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On the rate-independent limit of visco-plastic constitutive equations 

L. TRAVNICEK and J. KRATOCHViL (PRAGUE) 

RATE-INDEPENDENT plasticity is developed here as a limiting case of the finite strain theory of 
elastic-visco-plastic materials. The analysis of large bending and extension of an isotropic in­
compressible elastic-plastic block is given as an example of the use of the derived rate-indepen­
dent constitutive equations. 

Opracowano niezalezn~ od pr~ko8ci teori~ plastyczno8ci jako przypadek graniczny teorii od­
ksztalcen skonczonych material6w spr~i:ysto-lepko-plastycznych. Jako przypadek zastosowania 
wyprowadzonych tu niezalei:nych od pr~ko8ci r6wnan konstytutywnych przeprowadzono 
analiz~ silnego zginania i rozci~gania izotropowego nie8cisliwego spr~i:ysto-plastycznego bloku. 

Pa3pa60TaHa, He3aBHC~aJI OT CKOpoCTH, TeOpHH WiaC'rWIHOCTH KaK npe):(eJII>HbiH CJIY'IaH 
TeOpiW KOHCllllbiX ):(e!l>oMaqHH ynpyrO·BH3KOWiaCTif!ICCKI{X MaTepHaJIOB. KaK CJIY'IaH npH· 
MCHCHHH, Bbme,z:(CHHbiX 3):(CCL HC3aBHCHI.I.UIX OT CKOpOCTH onpe):(CJVIIOIIU{X ypaBHeHHif, npo­
BC):(CH aHaJIH3 CHJII>HOro H3rH6a H paCTH>KCHHH H30TPOnHOrO HCC>KHMaeMoro ynpyro·nJiaCTH­
tieCKoro 6noKa. 

1. Introduction 

IN THE RECENT paper by LEHMANN [1] the finite strain theory of elastic-visco-plastic ma­
terials is obtained by extension of a . theory of elasto-plasticity. Lehmann's approach is 
based on the assumption (often used in microscopic theories of work-hardening) that 
stress can be decomposed into the rate-independent (inviscid) stress and the exceeding 
(viscous) stress. Of course, the rate-independent theory is then obtained simply by assum­
ing that the exceeding stress is zero. 

An opposite point of view is used here. The elastic-visco-plastic theory is regarded as 
basic and the rate-independent plasticity is developed as a convenient approximative limit 
case of the rate-dependent theory. Our approach is justified by the fact that response 
of actual inelastic materials is always rate-sensitive. Only in a narrow range of loading 
rates can some materials be regarded as . rate-independent. This idealization, particularly 
in the form of the classical theory of plasticity, has been successful in analyses of many 
engineering problems. 

Constitutive equations of rate-independent plasticity were obtained as a limit of the 
visco-plastic constitutive law by PERZYNA and Worno [2] and KRAToCHVfL and DILWN [3]. 
In both papers intuitive arguments were used so as to reach the limit. In this note we 
attempt to specify more explicitly the conditions under which such limit procedure can 
be realized. 

To obtain a rate-independent limit of elastic-visco-plastic constitutive equations two 
types of assumptions have to be introduced. First, a sufficient smoothness of the functions 
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102 L. TRAVNfCEK AND J . .KRATOCHVfL 

in the elastic-visco-plastic constitutive equations has to be guaranteed. Second, the exis­
tence of the limit has to be assumed. As to the second, rather strong and unpleasant 
assumption we can remark the following. The papers [4, 5] treat visco-plastic constitu­
tive equations which are a special case of the constitutive equations considered here. We 
get them from our equations (2.2), (2.3) accepting the infinitesimal strain approach, the 
convexity of the yield surface, and some other mild assumptions of a technical nature. 
In [4, 5] it is shown that the solution of a boundary value problem for these special con­
stitutive equations converges in a certain sense for zero viscosity to a solution of the same 
boundary value problem of the classical flow theory of plasticity. Therefore, in this special 
case the existence of the rate-independent limit in the global sense is guaranteed. We cannot 
follow the same procedure here, as for the finite strain the existence and uniqueness of 
the solutions are not proved and, moreover, the existence of the limit in local sense is need­
ed. The existence of such a limit for .the general class of inelastic materials considered 
in this paper seems to be a deeply rooted problem we have not yet been able to overcome 
successfully. 

