the formal point of view, descriptions of nonlocal models of crystalline lattices
[4] turn out to be analogous to those of lattice structure models, then the analysis of the
latter will allow, among other things, various boundary problems to be defined, depending
on the formulation of support conditions of the structure and on the basis of certain
criteria for evaluating the applicability of individual models depending on the problem
to be solved.

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials. Poland,
August 28th-September 2nd, 1977.
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The considerations have been presented in two parts. The present part is concerned
with analysing the models of unbounded structures, whereas the second part [12] deals
with the analysis of the conditions imposed at the edge of the structure.

The gradient, nonlocal theory of continuous medium has been developed by TourIN
[10], MINDLIN and TiERSTEN [6], ROGULA [7] and KUNIN [5], whereas the integral, nonlocal
theory has been put forward and extended by KRONER [2] and DATTA [3, 4], EDELEN [1]
and ERINGEN [2]. Generally speaking, the phenomenological approach to the continuum
theory has been provided by RoGuLA [8], whereas some boundary problems for bounded
bodies have been discussed by KuNin [5] and RyMARz [9].

Continuum models describing large engineering structures have been used by Woz-
NIAK [11], although nonlocal models have not been considered until now.

Our considerations will be exemplified by a rod structure made up of rods articulated
at their nodes (Fig. 1). It has been assumed that external load operates at the nodes only,
hence the rods of the structure transmit axial forces only.
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It can be eadily seen that the structure can be split into two sub-structures (Fig. 1),
of which the first (I) implements short-range interactions between the nodes of the structure,
whereas the second (II) implements interactions of longer range. The example of the struc-
ture has been chosen so that a structure with nonlocal features may be obtained when the
possible simplest problem is available.

Interactions of longer range than those implemented by substructure II can of course
be introduced, but it is of no purpose at this stage of our study. However, it is essential
to note that both substructures are geometrically invariant, which prevents additional
complications in our Wwork.

A homogeneous geometry of the structure and, additionally, homogeneous properties
of materials have been assumed.

Nonlocal models describing unbounded structure without boundary conditions will
be discussed in the present paper as follows.

Chapter 1 will describe a discrete structural model whose solution can be considered
as rigorous. This solution also makes it possible to evaluate the accuracy of continuous
models.
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Chapter 2 will present a local model of the classical continuum providing an intermediate
(less accurate) step in constructing a nonlocal integral model.

The nonlocal integral model will be described in Chapter 3 and the nonlocal gradient
model in Chapter 4.

Chapter 5 will give a summary of the considerations concerning the application of the
various nonlocal models.

In constructing individual structural models, the main problem reduces to obtaining
an adequate correspondence between the model and the object being described. On the
other hand, the problem within the model being constructed involves determining the rela-
tionship for the internal energy of the system. Given its form, it is easy to obtain structure
equilibrium equations by applying the principle of minimum potential energy of the system.
For determinate boundary value problems it is then possible (what will be discussed later
[12]) to determine the displacement field of the structure and other quantities important
from the engineering point of view.

1. Discrete structural model

Let r; and rj describe the radius vectors determining the nodal points of the rod lattice
structure. Assuming that the rods are made of the Hookean material, the force in the rod
connecting the nodes, r, and r{, of a deformed system can be related to the displacements
of the nodes, r; and rj, by the following relationships:

(L.1) Pyr,r) = qr(":(l") "‘”a(r)),
where
rr
12 o E("%a— (rj—r)(ri—=r) ... for r and r' connected by a rod,
. = :
0 , ... forthe remaining pairs of nodgs,

E™, A" and I'" being the Young modulus, the cross-sectional area and the length of the
rod connecting the nodes r and r'.
The internal elastic energy of the structure can be expressed by the equation

(13 U=3 D B r) @) ~u®) = 5 O P (@) —u®) W) -4 ).
nr nr

It can be easily confirmed that for any deformed (geometrically invariant) structure
the value of the energy U is positive (which means the stability of the system); since for
EA
RO

Given the form of internal energy (1.3), the support condition, of the structure and the
external load, it is possible, by making use of the principle of minimum potential energy,
to determine the actual state of displacements of the nodes.

