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A non-Riemannian geometrical theory of imperfections 
in a Cosserat continuum 

S. MINAGA W A (TOKYO) 

STARTING with a basic recognition of Cosserat continua, the author introduces a space of non· 
metric connection which describes imperfections in a Cosserat continuum. When the considera· 
tion is restricted to micropolar materials, the space is specialized to that of metric connection 
and then there appear no imperfections other than dislocations and disclinations. The identi· 
ties for the geometric objects of the space are transformed into the basic expressions for dislo­
cations and disclinations in micropolar materials. The total Burgers vector is re-examined in 
terms of geometry and it is shown that a dislocation source is converted into a distribution 
of disclinations. 

Wyc~ z podstawowego okreSlenia kontinu6w Cosserat6w autor wprowadza przestrzen 
niemetrycznll, kt6ra opisuje defekty w kontinuum Cosserat6w. Gdy rozwai.ania ograniczajll 
si~ do mikropolarnych material6w, przestrzen specyfikuje si~ jako . przestrzeri metrycznll 
i wtedy nie wyst~pujll defekty inne niz dyslokacje i dysklinacje. To2:samoSci charakteryzuj~ 
obiekty geometryczne przestrzeni przeksztalca sict na podstawowe wyraienia dla dyslokacji 
i dysklinacji w materialach mikropolarnych. Calkowity wektor Burgersa jest badany 
z geometrycznego punktu widzenia i pokazuje siC(, ze ir6dto dyslokacji zamienia siC( w rozklad 
dysklinacji. 

11cxo,w~ H3 OCHOBHOrO OIIpe,ll;eJieHH.R KOHTIUIYYMOB Koccepa, aBTOp BBO,ll;HT HeMeTpll'leCKOe 
np<>CTpaHCTBO, KOTOpoe OIIHCbiBaeT Ae$eKTbi B KOH'l'lfHYYM Koccepa. Kor,n;a paccy>K,lleHHH 
OrpamAHBaiOTCSI MHRpODOJUIPHbiMH MaTepHanaMH, Tor,n;a npoc:TpaHCTBO CIIel.lHci>~YeTC.R 
KaK MeTpiAecKOC fiPOCTpaHCTBO H TOr,n;a He BbiCTynaiOT ,n;e$eKTbi ,llPyrHe1 tJ:eM ,ll;HCJIO~ 
H .ztHCJCJIHHainm. To>K,llecrsa, xapaxrepH3yro~e reoMeTpJAecKHe o6aeKT&I npocrpaHCTBa, 
npe00p83}'IOTCSI B OCBOBHble Bblpl)l(eHH.R ,lVUI ,ll;HCJIOKa~ H ,ll;H~ B Mlli<PODOIDipHbiX 
MaTepHanax. HoJIHbiA BeKTop Eroprepca HCCJie,n;osanc.R c reoMeTpHtJ:eCKoH: TOlJKH 3pemtR: 
H OKB3&maercH, tJ:To ~tCTOtJ:HHK ,ll;HCJioiQUUlii H3MeH.ReTC.R B pacnpe,n;eneHHe .n;H~. 

1. Introduction 

THE non-Riemannian plasticity theory has 'been established by KoNDO and his collabora­
tors [1]. In his extensive works, Kondo introduced a space of linear connection whose 
torsion and R.-C. curvature tensors are compared with a distribution of imperfections 
in crystals. Its fundamental metric tensor and coefficient of linear connection are given 
with the aid of tearing. Tearing is a step in which we cut materials into · small pieces and 
bring them into the natural, or free, state. 

The aim of the present paper is to develop an application of the theory to the pr9blem 
of imperfections in a Cosserat continuum. E. and F. CossERAT [2] themselves sfated their 
basic recognition of deformable bodies in he following words: "L'ensemble continue de 
trois dimensions de triedres sera ce que nous appellerons un milieu deformable". In Cosse­
rat materials, triedres-trihedrons-pl~y the role of points in the ordinary materials. The 
present theory starts with this basic recognition of Cosserat materials. 
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784 S. MINAGAWA 

SAKATA [3] developed a theory of zero- and one-diemnsional tearings and obtained 
a space of non-metric connection which describes a field·. of imperfection. ANTHONY [4] 
discussed the lattice connection and elastic metric and stated that there are some cases 
where the former is non-metric with respect to the latter (see also [5]). 