In Sect. 2 we briefly describe elastic-visco-plastic constitutive equations for finite 
strain deformations. The internal variable approach is employed. The main assumptions 
and the derived constitutive equations are summarized in Lemma in Sect. 3. The derived 
constitutive equations are of the form usually assumed in the finite strain theories of invi­
cid plasticity (e.g. [6]). The special case of isotropic incompressible elastic-plastic consti­
tutive equations is then considered and used in an example of a large bending. 

2. Elastic-visco-plastic materials 

Mechanical and thermal treatment of an elastic-visco-plastic material induces deforma­
tion and changes in its physical properties. At finite strain the deformation of the material, 
described by the deformation gradient F, may be resolved into an elastic partE and an 
inelastic part P according to the relation F = EP (e.g. [8, 9]). The material time derivative 
of this relation yields the decomposition rule ( [8, 9]) 

(2.1) L = LE+Lp, 

where L = FF-1 is the velocity gradient and L8 = :EE-1, Lp = EPP-1E- 1 are rates of 
elastic and inelastic deformations respectively (the superposed dot means material time 
derivative). The change of physical properties can be described in terms of structural pa­
rameters IX1, i = 1, ... , n; IX1 may be interpreted, e.g. as scalar quantities which appear 
in the theories of work-hardening [10-12] (when convenient, we use the notation m = 

= (1X1, ••• , 1Xn); an extension of the present consideration to the case of the structural pa­
rameters of higher tensorial rank is readily possible). 

The class of elastic-visco-plastic materials described in detail in [8, 13] is characterized 
by six constitutive functions which give the values of the density of internal energy u, the 
Cauchy stress tensor T, the density of entropy 1J, the heat flux vector h, the rate of the 
inelastic deformation Lp, and the rate of the structural parameter m, if values of the elastic 
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part of the deformation gradient (1) E, the temperature 0, the temperature gradient g, 
and the structural parameter ex are specified. The set of variables E, 0, g, ex will be denoted 
by w, i.e. w = (E, 0, g, ex). 

The briefly described material model represents a rate-sensitive material. This is caused 
by the fact that the considered constitutive equations for Lp and ci, Lp = Lp(w) and 
ci = a( w) are not homogeneous in the first time derivatives, i.e. a change in time scale 
(or similarly a change in deformation and heating rates) influences the response of the 
material. Therefore, in order to obtain a theory of rate-independent plastic behaviour the 
constitutive equations for rates Lp and ci have to be modified. As a starting point of the 
modification we use a special class of elastic-visco-plastic materials with well-defined elastic 
range. We assume: 

a. There exists a continuous scalar function f = Jt w); the set of w such that Jt w) = 0 
will be referred to as the generalized yield surface. 

b. For all w such thatj(w) ~ 0 the constitutive function Lp satisfies Lp(w) = 0; for 
w close to the generalized yield surface, such thatJtw) > 0, Lp is governed by the equation 
Lp = A./(w)G(w), i.e. _ we can write 

(2.2) Lp = Af{w)h().f(w))G(w), 

. where ). is a positive scalar parameter (a constant for a given material, h( ·) represents 
the Heaviside function (h(x) = 0 for x < 0, h(x) = 1 for x ~ 0), and G(w} is a second­
order tensor function of w. 

c. The constitutive equations for the rates &1 have the form 

(2.3) a1 = tr(A1(w)Lp), i = 1, ... , n, 

where A1(w) are second-order tensor functions of w. 
In the assumptions (a)-(c) the consequences of the principle of material indifference 

has not been respected. Using the standard procedure [8] we can get the frame indifferent 
form of Eqs. (2.2) and (2.3) 

(2.4) Lp = ;./(w)h ().J(w) )EG(w)ET, 

(2.5) &1 = ;./(W)h().J(w) )tr[G(w)A1(w) CE], 

where CE = ETE is the right Cauchy-Green elastic tensor, 

w = (CE, 0, g, ex), g = ETg, and J(w) = /(w'), 

G(w) = G(w'), A1(W) = A1(w'); w' = (CE112 , 0, Ci112g, ex). 

