
Arch. Mech., 32, 1, pp. 163-167, Warszawa 1980 

BRIEF NOTES 

Motion of inclusions in a solid 

A. TRZijSOWSK.I (WARSZAWA) 

THE PAPER concerns the motion of small inclusions in a solid. The equations of their motion 
is given and suitable experiments are proposed. 

Introduction 

THE SUBJECT of this paper is the motion of small inclusions in a crystalline solid. As re­
gards this phenomenon we know the following (cf. [1, 6]): 

A. If the temperature of a body with inclusions is sufficiently high and this body is 
subjected to the external field of stresses, then the inclusions move through the envi­
ronment (which is called "the matrix"). 

B. Every inclusion is surrounded by a layer of the matrix in which condensation of 
crystal lattice defects of the matrix and macroscopic (plastic) slip on the boundary be­
tween an inclusion and the matrix take place. 

Basic data on the microscopic ground of these phenomena are as follows: 
C. Forced diffusion of vacancies and atoms takes place in the matrix. 
D. If the temperature of the body is not very high and inclusions are sufficiently 

small, then the surface diffusion of atoms of the matrix proceeds on the boundary be­
tween an inclusion and the matrix. 

We shall further consider the case when: 
E. The matrix and inclusions are homogeneous and linear isotropic elastic solids; 
the inclusion is spherical; K(;, R0 ) denotes the inclusion ~-position of its centre, 

R0 is its constant radius, S(;, R0 ) - the boundary of this inclusion; 
the matrix is an infinite body. 
The unbounded homogeneous body characterized by elastic constants of the matrix 

is referred to as "the medium". An elastic field in the medium is called "the external 
field". 

1. The phenomenological model of the matrix-inclusion relationship 

In order to describe a bo:ly together with a moving inclusion by means of the displace­
ment field u, we should. postulate, on the basis of the physicalphenomena A-D and 
assumptions E, the following: 
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1. The displacement field u has · a spherical discontinuity U on the boundary of the 
inclusions: 

(1.1) [u] = U = -Un on S(~, R0). 

The main element of our description of the moving inclusion is the assumption 
that 

2. The scalar U characterizes the structural relationships between an inclusion and the 
matrix in the motion. This characteristics is independent of the external fields and po­
sition of the inclusion. 

On the basis of these assumptions let us propose a method of finding the scalar U 
in accordance with the AsHBY experiment ([2]). · In this experiment the body with inclu­
sions is uniformly compressed. It was found by Ashby that the physical phenomena B had 
been observed for the critical hydrostatic pressure Peo and that 

(1.2) 
Per = BRo", 0 < n < 1, B > 0, 

According to this experiment scalar U has the form (cf. [2, 3, 6]): 

(1.3) 

1 
U = TePRo~ 

1 1+Y 
rt.=---

3 1-'V ' 

P- 1 A e - K Pen 

Per > ,0, 

A = __ K---=--_K_1 __ 
K-rt(K-Kt)' 

sgn U = sgn(K -K1), 

where K, K1 - the bulk moduli: K- bulk modulus of the matrix, K1 - bulk modulus 
of the inclusion and 'V- Poisson's ratio of the matrix. 

2. Concentrated defect approximation 

This approximation is based on identifying a small moving inclusion with the material 
point which can move in the medium under the influence of an external field. This ma­
terial point is called "the (spherical) concentrated defect". The equation of motion of 
the (spherical) concentrated defect was obtained by H. ZORSKI [4]. 

Taking into account the investigation of the asymptotics of solutions of this equation, 
it can be written in the form [5] 

(2.1) M~= F(t, ~, ~), 
where ; = ;(t) E R3

, t ER+ -position of the centre of the. inclusion, ~'~-derivatives 
with respect to time t, F- force exerted by the external field on the inclusion, 
M> 0- the "effective mass" of the inclusion (the field mass). The force F has the form 

F(t, ~' ~) = F.s(t, ~+F4(t, ;, ~' 

(2.2) F.s(t, ~) = -}s,uUa0{Y)Vdivu(;, t), 

• 1 . 2 • •• 
F,(t, ~' ~ = 3 s,uci U[A(~, t)~+u(~, t)], 
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where 

