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On the rate-independent limit of visco-plastic constitutive equations
L. TRAVNICEK and J. KRATOCHVIL (PRAGUE)

RATE-INDEPENDENT plasticity is developed here as a limiting case of the finite strain theory of
elastic-visco-plastic materials. The analysis of large bending and extension of an isotropic in-
compressible elastic-plastic block is given as an example of the use of the derived rate-indepen-
dent constitutive equations.

Opracowano niezalezna od predkosci teorig plastycznosdei jako przypadek graniczny teorii od-
ksztalcen skonficzonych materialow sprezysto-lepko-plastycznych. Jako przypadek zastosowania
wyprowadzonych tu niezaleznych od predkosci réwnan konstytutywnych przeprowadzono
analize silnego zginania i rozciagania izotropowego niesci§liwego sprezysto-plastycznego bloku.

PaspaGorana, HesaBHCAIAA OT CKOPOCTH, TEOPHA IUIACTHUHOCTH KaK NpelelbHbIA Cirydaii
TEOPHUH KOHEUHBLIX e(hOMALUH YIPYro-BA3KOIUIACTHUSCKHX MaTepuaioB. Kax cmyvait npu-
MEHeHHsA, BBIBEJCHHLIX 3[eCh HE3aBHCAIIMX OT CKOPOCTH ONpe[elIAIolllNX YpaBHeHHIl, Mpo-
BEJICH aHAJIM3 CHIILHOTO M3ru0a M PacTAyKeHHA H3OTPOIHOTO HECYKHMAEMOTO YIIPYro-TUIACTH-
yeckoro Omoxa.

1. Introduction

IN THE RECENT paper by LEHMANN [1] the finite strain theory of elastic-visco-plastic ma-
terials is obtained by extension of a theory of elasto-plasticity. Lehmann’s approach is
based on the assumption (often used in microscopic theories of work-hardening) that
stress can be decomposed into the rate-independent (inviscid) stress and the exceeding
(viscous) stress. Of course, the rate-independent theory is then obtained simply by assum-
ing that the exceeding stress is zero.

An opposite point of view is used here. The elastic-visco-plastic theory is regarded as
basic and the rate-independent plasticity is developed as a convenient approximative limit
case of the rate-dependent theory. Our approach is justified by the fact that response
of actual inelastic materials is always rate-sensitive. Only in a narrow range of loading
rates can some materials be regarded as rate-independent. This idealization, particularly
in the form of the classical theory of plasticity, has been successful in analyses of many
engineering problems.

Constitutive equations of rate-independent plasticity were obtained as a limit of the
visco-plastic constitutive law by PERZYNA and WoINo [2] and KrATOCHVIL and DILLON [3].
In both papers intuitive arguments were used so as to reach the limit. In this note we
attempt to specify more explicitly the conditions under which such limit procedure can
be realized.

To obtain a rate-independent limit of elastic-visco-plastic constitutive equations two
types of assumptions have to be introduced. First, a sufficient smoothness of the functions
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in the elastic-visco-plastic constitutive equations has to be guaranteed. Second, the exis-
tence of the limit has to be assumed. As to the second, rather strong and unpleasant
assumption we can remark the following. The papers [4, 5] treat visco-plastic constitu-
tive equations which are a special case of the constitutive equations considered here. We
get them from our equations (2.2), (2.3) accepting the infinitesimal strain approach, the
convexity of the yield surface, and some other mild assumptions of a technical nature,
In [4, 5] it is shown that the solution of a boundary value problem for these special con-
stitutive equations converges in a certain sense for zero viscosity to a solution of the same
boundary value problem of the classical flow theory of plasticity. Therefore, in this special
case the existence of the rate-independent limit in the global sense is guaranteed. We cannot
follow the same procedure here, as for the finite strain the existence and uniqueness of
the solutions are not proved and, moreover, the existence of the limit in local sense is need-
ed. The existence of such a limit for the general class of inelastic materials considered
in this paper seems to be a deeply rooted problem we have not yet been able to overcome
successfully.