This solution is considered to be exact, but rather inconvenient in the case of large
structures. The purpose of further considerations will be to construct continuum models

all the rods of the system the following inequality is valid > 0.

3s
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describing the present system not exactly, but with suitable accuracy, and more convenient
to use for various reasons than the discrete modgl.

It can be seen that the form of internal energy (1.3) is identical with that of the energy
of crystalline lattice with central interactions [4], where the condition for centrality of inter-
actions corresponds to the assumption of the articulated nature of the nodes of the lattice
system, not transmitting moment interactions. On the other hand, the distribution of mutual
interactions in crystalline lattice corresponds to that of rigidity properties in the individual
rods of the structure.

By including in the discussion a more general case of rod structures with rigid nodes
where axial forces are accompanied by bending moments in rods, a description analogous
to that of crystalline lattices with non-central two-point interactions is obtained.

An engineering system corresponding to crystalline lattice with multi-point interactions
can be exemplified by a structure obtained by dividing a surface girder into finite elements.
And thus for example, the introduction of finite triangular elements relates the state of
stress in the element to that of displacements of its three corners.

Further considerations will be restricted to the case reported at the outset of two-point
central interactions in lattice structure. Separate papers will deal with the analysis of more
complex structures.

2. Local structural continuum model

The intermediate stage in constructing a nonlocal structural continuum model involves
defining a (less accurate) local continuum model. Given the matrix of interactions (1.2)
of discrete structure, it is possible to select the stress tensor of an equivalent classical
elastic continuum. Here we take into account the criterion which claims that the local
internal energy within each structural unit cell should, for the same homogeneous deforma-
tions, be identical for both the discrete and the continuum descriptions, respectively.
Hence, search is instituted for the form of the stress tensor C;; of elastic continuum such
that the energy calculated for the region ¥, corresponding to a structural unit cell and rela-
ted to homogeneous deformation f;:

1
2.1) Uy, = 5 fctulﬁltﬁﬂdy
Vo

should be equal to that of the discrete system calculated over the region V.
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It follows from the homogeneity of the mechanical features of the structure that the
tensor Cji;; is constant over the entire region.
The structural unit cell —as shown in Fig. 2a, has been assumed. It can be noted that
. the internal energy of the unit cell is equal for homogeneous deformation to half the inter-
nal energy associated with the connection point for the node r (Fig. 2b).
Hence we have (cf. Eq. (1.3)):
1

(22) Uyo - —'4" q’; (ﬂi(rl) —u,(r))(u;(r’) —u,(l’)).
Expressing the energy (2.2) with homogeneous deformation components f;;, we
obtain

@) Uy, =5 [ D) ¥ G- €= Bubi-
r

Comparing two representations (2.1) and (2.3) of the same value Uy, it is possible to
determine the stress tensor of the required equivalent continuum:

1
2.4 Cyu = — [a' Z tRenéel + 30" 2 t}”r}'fr,',’f:,‘“] ;
£=1.2.3 £=123
where the parameters @' and a" describe homogeneous rigidity characteristics in the sub-
structures:

E™A™

25 4= — for all the rods of substructure I,
g = —E%— for all the rods of substructure II,

whereas the vectors t¥ and #/ describe directional unit vectors of the rods of the first

and second substructures (Fig. 2c).
The tensor Cjj,; can be resolved in a natural manner into two components

(2.6) Ciu = C:‘Ijkl"'cir,likl
describing the properties of substructures I and II, respectively:
Cj’ju = ';/2'7 a 2 f“f ll‘l
3 &3
2.7 "
Cly=—=a" 2 e,
]/3 £=1,23