The assumptions (a)-(c) guarantee the fact that the material model behaves during 
thermo-mechanical processes which remain in the elastic range, i.e.f(w) ~ 0, as a thermo­
elastic material. The reason is that for w such that /(W) ~ 0, there are no inelastic chan­
ges, both Lp and ci are zero. The constitutive equation (2.3) or (2.5) provides that the 
structural changes occur only during inelastic deformation. Recovery, aging and quenching 
effects are excluded by these assumptions. By the constitutive assumption (2.2) or (2.4) 
we require that for w close to the generalized yield surface with J(w) positive, the rate of 

(
1

) The assumption that F and P . appear in the constitutive equations only through E = FP""1 is 
treated in [8] and [13] as a characteristic feature of elastic-visco-plastic materials. 
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inelastic deformation is proportional to f; G is an orientation factor. The parameter A 
can be interpreted as an inverse scalar measure of the viscosity of the material. Materials 
with higher A react more rapidly to the excess off above zero, i.e. the materials with higher 
A are less viscous. Looking for a description of rate-independent (i.e. viscous free) be­
haviour in the next section we determine the form of the constitutive equations (2.4) and 
(2.5) in the limiting case A.~ oo. 

3. Rate-independent limit 

We obtain the rate-independent form of the constitutive equations (2.4) and (2.5) 
under the assumptions that the considered thermo-mechanical processes and the functions 
J, G, A1 are sufficiently smooth and the limit of Eq. (2.5) for A.~ oo exists. Note that 
inelastic deformation P does not appear in the right hand sides of Eqs. _ (2.4) and (2.5) 
(see the footnote (1)). Therefore, the equation (3.1) for the rate of inelastic deformation Lp 
plays no active role in the folJowing consideration. It is used only to derive its limiting 
form which is needed in Eq. (2.1). 

Consider a sequence of elastic-visco-plastic materials characterized by Eqs. (2.4) and 
(2.5) with different values of A.. We suppose that for all w the functions G(W) and A1(W) 
are continuous and f(W) has continuous partial derivatives;/(·), G( ·) and A;(·) are 
assumed to be independent of A.. Suppose further that the right hand side of the consti­
tutive equation (2.5) is such that the existence of the solution Cl{t) in the interval (t1 , t2) 

is guaranteed (e.g. the right hand side of Eq. (2.5) is continuous and bounded in Q = 

= (t1 , t2) x(- oo, oo) and Lipschitz-like continuous in Q with respect to Cl). 
Suppose that we are given in the time interval (t1 , t2 ) for different values of .A a com­

mon thermo-mechanical process CE(t), O(t) g(t) with continuous time derivatives ·and 
at t = t1 a common initial value of the structural parameter Cl0 , i.e. Cl{t1) = Cl0 • Then 
under the introduced conditions in the interval (t1 , t2 ) there exists for all A. a solution Cl(t) 
of Eq. (2.5) with the continuous time derivative ci(t). As in general, the solution Cl{t) 
depe11ds on the value of A. in the sequence of the materials, we write ~(t). Further we 
denote 

lri E: (CE, {), g, ClA), jA(t) ::f(wA(t)), 

GA(t) = G(wA(t)), A1(t) = A,(wA(t)), 

(of'-foCE) (t) = (a/;acE)(wA(t)), 

etc. Then we write Eqs. (2.4) and (2.5) in the form 

(3.1) Li = Aj'-h(A.JA)EGAET, 

(3.2) 

Time differentiation of fA yields the identity 

{3.3) 
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From the definition CB= ETE we have c£ = ETLIE+ETLEE, hence denoting LA= 
= LB+L~(see Eq. (2.1)) and using Eqs. (f2) and (3.3) we get 

(3.4) jA = HA-KA).JAh().JA), 

where 

A [ ofA A ] ofA • ofA ~ 
H =2tr --ETLE +-0+-·g - acE ao ag , 

In Eq. (3.4) we assume that there exist a common 6 > 0 and e > 0, such that 

(3.5) IK.tl ~ 6, ltr[GAA1 C£1 I ~ e 

for at least one i e {i, ... , n }. In the following the symbol lim always means the limit 
for ). -+ oo and h is a function on R1 such that h(O) = 1 and ii(x) = 0 for x :F 0. 