In Sect. 2 we briefly describe elastic-visco-plastic constitutive equations for finite
strain deformations. The internal variable approach is employed. The main assumptions
and the derived constitutive equations are summarized in Lemma in Sect. 3. The derived
constitutive equations are of the form usually assumed in the finite strain theories of invi-
cid plasticity (e.g. [6]). The special case of isotropic incompressible elastic-plastic consti-
tutive equations is then considered and used in an example of a large bending.

2. Elastic-visco-plastic materials

Mechanical and thermal treatment of an elastic-visco-plastic material induces deforma-
tion and changes in its physical properties. At finite strain the deformation of the material,
described by the deformation gradient F, may be resolved into an elastic part E and an
inelastic part P according to the relation F = EP (e.g. [8, 9]). The material time derivative
of this relation yields the decomposition rule ([8, 9])

(2.1) L = Lg+Le,

where L = FF-! is the velocity gradient and Ly = EE-!, L, = EPP-'E-! are rates of
elastic and inelastic deformations respectively (the superposed dot means material time
derivative). The change of physical properties can be described in terms of structural pa-
rameters «;,i =1, ...,n; @; may be interpreted, e.g. as scalar quantities which appear
in the theories of work-hardening [10-12] (when convenient, we use the notation & =
= (@, ..., %,); an extensjon of the present consideration to the case of the structural pa-
rameters of higher tensorial rank is readily possible).

The class of elastic-visco-plastic materials described in detail in [8, 13] is characterized
by six constitutive functions which give the values of the density of internal energy u, the
_Cauchy stress tensor T, the density of entropy 7, the heat flux vector h, the rate of the
inelastic deformation Ly, and the rate of the structural parameter e, if values of the elastic
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part of the deformation gradient (!) E, the temperature 6, the temperature gradient g,
and the structural parameter « are specified. The set of variables E, 8, g, & will be denoted
by », i.e. w = (E,0,g,a).

The briefly described material model represents a rate-sensitive material. This is caused
by the fact that the considered constitutive equations for L, and &, L, = Lp(w) and
& = a(w) are not homogeneous in the first time derivatives, i.e. a change in time scale
(or similarly a change in deformation and heating rates) influences the response of the
material. Therefore, in order to obtain a theory of rate-independent plastic behaviour the
constitutive equations for rates L, and & have to be modified. As a starting point of the
modification we use a special class of elastic-visco-plastic materials with well-defined elastic
range. We assume:

a. There exists a continuous scalar function f = f(m); the set of w such that f(w) =0
will be referred to as the generalized yield surface.

b. For all w such that f{w) < 0 the constitutive function L, satisfies Lp(w) = 0; for
w close to the generalized yield surface, such that fiw) > 0, Ly is governed by the equation

= Mf(w)G(w), i.e. we can write

(22) Lp = Af(w)h(A(@))G(w),

where 4 is a positive scalar parameter (a constant for a given material, #(-) represents
the Heaviside function (A(x) = 0 for x < 0, A(x) = 1 for x > 0), and G(w) is a second-
order tensor function of w.

c. The constitutive equations for the rates &; have the form

(2'3) &l = tr(Al(w)LF)'! i= I!

where A;(w) are second-order tensor functions of w.

In the assumptions (a)—(c) the consequences of the principle of material indifference
has not been respected. Using the standard procedure [8] we can get the frame mdlﬁ‘erent
form of Egs. (2.2) and (2.3)

2.4) L, = @)k (}(@))EG®)ET,
2.5) & = M(@)h((@))tr[G@)A @) Cl,
where Cy = E”E is the right Cauchy-Green elastic tensor,
®=(Cp0,8,0), E=E% and f(0) =),
G@) = G(w), A(®) =Aw); o =(Cs2 0,C:'g,q).