Each of the stress tensors of the substructures has an axis of symmetry of the sixth
order which, for a plane medium, is equivalent to its isotropy. Using the isotropy of the
tensors Cjy,; and C}jy; and the fact that they satlsfy the conditions of the Cauchy symmetry
relative t8 the permutations of all the four indices, they can be written down as follows:

Cimi = A(81500+ 8 051+ 641 85,

(2.8)
Clixi = A3,y 0x+ 64 85+ 044 650)
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forgetting the internal structure that provides the starting point for constructing an equiv-
alent continuous model.
Comparing Egs. (2.7) and (2.8) and assuming (Fig. 2b),

= mi _ 3 1
- [llol’ t "[Ta‘?‘],

2.9) 1= [%_'/;l] M2 = [0, 1],

fu = ..__l- ._'_/_‘3_-. {“3 = __!'.E l_.
2 27) 2°2)

we obtain the Lamé constants A' = u'and A"'= u" for classical continuum:

A=

._........a,

(2.10) &3
= ?ﬁ al
i

The material constants (2.10) or more generally Eq. (2.4) of equivalent elastic continuum
are uniquely determined by the geometry and rigidity features of the starting discrete
structure. However, many various rod structures with identical features of equivalent
continuum medium can be selected, which results from reducing the number of para-
meters determining the system under consideration to two A' and A".

The forms (2.7) of the tensors of material features of the equivalent elastic continuum
are in agreement with those derived (in another manner) for structures with a homoge-
neous range of interactions by WoZNiAk [11].

3. Nonlocal integral structural model

Let us now construct a nonlocal continuum model of the structure under consideration.
It should make stresses at the point of the medium dependent upon deformations within
the range of interactions. Such a model will give results closer to those of a strict solution,
as compared with those obtained by means of the local model discussed above. The greater
the differences, the more heterogeneous will the state of strain discussed be. In particular,
differences in the displacement fields determined by the use of these two models will appear
in boundary regions.

Let us distribute the values of the above-determined tensor components C' and C"
at point r uniformly over the regions of interactions of the connection points of sublat-
tices I and II:

,C}m(r)h‘(r , T)

Cilju(l', r) = o
I
(3.1 Clu(r, ') = _Ui?%ﬁmﬂ s

Cim(r, ') = Chu(r, )+ Cllu(r, ¥).
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where
Q' = a(h? = al? }the areas of interaction regions of substructures I and II
Q" = 7(I"y? = 3al% ) (Fig. 3),
H(r,¥’) | the characteristic functions of the regions of interactions in the neighbour-
h"(r, ) } hood of point r of substructures I and IL

PR - .

The total internal energy of the structure will be expressed by the equation
(3.2 U= U‘ Ci(r, ¥)eg(r)e; (r)drdr’
v

describing the integral model of continuous medium with nonlocal interactions (cf. [4]).

4. Gradient structural model

Another continuum model capable of being used for describing approximately discrete
rod structures of long-range interactions is the gradient model.

It is assumed that the relative displacement of two arbitrary points of structure is repres-
ented by the sum of two consecutive terms of the expansion into the exponential series,
i.e._linear and quadratic

@1 w®)~0®) = By =)+ ines—r) Ci=r0),

where the coefficients of expansion are gradients of the first and second orders, respectively,
of the displacements field u, made continuous:

By = a0,

Yik = ﬁtu,t,(l‘)-

Elastic energy of the structure (1.3) can be expressed by the states of strain of the first
and second orders § and y

(4.2)

43 U= Z 1 [ﬁ:.,(r;-—r.)+ 5 Yaulri=n) (r;—ro]

N [ﬁ)‘fm(r:ll —rw)+ %’ yjlm(r'n ~Im) (r _rl)] .
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It can be noted that in view of the principle of reciprocity @} = @j/, the mixed terms
Bix¥jmn cannot appear in the equation for energy and that Eq. (4.3) can be written in the
form

sy v=1 2 5 (i =) i~ )i B

5 CE=r) (1=r) (1) (i) Vit V-

Using the definition (1.2), the energy U for the homogeneous structure (Fig. 1) takes the
form