LEMMA. If in the time interval (t1 , t2) there exists a uniform limciA(t), then for all 

te(t1 , 12) we have 

(3.6) 
H - . 

Lp = Kh(f)h(f)EGET, 

(3.7) 
. H -. 
ex, = Kh(f)h(f)tr[GA1CE], 

where Lp = lim Li, ex= limcxA, f=ftw), G = G(w), A1 = At(w), w = (C£, 0, g, ex), L = , 

=LE+ Lp and 

_ [ of T ] of • . of .!. 

H = 2tr oCEE LE +"fo-0+ og · g, 

K = 2 tr [a~ CEGCB] - t z tr[GA, C£1· 
E 1=1 I 

Proof. As we have cxl(t1) = cx0 for all)., the existence of the solutions cx.t ofEq. (3.2} 
with the continuous time derivative and the existence of uniform limciA imply the following 
consequences valid in (t1 , t2). There exists uniform limcx.t = cx,ci continuous, such that 
ci = lim c14

• It means limw4 = w, limfA = j, limj.t = jandjis continuous. Using Eq. (3.5):z.. 
we see further that there exists continuous llimtr[G.tAt CE]I = ltr[GAtCE]I ~e. By Eq~ 
(3.2) this implies the existence of the continuous limJ.fA h(J.P·). We denote 

(3.8) qJ =: Jim ).jAh(J.fA). 

For t E (tu t2 ) we have 0 ~ cp(t) < oo. We see that 

(3.9) 

{3.10) 

(3.11) 

Lp = limLi = cpEGET, 

ti1 = limat = cptr[GA1CE], 

I= H-cpK. 
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Finally, the form of the limiting function qJ will be derived. 
(i) If f/J > 0 on M c (th t2), we find from Eq. (3.8) that h = 1 for A greater than 

some .A.0 for every t E M ( .A.0 depends on t e M). qJ < oo implies f = 0 on M, so that f·= 0 
-on M (the continuity of qJ implies that M is relatively open in (t1 , t2)). From Eqs. (3.5)1 

.and (3.11) we get qJ = H/K, hence, as f= 0, f= 0, we can write formally lfJ = (H/K) 
h(f)h(J). 

(ii) The case f > 0 for some t e (t1 , t 2 ) is a contradiction with qJ < oo. 
(iii) If qJ = 0, I= 0, f= 0 on N c (t1 , t2), from Eq. (3.11) follows H = 0, hence, 

.again qJ = (HfK)h(f)h(j). 
(iv) If qJ = 0, I= 0, f.< 0 for some t0 e (tu t2), we get f > 0 for some t00 < t0 , 

hence, it is a contradiction with f/J < oo. If this situation takes place in t = t 1 , we can again 
write qJ = (HjK)h(f)h(J). 

(v) The case qJ = 0, I= 0,/ > 0 is similarly possible to (iv) only for t = t2 , and again 
11 = (HfK)h(f)h(j). 