The assumptions (a)—(c) guarantee the fact that the material model behaves during
thermo-mechanical processes which remain in the elastlc range, i.e. f(m) < 0, as a thermo-
elastic material. The reason is that for w such that f(' ) < 0, there are no inelastic chan-
ges, both Ly and & are zero. The constitutive equation (2.3) or (2.5) provides that the
structural changes occur only during inelastic deformation. Recovery, aging and quenching

effects are excluded by these assumptions. By the constitutive assumptmn (2.2) or (2.4)
we require that for @ close to the generalized yield surface with f(m) positive, the rate of

(') The assumption that F and P appear in the constitutive equations only through E = FP~! is
treated in [8] and [13] as a characteristic feature of elastic-visco-plastic materials.
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inelastic deformation is proportional to f; G is an orientation factor. The parameter 1
can be interpreted as an inverse scalar measure of the viscosity of the material. Materials
with higher A react more rapidly to the excess of f'above zero, i.e. the materials with higher
A are less viscous. Looking for a description of rate-independent (i.e. viscous free) be-
haviour in the next section we determine the form of the constitutive equations (2.4) and
(2.5) in the limiting case 4 — co.

3. Rate-independent limit

We obtain the rate-independent form of the constitutive equations (2.4) and (2.5)
under the assumptions that the considered thermo-mechanical processes and the functions
_;’, G, A, are sufficiently smooth and the limit of Eq. (2.5) for A = oo exists. Note that
inelastic deformation P does not appear in the right hand sides of Egs. (2.4) and (2.5)
(see the footnote (*)). Therefore, the equation (3.1) for the rate of inelastic deformation L,
plays no active role in the following consideration. It is used only to derive its limiting
form which is needed in Eq. (2.1).

Consider a sequence of elastic-visco-plastic materials characterized by Egs. (2. 4) and
(2.5) with different values of 4. We suppose that for all @ the functmns G(") and A;(_ )
are continuous and f(_ ) has continuous partial derivatives; f( Y G( ) and Ai( ) are
assumed to be independent of A. Suppose further that the right hand side of the consti-
tutive equation (2.5) is such that the existence of the solution &(¢) in the interval {z,, £,>
is guaranteed (e.g. the right hand side of Eq. (2.5) is continuous and bounded in @ =
= {t;, t;) x(—o0, o0) and Lipschitz-like continuous in Q with respect to a).

Suppose that we are given in the time interval {¢,, t,) for different values of 2a com-
mon thermo-mechanical process Cg(1), 6(r) g(t) with continuous time derivatives ‘and
at t =, a common initial value of the structural parameter a,, i.e. a(t;) = a,. Then
under the introduced conditions in the interval {t,, ;) there exists for all 4 a solution a(?)
of Eq. (2.5) with the continuous time derivative &(z). As in general, the solution a()
depends on the value of 2 in the sequence of the materials, we write a*(t). Further we
denote

= (C’i’ 0,8 a9, fi1) =f(w),
G1) = G(w(n), A = A,WHD),
(f*0Ce) (1) = (2] 0Cs) (wH(1)),
etc. Then we write Egs. (2.4) and (2.5) in the form

(3.1) L = Afh(Af)EGET,
(.2) & = APh(AfH[GAICS].
Time differentiation of f* yields the identity
. af& ) af.t 6_)"“
33 A=
) fmtu (6C;CE +WB+ g g+ - Ba:,
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From the definition Cz = E"E we have Cy = ETLIE+ETL,E, hence denoting L* =
= Lg+L}(see Eq. (2.1)) and using Egs. (3.2) and (3.3) we get

(3.4) f* = HA =K P h(Af%),
where

f ] . ot .
3_ A
H 21r[aCBETLE ae“ % ‘g,

K= m[af CEG‘CE] V-aitr[(m*cg]

In Eq. (3.4) we assume that there exist a common é > 0 and & > 0, such that

(3.5 K} > 6, |tr[G'AICell > &

for at least one i€ {i, ...,n}. In the following the symbol lim always means the limit

for A— o0 and A is a function on R' such that h(0) = 1 and h(x) = 0 for x # 0.
LemMA. If in the time interval {t,,,) there exists a uniform limé?*(¢), then for all

te(t,, t,» we have

(3.6) —Eh(f)h(f)EGE’"
H
(3.7) = }Ehmh(f):r[m Cyl,

where Lp = lim L}, & = lime?, f= f(w), G=Gw), A = A,(m), w=(Cg 0,8 a), L=
= Lg+Lp and

aof . of
T
H= 2tr [—E LEI"'EG-F 3E g,

K=2tr CEGCE] 2~—tr[GA CHl.