In the present paper we shall develop an elementary exploration for the derivation 
of a space of non-metric connection which is required for the description of imperfections 
in a Cosserat continuum. It is also the aim of the present paper to derive the equations 
which we have used in the analyses for the stress and couple-stress fields due to dislocations 
and disclinations in a .micropoJar continuum (6, 7]. 

When micropolar materials are assumed, no imperfections, other than dislocations and 
disclinations, appear. The total Burgers vector [8] is re-exa,nined with the aid of the geo­
metry and it will be shown that a dislocation source [9] is converted into a distribution 
of disclinations. 

2. Tearing of Cosserat materials 

Consider a three-dimensional Cosserat continuum. A Cosserat continuum is an ensemb­
le of trihedrons. A thrihedron is composed of a point and three vectors drawn therefrom. 
When materials are deformed, those trihedrons not only undergo rigid translations but 
also change the directions and lengths of their vectors. 

Assume an orthogonal Cartesian coordinate system with respect to which the position 
of a point is stated by X'. Throughout this paper, Greek indices take 1, 2 or 3 and 
Einstein's summation convention is used for indices appearing twice in one expression. 
Let C be a point in the body and e" be three vectors drawn therefrom. We denote atri­
hedron composed of C and e" by [c; e,J. In geometrical terminologies, e, construct 
a reference frame. We denote it by {e"}. 

We shall start with a special case where trihedrons are attached to the material-lines so 
that they deform and rotate together with the deformations of the materiaL This is the 
case of the materials of constrained rotation. 

When a material piece, including trihedron [C; eJ, is tom apart from the body, it 
changes its shape and, in the same time e, change their directions and lengths. Let e" 
be the vectors so changed from e". Since, e" and e" are vectors in three-dimensional space, 
we should have 

(2.1) 

where B~ is the tensor of transformation, B! its inverse transformation so that B!ifr = 6',; 
and B'J. B~ = ~~, N.: being the Kronecker delta. 

PRoPOSITON (I) requires that: {e,} is so chosen that {e"} becomes orthonormal 
so that 

(2.2) 

By the substitution of Eqs. (2.1)2 and (2.2), 
def 

(2.3) KxA = l\c · e, = H,Bl ~"~-'. 

This will be used as the fundamental metric tensor. 
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-----------------------------~------------------------------------

Maf~piece ----\ ----..~._ / -; ~· 
(~ ~·~i 
' {IK} __.. . ./"' -
"-----· . Cosserar materrals 

DeFormed slate NaTural state 

Fra. 1. Tearing ofCosserat materials. A matrial piece including two trihedrons ([C; e,J and [D; eH+de"]) 
is torn apart from the body. 

We assume the trihedron [D; eH+ deH], which is placed in the neighbourhood of [C; eH]. 
We cut out a material piece, including those two trihedrons, from the body and bring 
it into the natural state. This is a naturalization of Cosserat materials with respect to 
a vector line-element connecting C to D. 

Let {eH} and {eH+deH} be broughtinto {eH} and {eH+(oo)H}, respectively, by the natu­
ralization of the materials with respect to CD. In the special case mentioned before, 
{e"} and {eH} are connected by Eq. (2.1), and {eH+de"} and {e"+(oo,)} should also be 
connected by a similar relation. Note that {eH+ ( oo)H} is not necessarily orthonormal, 
although {eH} is orthonormal by Proposition (1). 

Let B!+d~ be the value of ii: at D. Then, we have 

(2.4) 

If follows from Eqs. (2.1h and (2.4) that 

(2.5) 

In the case where B: is a continuously differentiable function of the position, the last 
equation is transformed into 

(2.6) !»eA= deA +dx".8'1(o,.~)e1, 
where the Cartesian coordinates of C and Dare x" and x"+dx", respectively. 

We shall enter into the general case where trihedrons are relaxed from the materials 
lines so that en's can change their directions and lengths independently of the deforma­
tions of the latter. In this general case, {eK+deK} is brought into {eK+(«5eK)}, where 
(~e)K- (~e)K = OK. 

If the distance between C and D is sufficiently small, this additional term is proportional 
to dx" and, moreover, it is also ·proportional to eH themselves. Therefore, this additional 

term can be put as -dx"iPAQ;;HeH and Eq. (2.6) is replaced by De},~ Bf(~e)L so that 

(2.7) 

where 

(2.8) 
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Q;;:' is a tensor which is connected to the basic physical recognition of the materials. 
For example, if micropolar materials are assumed, dx"Q;;" becomes a tensor of rotation, 
and if materials of the higher grade are considered, it includes pure strains. 