45) U=~ 2 {[» Z degerenersn > apecpeen] g g

£=1,23 =123
wle D) aegenerenieneren DT aeqpergerterten®] vyt
¢=1,23 £=1,2,3
where
b = E'4'", d = E'A'(I"?,
b'll — E“A.“I", cl! G EIIAII("II)SI
On passing to continuum description, we obtain (just as in Chapters 2 and 3):
1 -
_ U= 7 f (ComBisPra+ Criimn Y15k Vimn) AV
4.6 Sl 7
Ciwt = Clin+Clixs  Cipaimn = Clikimn+ Cljximns
where

b
Clix = —— E A

L E-lnz.
bl'l
Clu = —- L
0 :2123
Cl
Cliss = o ettt
0 elT2
C[ TIE L TUE STIE SNIE SHIE 411
Clixims = Vo 2; R P
£=1.23

Vo= TS I being the unit cell area.

Attention is focussed on the fact that in the case when substructure II represents inter-
actions of a range much longer than does substructure I, (C" > C"), it is justified to
neglect the term Cljy,, as that exerting negligible influence on the accuracy of solution.
This is associated with the fact that the use of the first term of the expansion (4.1) only
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for short-range interactions can give the accuracy of the description of* displacement field
similar.to that obtained by using the two first terms of the development (4.1) in relation
to a substructure with long-range interactions.

5. Modelling pragmatics

Two nonlocal continuum models describing an unbounded discrete structure have
been described above. The determined forms of internal energy being positive for geomet-
rically invariant structures allow the deformation area of a modelling medium: to be
determined by making use of the principle of minimum potential energy of structure.
In addition to the knowledge of the expressions (3.2) and (4.6), it is necessary for this
purpose to determine also the model representations of the external load system f and
boundary geometric constraints u. In effect, it is necessary to determine their approxima-
tions T and @ made continuous:

(5.1) f,a=f,a.

Here, we have adopted the principle that double arrows describe transitions between the
continuous and the discrete model, whereas single arrows correspond to transitions inside
one of the models. B

Given the model quantities T and @, we obtain the displacement field determined in one
of the continuum descriptions:

(5.2) f, - .

The problem of returning the solution thus obtained from the continuous model to
discrete structure may involve, depending on the problem under consideration, the necessity
of determining various quantities whose accuracy of determination reflects that of the model
in relation to the accurate solution (in agreement with a certain standard).

In engineering problems, the displacements of the structural nodes u and, particularly,
forces in the rods P are interesting as solutions. Consequently, the accuracy of determining
internal forces should provide a measure of correctness (from the engineering point
of view) of the model adopted.

A system of internal forces in the structure can be determined by two methods. The -
first of them involves the transition of the displacement model field & to nodal displace-
ments of a discrete system:

(5.3) i=u,

which presents no difficulty and, next, the determination of the forces in the rods of sub-
structures P' and P" from the constitutive relationships of the discrete model (1.1):

/'Pl
34) il II\. P!

The second method involves the necessity of determining stress states in the continuous
models of individual substructures &' and 6" by using the relationships (3.1) and (4.6).
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Next, by using the assumption of local uniformity of states o', and ¢", it is possible to
determine forces in the individual rods P! and P" as the corresponding components of the
states of stress &' and &".
N /&I = P!
u &
NGl o pHt

A detailed construction of the states of stresses in substructures and discussion of bound-
ary problems for the nonlocal models under discussion will be carried out in the second
part of the paper [12].

On the one hand, it will provide the basis for analysing the applicability of individual

nonlocal models to describe definite engineering systems and, on the other, to provide
a mechanical interpretation for the analysis of boundary problems in nonlocal continuum.

(5.9)
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