Proof. Aswe have o’(t,) = a, for all 4, the existence of the solutions &* of Eq. (3.2}
with the continuous time derivative and the existence of uniform lima?* imply the following
consequences valid in {t,, #,>. There exists uniform lima* = a,& continuous, such that
& = lim & It means limw* = w, limf* = £, limf* = fand fis continuous. Using Eq. (3.5)
we see further that there exists continuous |limtr[G*A} Cg]| = |tr[GA,Ce]| > &. By Eq.
(3.2) this implies the existence of the continuous lim Af* h(1f*). We denote

(3.8) o = limAf*h(Af%).
For te(t,, t,> we have 0 < ¢(t) < c0. We see that
3.9) Ly = limL} = ¢EGE7,
(3.10) &, = lima} = @tr[GA,Cgl,

(3.11) f=H-g¢kK.



106 L. TRAVNICEK AND J. KrATOCHVIL

Finally, the form of the limiting function ¢ will be derived.

(i) If ¢ >0 on M =<1, 1), we find from Eq. (3.8) that h = 1 for A greater than
some A, for every t € M (4, depends on t € M). ¢ < co implies f = 0 on M, so that f = 0
on M (the continuity of ¢ implies that M is relatively open in {#,, #,>). From Egs. (3.5),
and (3..l 1) we get ¢ = H/K, hence, as f= 0, f = 0, we can write formally ¢ = (HIK)
KA.

(i) The case f > 0 for some # €{¢,, 1,) is a contradiction with ¢ < co.

(iii) f =0, f= 0, f=0o0n N c<{t, ;) from Eq. (3.11) follows H = 0, hence,
again ¢ = (HIKA().

(V) If =0, f=0, f <0 for some #, € (1, t,), we get £ > 0 for some 5, < 1o,
hence, it is a contradiction with ¢ < co. If this situation takes place in ¢ = ¢;, we can again
write ¢ = (H/K)h(f)A(f).

(v) Thecase ¢ =0,/ =0 ,f > 0 is similarly possible to (iv) only for ¢ = t,, and again

= (H/KRA(S). .

(v:) Forp=0,f<0o0n P < {t, t,) it is ¢ = (H/K)h(f)h(f). Note that 1, UMUNU
UPUL, = {1, t,>. The use of the relations (i) to (vi) in Egs. (3.1) and (3.2) completes
the proof. “

ReMARk. The lemma deals with the continuous processes in {¢,, £,>. However, the
results can be extended to discontinuities in Cg, 6, g. Consider a process in {¢,, t;) with
a discontinuity in t; € (r1 : rz) such that the left-hand limits (i.e. # - #,_) and the right-hand
limits (i.e. £ = t3,) of CE, 6 g exist and Cg, 0, g remain continuous in {¢,, t,). First we
use the lemma for {t,, 2, defining Cz(ts, B(r;), g(r,) as the corresponding left-hand limit-
ing values. Then we use the final limiting value «(f) as the initial value for the process
in {ts,1,), defining now Cg(ts), 6(t5), g(t;) as the corresponding right hand limits. It
«can be easily seen that in this case we obtain a discontinuity in & in ¢ = £;, but & remains
continuous. This follows from the form of Egs. (3.6) and (3.7). In the visco-plastic case
despite a discontinuity in Cg, 6, g both & and & would remain continuous in #5 (in the
visco-plastic case @& is a function of Cg, 6, g, but not of ég, é, é).