PRoPOSITION (II) requires that Eq. (2.7) be interpreted as the absolute d.ifferential 
of {e,}. 

r.: is employed as the coefficient of linear connection. Note that the coefficient of 
linear connection is given in conjunction with free trihedrons, as compared to the metric 
tensor which is introduced in connection with constrained trihedrons. 

KHA and r.; enable us to assume a space of linear connection. Details will be studied 
in the next section. 

3. Space of non-metric connection 

We assume a space of linear connection (L3) whose metric tensor is KHA and the coeffi­
cient of linear connection is r,;. A geometrical version of the naturalization of the material 
line CD is that a point undergoes a Cartan displacement along CD, · and the absolute 
differential of the reference frame by !IJeA. Details of the geometry of the space of linear 
connection can be found, e.g. in [10, 11]. 

By the substitution of Eqs. (2.4) and (2.9), 

(3.1) v.gpA = a.gpA -r.rKpA -r.~gpp = -2Q.wA>' 

where V means the absolute derivative in relation to F,t, 
(3.2) Q,p}. = Q;;! gp)., 

and ( ) means to calculate the syrwn.etric part with respect to the indices enclosed. -Equa­
tion (3.1) means that, as far as Q,<Pl> #= 0, L3 emerges as a space of non-metric con­
nection. 

L 3 has two important geometric objects: one is the torsion tensor which is given by 

(3.3) 

and the other, the Riemann-Christoffel curvature tensor given by 

def 
(3.4) R;.;t = 2( ar,Fp1'J. + rr,1; 1 

rptJ, 

where [ ] means to calculate the antisymmetric part with respect to . the indices enclosed 
and, if indices have to be.singled out, the sign 1 1 is used. We assume 

(3.5) · R,11»e = R;,;'! gP" and S,pJ. = S;;l KpJ.· 

The physical counterparts of those objects are well known (see (1]).: the torsion tensor 
S;pl is _compared with a distribution of dislocations, and the antisymmetric part of the 
R.-C. curvature tensor Rr,PJ[beJ with disclinations. We have no definite physical counterpart 
of Rr•PJ<hc>. This may appear in materials of the higher grade, as will be stated later. 

We put 

(3.6) rxbc = ~· S;;" and S;p" = ~ e,pJ. af" 
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and 

(3.7) 

where Fi-'" is Eddington's permutation symbol. a.hc is the dislocation density tensor and fJAH 

the disclination density tensor. 
Forni Eq. (2.8}, 

(3.8) S;;t' = B~ocAB~1 +QcA:cf. 
From the third identity and Eq. (3.1) it is well known that 

( 3. 9) R.,p<hc> = 2V l,QPl<hc> + 2S;;l Qp<hc> • 
Moreover, since the R.-C. ~urvature tensor calculated from the first term of the right 
hand side of Eq. (2.8) vanishes, we get 

(3.10) R;;;," = 2Vc,Q;1t -2Qr•IPI"Q;1'{ + 2S;;f'Q;}.", 

from which, when Q,<hc> = 0, 

(3. I I) R,p(hcl = 2V r,QPuhcl + 2S;;, Q p£hc1 • 

Details of the derivation of those equations can be found, for example, by (10]. Equations 
(3.8) to (3.11) will be used in the later calculation. 

4. Imperfections in Cosserat continua 

Deformations of Cosserat materials are stated by means of distortions and microdistor­
tions. The distortion is rel~ted to B~ (or ii!), for the microdistortion Q;~A. The present 
section will introduce those terms and lead the expressions for dislocations and disclina­
tions in terms of those distortions from the geometry of the space. 

We put 

(4.1) B~ = ~+y!, 

where y! is the distortion. This implies the relative translation between two adjacent tri­
hedrons. The relative rotation and strain between them are given by dx"F;~1, as has been 
mentioned. 

It follows from Eq. (2.8) that 

(4.2) Fp[tcp] = -g,LPB!1oABf+QA[HP]' 

and 

(4.3) 

where 

(4.4) rhcp = F:fg,,... 

Equation ( 4.2) implies the relative rotation between two adjacent trihedrons, and Eq. ( 4.3) 
the pure strain between them. The first term of the right harid side of Eq. ( 4.2) is the contri­
bution of the distortion to the relative rotation, while the second term. is. originated from 
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the micromechanics of Cosserat materials. Similar circumstances are given for the terms 
of Eq. (4.3). Therefore, we may call Q;.r,PJ the microrotation, and Q;.<,P> the microstrain. 