S = 4nR~, 
2(I +v) 

a0 (v) = I -iv > 0, 
I 

0 <V< y2"' 
p- the shear modulus of the matrix, c2 -the velocity of equivoluminal waves in the 
medium 

A= Vu-VuT (A= -AT), 

u = u(x, t)- the external displacement field. The field u is the solution of Navier's equa­
tion for the medium. In the theory of concentrated defects, the effective mass M is 
an undetermined constant because it has the form 

(2.3) M= aLJU2 +m, 

where LJ(LJ > 0, [LJ] = s- 3
)- a undetermined constant, m, a- the determinate con­

stants: m- the rest mass of the inclusion and a= a(R0 , p, v, c2 ) < 0. It is seen that 
the effective mass M is determinable from the proper experiment to be proposed. 

3. Thermodynamic interpretation 

If the external field u is a static field (i.e. u = 0), so we can write the force F in the 
form 

F = Fs(;) = -V~(;), 

(3.1) ~(;) = Cde(;), e = div u, 

I 
d = TS,uiUiao(v) > 0, C = sgn(K-K1). 

Let us denote by la and 1, the diffusion flux of atoms (a) and vacancies (v) in the matrix. 
Basing on thermodynamic considerations (in a similar manner as [I]) and on the assump­
tion that la = -1, ([1]), it can be found that for small inclusions (cf. [6]) 

3D 
la(;) = fkT V a(;), 

(3.2) 
1 

a(x) = T trT(x), 

where 

T(x) the external (static) stress field, 

Finally we get 

(3.3) 

D the self-diffusion coefficient of atoms. 
k the Boltzmann constant, 
T the absolute temperature, 
f the correlation coefficient, cf. [1]. 
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CoROLLARY 

F, t tla when the inclusion is harder than the matrix (K <Kt), 
F, t ~la when the inclusion is softer than the matrix (K >Kt)· 

4. Proposal of the experiment 

Let us consider the static one-dimensional motion of the inclusion: 

(4.1) 

~ = (E,O,O), ~ = (v,O,O), 

u(~) = (u(~), 0, 0), F,(~ = (F,(E), 0, 0), 

'P = Cde(E), 
du 

e(~) =­
dE 

and let us introduce undimensionless variables r and T: 

(4.2) E r =­
/' 

t 
"t=­

ts 

A. 'l'lt.qaoWSKi 

where/- the characteristic linear parameter, e.g. the mean equilibrium distatce between 
the inclusions. If the initial conditions have the form 

(4.3) ro = z-tE(to), Vo = v(to) ::fi 0, 

then the velocity v = v(t) of the inclusion has the following representation: 

v(t) =V (r ( :.) ). 0 < lt-tol < e, 

(4.4) v(r) = sgnvo V V~ -2v;C"[e(r) -e(ro)] ' 

e(r) = e(lr), "= sgn(r-r0), C = sgn(K-Kt)· 

If we consider the linearization of the velocity field v(r) for the small cia~e 6r of the 
position r0 of the inclusion 

(4.5) 
Ro 

6r = lr-rol = -
1
- ~ 1, 

then we obtain the formula 

(4.6) 1J(r)at(r) = ~ = C0 = const for every r = EZ- 1
, 

Met 

where Ct. is the velocity of irrotational waves in the matrix and 

fJ(r) = I V(r+I-
1
: 0) :....iJ(r) I· 

at(r) =I ~(r) I'' v(r) :1: 0, F,(r) = F,(lr). 
F,(r) 

(4.7) 

The field velocity v(r) can be determined from the static one-dimensiotal experiment. 
The force F,(r) can be determined using the formulae (3.3) or (4.1). Th qtantity M(r) 
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coincides with the so-called "mobility" of the inclusion which is the determinable quantity 
(cf. (7]). The quantity f}(r) is the measure of change of the mobility 

( 4.8) f}(r) = const iff rJt(r) = const. 

Experiments suggest that (cf. [7])r!t(r) ~ r!t0 = const along the trajectory of the inclu­
sion. Then 1J(r)~ 1Jo = const along the trajectory of the inclusion and the effective mas& 
M can be estimated by 

(4.9) 

The necessary condition (yet insufficient) of the correctness of our model is M < m (cf. 
(2.3) ). 
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