(vi) For qJ = 0, f < 0 on P c (t1 , t2 ) it is qJ = (H/K)h(f)h(j). Note that t1 uMuNu 
vPut2 = (tu t2). The use of the relations (i) to (vi) in Eqs. (3.1) and (3.2) completes 
the proof. -

REMARK. The lemma deals with the continuous processes in (t1 , t2). However, the 
results can be extended to discontinuities in C8 , 0, g. Consider a process in (t1 , t2 ) with 
a discontinuity in t3 e (t1 , t2) such that the left-hand limits (i.e. t-+ t3 _) and the right-hand 
limits (i.e. t-+ t3 +) of CE, fi, g exist and C8 , 0, g remain continuous in (t1 , 12). First we 
use the lemma for (t1 , t3 ) defining C8 (t3 , O(t3), g(t3) as the corresponding left-hand limit­
ing values. Then we use the final limiting value ex(t) as the initial value for the process 
in (t3 , t2), defining now C8 (t3), 0{13), g(t3) as the corresponding right hand limits. It 
can be easily seen that in this case we obtain a discontinuity in & in t = t 3 , but ex remains 
continuous. This follows from the form of Eqs. (3.6) and (3.7). In the visco-plastic case 
despite a discontinuity in C8 , 0, g both ex and it would remain continuous in t3 (in the 
visco-plastic case «X is a function of C8 , 0, g, but not of C8 , 0, g). 

Using similar arguments as in the previous paper [8] we can get a special form of Eqs. 
{3.6) and (3.7) valid for isotropic ela>tic-plastic materials (for simplicity we assume g = 0) 

{3.12) 
H' -- _!_-

Lp = K'h(f)h(f)GBE, 

(3.13) 
. H' -- _!_ --

~, = K'h(J)h(J)tr[GA,BE], 

where B8 = EEr is the left C:tut;:hy-Green elastic tensor, /(88 , 0, ex) =f(Bs, 0, 0, ex), 
G(BE, 0, ex)= G(B8 , 0, 0, ex), Ai(B8 , 0, ex)= Ai(B8 , 0, 0, ex) and 

[ ol - ] f, of --
K' = 2 tr oB GB~ - ~ oa. tr[GA,BE]. 

E I= 1 f 
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Moreover,!, G, A, and the partial derivatives of /are isotropic functions of BE, therefore 
they can be expressed as polynomials in BE, e.g. f(BEO, ex) = [ 0 ({1), offoBE = qJ0 ({3) 1 + 
+qJ1({3)BE+lfJ2({3)Bi where {3 =(I, 11, Ill, 0, ex) is the set of the principal invariants I, 11, 
and Ill of BE, the temperature 0, and the structural parameters cxu ... , cxn, and qJ0 , qJ1 , qJ2 

are scalar-valued functions. 
The constitutive equations (3.6), (3.7) and (3.12), (3.13) are homogeneous in the first 

time derivatives, therefore the response of the material is independent of a change of time 
scale, i.e. the rate-independent theory of plastic materials is obtained. The derived consti­
tutive equations (3.6), (3.7) or (3.12), (3.13) are of the form of the constitutive laws 
assumed in the theories of finite strain plasticity (e.g. [6, 7, 14]). 

4. Large bending and extension of elastic-plastic block 

The method of exact solutions of special inhomogeneous boundary value problems, 
known in finite elasticity for incompressible materials, can be modified for the present 
model. The method of solution, described in detail for the case of incompressible elastic­
-visco-plastic materials in [15], is of an inverse type. The deformation is specified fully at 
the outset and the problem is to find tractions which are necessary to maintain the de­
formation. This problem can be reduced to the problem of solving a system of ordinary 
differential equations. 

As an illustration we consider large bending and extension of an isotropic, incompres­
sible elastic-plastic block without including thermal effects. The constitutive equations are 
taken to be 

(4.1) T = -pl+S, S = S1 BE+S2Bi, 

together with Eqs. (3.12) and (3.13), where now the thermal quantities are excluded and 
the condition of plastic incompressibility tr Lp = 0 is obeyed. Moreover, only one scalar 
structural parameter ex is considered. In Eq. (4.1) elastic incompressibility det BE = 1 is 
respected, i.e. the Cauchy stress T is determined by BE only to within an arbitrary hydro-

z 

reference block t=1/3 
FIG. 1. 

t=3rr/5 
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static pressure p, and S means the extra stress tensor. The scalar coefficients S1 , S2 similarly 
as the scalar coefficient in the polynomial· expressions for f~ G, etc., in Eqs. (3.12) and 
(3.13) are now scalar functions only of I, II and cc. 