In the following calculations, the terms of orders higher than or equal to the second 
with respect to s;;"', Q;; and r: are neglected. As far as micropolar materials are concerned, 
the microstrain plays no essential part of the theory. Therefore, we may assume Q;.<"P> = 0. 
In this case £ 3 entails a space of metric connection and R,pO.x> vanishes. This means that 
there are no imperfections other than dislocations and disclinatio:rrs. 

We put 

(4.5) 

By substituting Eqs. (3.6)1 , (4.1) and (4.5) in Eq. (3.8), 

(4.6) 

where y;.p = rr~Pw On the other hand, by substituting Eq. {3.7)1 and (4.5) in Eq. (3.11), 

(4.7) 

The last two equations have been used in the analysis of the stress and couple-stress fields 
due to dislocations and disclinations in micropolar continua {6, 7]. 

When Q,<~J #= 0, there appear imperfections of the higher grade. In a special case 
where 

(4.8) 

we get from Eq. (3.9) 

(4.9) 

A physical counterpart of this term is as follows: If we bring materials belonging to 
a closed circuit into the natural state, starting from one point on it, and going on from 
one point to the next. After the return to the initial point, we get a broken line in the 
natural state. In the case where Eq. (4.9) takes a finite value, there appears a dilatational 
discrepancy between materials at both ends of the broken line. This is the simplest case 
of imperfections of the higher grade. 

In this case we get from Eqs. (3.8) and (3.9) 

(4.10) 

where 

(4.11) 

and 

(4.12) 

and 

Equations (4.10) are the fundamental equations for this case. 
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5. Total dislocation 

Assume a material point whose radius vector is r. If this point undergoes a Cartan 
displacement along a circle, the point will, after its return, have a radius vector X' -

--}- R;ptx"df"IJ-sJ;tcdf"P, df"P being the bivector of a surface enclosed by the circle. 

There appears a change in the radius vector. To put it back on its initial position, 

(5.1) 

should be added to it. 
Let a point in the real materials be mapped onto the materials in the natural state by 

the following way. Locate the origin of the coordinate system on the natural state and draw 
the radius vector of a point from this origin. The mapping of the point is located at its 
terminal point. After the Cartan disphtcement of the point has been undertaken, its radius 
vector is changed by B, and accordingly its mapping should be moved by the same \tectorial 
amount. This means that there exists an uncertainty in the location of the mapping. 

The .above positional uncertainty is different from that stated · by S;i/'. The latter is 
explored by the following way: Assume a cir~le in the real materials and map a point 
belonging to it onto the natural state. The circle is mapped onto the natural state from 
one point to the next. After the return, the mapping assumes a position which is different 
from the initial one. This also means an uncertainty in the location of the mapping. 

Note that in the case mentioned before the origin of the coordinate system is a priori 
located on the natural state, and the positional uncertainty is explored with respect to it. 
On the contrary, in the latter case, the mapping of a material point is a priori located on the 
natural state, and the positional uncertainty is considered with respect to itself. 

As is well known, S;pJ· is related to the ordinary Burgers vector. In case where R;;i" = 0, 
B)( is identical with the above vector. B" is called the total Burgers vector. 

We put 

(5.2) 
1 

G''" = -R···Hx"+S:·" 
"P 2 II~JA "P ' 

from which we get total dislocation density tensor through 

(5.3) ~" = eT"~-t.G;;x and 

In what follows we shall restrict the consideration to micropolar materials. 
By the substitution of Eqs. (3.7) and (5.3) in Eq. (5.2), 

(5.4) 

This has been given by oEWIT [8]. 
It follows from Eqs. (5.1), (5.2) and (5.4) that 

(5.5) 
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where S is a surface enclosed by a circle with respect to which the total Burgers vector 
is calculated. If Eq. (5.5) is calculated with respect to a closed surface, we should have 

(5.6) f dS"((X!x+e}"C10"1x~) = J {(o-r(X!x+eH'r,0"Y)+o-r0""}dV, 

where the volume integral is calculated with respect to the region enclosed by the closed 
surface under consideration. Equation (5.6) vanishes because of 

(5.7) 

Accordingly, we arrive at the conclusion that the field of total dislocation density tensor 
has no sources, nor sinks, in the interior of the field. This is similar to the case of ordinary 
dislocations where there are no disclinations. Since Eq. (5.6) vanishes, 

(5.8) 

Before closing this section, we shall compare the total dislocation with the resultant~ 
or total, couple due to the stress and couple-stress fields. The total couple, with respect 
to the origi1;1 of the coordinate system, acting on a region of the materials from the sur­
rowndings is given by 

(5.9) 

where 

(5.10) M~" = p.~"+e1du"Yx", 
p.:" is the couple-stress tensor and aN' the stress tensor and the integration is calculated 
with respect to the surface enclosing the region. M~" is the total couple-stress tensor. 