The deformation that carries quasi-statically the block bounded by the planes X = X1 , 

X= X2 , Y = ± Y0 , Z = ±Zo into the annular wedge bounded by the cylinders r = r1 = 
= (2AX1)

112
, r = r2 = (2AX2)112 and the planes {) = ±Do = ±BY0 , z = ±z0 = ± 

±Z0 /AB is described by (we use the rectangular Cartesian coordinates (XK) = (X, Y, Z) 
in the fixed reference configuration, and cylindrical coordinates (xi') = (r, v, z) in the 
current configuration, see Fig. 1) 

(4.2) r = (2A(t)X)112, {) = B(t) Y, z = Z/A(t)B(t), 

where A(t) and B(t), A(t)B(t) #: 0, are supposed to be continuously differentiable scalar 
functions of time. The tensors L = F'F- 1 and BF = FFT expressed in the physical compo­
nents are then 

A DB 
0 

A2 
0 0 

2A B 72 

(4.3) £(kn) = 0 
B A 

0 Bj..kn> = 0 B2r2 0 B+ 2A ' 

0 0 
A Ji 

0 0 (AB)- 2 -----
A B 

To calculate the corresponding stress field T from Eq. (4.1) we have to find BE and cc 
from Eq. (3.13) and the equation 

(4.4) BE = LBE+BELT -2LpBE, 

where Lp is determined by Eq. (3.12) and Lis given by Eq. (4.3h. Equation (4.4) follows 
from the definition BE= EET and the decomposition rule ' (2.1). As Lp can be expressed 
as a polynomial in B8 , we have LpB8 = BELP and Lp = L~. Due to the symmetry of 
BF in Eq. (4.3h, only the diagonal components of BB will be non-zero (for the proof see 
[15]), hence Eq. (4.4) is reduced to 

(4.5) 

(4.6) 

Bk11> = ~ Bk11> -(LpBE)<ll>' 

iJ~22> = (2: + j) B~22> - (L,B£)<22>. 

From the incompressibility condition detBE = 1 we get the component B~3>. For known 
BE and cc the stress T is obtained from Eq. (4.1), where pis determined from the equilib­
rium equation of the quasi-static motion 

., 
(4.7) p(r, t) = s<H>(r, t)+ J s<H>(e, t)-S<22>(e, t) de.· 

.,1 (! 

The normal force N(t) on the faces perpendicular to the z-direction and the resultant 
moment M(t) (the moment M(t) is exerted by the normal stresses acting upon faces{}= 
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= const and is taken with respect to a point on the axis r = 0, a unit height is considered) 
that have to be applied to maintain the deformation are 

r2 ,2 

(4.8) N(t) = 2{}o J T<33> (e, t)e de, M(t) = J r<22>(e, t)ede. 

To give a numerical example the system (4.5), (4.6) and (3.13) was solved and the trac­
tions evaluated from Eqs. (4.1), (4.7) and (4.8) for a simple model of the elasto-plastic ma­
terial. For this elasto-plastic model we choose in Eq. (4.1) S =BE and in Eqs .. (3.12), (3.13) 
f = 11 -10tX, G = 1- (I/3)Bi 1, A = 1 +BE, the initial value of ex is cx0 = 1. The calcula­
tion was performed for the motion (4.2), where A(t) = t- 2

, B(t) = t/3 in the time inter­
val (0.2, 2) and X1 = 4, X2 = 5, Y0 = 5, Z 0 = 0.5. The deformed body is "closest" to 

40 

30 

20 

10 

0 
0 1/3 31T/5 2 

FIG. 2. 

M N 

1 25 

FIG. 3. 
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the shape of the reference rectangular block at t = 1/3. At t = 3nf5 the annular wedge 
is deformed to the complete annulus (see Fig. 1). 

Figure 2 indicates that yielding begins to occur at t = I. The corresponding values 
of the second invariant II(t) of BE, the second invariant IIB(t) ofBFcx(t), the force N(t), 
and the moment M(t) are shown in Figs. 2 and 3. 
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