If no body couples are acting, we have from Eq. (5.9) 

(5.11) a"M~, = o, 
which is followed by the well-known equation 

(5.12) 0-rf.'!,+ f:H'ryUT}' = 0 and QT(j'rY = 0. 

Equations (5.9), (5.11) and (5.12) are compared with Eqs. (5.5), (5.8) and (5.7), respectively. 

6. Dislocation source 

We shall consider the relation between di$clinations and dislocation sources. 
Let L 1 be a closed circle and P a point belonging to it. Draw a vector if from P. Q is its 

terminal point (Fig. 2). If P travels on L 1 , Q draws a closed circle- L2 of Fig. 2. Let S 1 

and S2 .be surfaces enclosed by L 1 and L 2 , respectively. 
H the materials belonging to L 1 are brought into the natural state, the line is not closed. 

Its closure failure being s;~"df'P, is identified as the Burgers vector if L 1 is taken as the 
Burgers circuit. In the same time, L 2 is also brought into a line which is not closed. Its 

closure failure is given by ~ R;;;_xv'- df"P + s;;xdf"P. This implies the Burgers vector if L2 

is taken as the Burgers circuit. 
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FIG. 2. Dislocation sources and the difference between the Burgers vectors. 
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When R;~t' :1: 0, those two Burgers vectors fire not identical with each other. This 
means that some of the dislocation lines which pierce S1 or S2 are terminated at the points 
in the cylindrical region whose bases are S1 and S2 • There exist sources of dislocations 
in the cylindrical region (see [9]). The strength of those sources is given by the difference 
between the two Burgers vectors; one calculated with respect to L 1 and the other with 

respect to L 2 • From the discussion mentioned before, this should be ~ R;P'{'Ifd/"11• 

G 

FIG. 3. Parallelepiped region. 

We consider a parallelepiped region (Fig. 3). Let ~x~, ~x2 and ~x; be the vectors 
belonging to its sides which start from one vertex. The strength of the sources. with respect 
to the dislocation lines piercing ABCD and EFGH is given from the above expression. 
Since d/"11 = 2~x~-~~1 and v" = ~x;, it entails that R;~i" ~x1 ~xli6_x121 • A sim.tfar expression 
is given with respect to ADHE and BCGF, as well as ABEF and DCGH. The former 
is R,:;t~x~~x~~~1 and the latter R;j,f~~ ·~~·~x11. 

Therefore, the strength of the sources distributed in the parallelepiped region is given 
by the sum of those three terms such as follows: 

1 
R···"~~ ~x£"~x11l+R .. ·"~xA ~x£•~x111+R"'"~x1 ~x£"~x11l =- e"111R .. ·"~V •PA 3 1 2 lip). 1 2 3 FpA 2 3 1 2 llpA ' (6.1) 

where ~V is the volume of the parallelepiped region. Thus, the density of the sources is 
given by 

(6.2) 

In case where there are no imperfections other than dislocations and disclinations, 
by substituting Eq. (3.7)2 the last equation is transformed into 

(6.3) RH = E;.xp fJAP. 
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This means that a source of dislocations is converted into a distribution of disclinations. 
This has been discussed by DE WIT [12] from the crystallographical point of view. 

7. Concluding summary 

We have introduced a space of non-metric connection which describes a field of imper­
fections in a Cosserat continuum. The explorations partly overlap the pioneering works 
by BILBY et al., SAKATA, and ANTIIONY. The gist is that the metric tensor and the 
coefficients of connection are introduced from the different facets of the deformations 
of the materials. BILBY·et al. and ANTHONY assumed them from the crystallographical 
point of view, and SAKATA from diakoptics. In the present paper the treatment was 
made from an elementary recognition of Cosserat continua. 

When micropolar materials are concerned, the space becomes of metric connection. 
From the identities for the geometric objects of the space we have obtained some basic 
expressions for dislocations and disclinations in a Cosserat continuum. 

In the last t~o sections we have discussed the total Burgers vector and dislocation 
sources. It has been shown that they bear certain geometrical implications. 

A space of non-metric connection is required to describe imperfections of the higher 
grade, where microstrains are taken into consideration. Detailed explorations in this 
regard are beyond the scope of the present paper. Those will be made elsewhere. 
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