Using similar arguments as in the previous paper [8] we can get a special form of Egs.
{3.6) and (3.7) valid for isotropic elastic-plastic materials (for simplicity we assume g = 0)

(.12) = %k(f)ﬁ(f'")ﬁnz,

@3.13) 4y = 2 KRG e1GA By,

\_Erhere B; = EET is the left Cauchy-Green elastic tensor, f(B,,B,u) = f(B;,0,0,u),
G(B,Es 89 G) = G(BB: 6: o’ Cl'.), EI(BE; 99 G.) " A{(Bg, 8; 0, ﬂ) and

o B, i .6,

H =2tr[aBB ] 20

K =2tr [ aBEGBE] 2 tr[GA‘Bg]
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Moreover, f, G, A, and the partial derivatives of fare isotropic functions of By, therefore
they can be expressed as polynomials in B, e.g. f(Bg0, &) = fo(B), &f/oB; = Po(B)1+
+@,(B)Be+@,()BE where 8 = (I, I1, I1I, 6, &) is the set of the principal invariants I, II,
and III of B, the temperature 0, and the structural parameters o, ..., &,, and @q, @1, ¢,
are scalar-valued functions.

The constitutive equations (3.6), (3.7) and (3.12), (3.13) are homogeneous in the first
time derivatives, therefore the response of the material is independent of a change of time
scale, i.e. the rate-independent theory of plastic materials is obtained. The derived consti-
tutive equations (3.6), (3.7) or (3.12), (3.13) are of the form of the constitutive laws
assumed in the theories of finite strain plasticity (e.g. [6, 7, 14]).

4. Large bending and extension of elastic-plastic block

The method of exact solutions of special inhomogeneous boundary value problems,
known in finite elasticity for incompressible materials, can be modified for the present
model. The method of solution, described in detail for the case of incompressible elastic-
-visco-plastic materials in [15), is of an inverse type. The deformation is specified fully at
the outset and the problem is to find tractions which are necessary to maintain the de-
formation. This problem can be reduced to the problem of solving a system of ordinary
differential equations.

As an illustration we consider large bending and extension of an isotropic, incompres-
sible elastic-plastic block without including thermal effects. The constitutive equations are
taken to be

4.1) T = —pl+S, S=5,B:+85,B,

together with Eqs. (3.12) and (3.13), where now the thermal quantities are excluded and
the condition of plastic incompressibility tr L, = 0 is obeyed. Moreover, only one scalar
structural parameter « is considered. In Eq. (4.1) elastic incompressibility det B; = 1 is
respected, i.e. the Cauchy stress T is determined by Bg only to within an arbitrary hydro-

¥

4
>

reference block t=1/3 t=3n/5
FiG. 1.
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static pressure p, and S means the extra stress tensor. The scalar coefficients S, , S, similarly
as the scalar coefficient in the polynomial expressions for f, G, etc., in Egs. (3.12) and
(3.13) are now scalar functions only of I, II and «.

The deformation that carries quasi-statically the block bounded by the planes X = X,,
X=X,,Y=+Y,, Z= +2Z,into the annular wedge bounded by the cylinders r = r, =
= (24X)'?, r =r, = (24X,)"* and the planes & = +&, = +BY,, z= +z, = +
+Z,/AB is described by (we use the rectangular Cartesian coordinates (X*) = (X, Y, Z)
in the fixed reference configuration, and cylindrical coordinates (x¥) = (r, v, z) in the
current configuration, see Fig. 1)

4.2) r=QAMOX)Y?, & =B@M)Y, z=Z|A(1)B(@),

where A(t) and B(t), A(t)B(t) # 0, are supposed to be continuously differentiable scalar
functions of time. The tensors L = FF-! and B = FF” expressed in the physical compo-
nents are then

A 8B [ 42
24 ~ 8 ° =.0 0
@43 L =| 0 %Jr—% 0 |, B =| 0 B¥* o
B
o o -4-2 0 0 (4B 2

To calculate the corresponding stress field T from Eq. (4.1) we have to find B; and «
from Eq. (3.13) and the equation
(4.4) By = LB;+B;L"-2L;B;,
where Lp is determined by Eq. (3.12) and L is given by Eq. (4.3),. Equation (4.4) follows
from the definition By = EET and the decomposition rule (2.1). As L, can be expressed
as a polynomial in Bg, we have LBz = B;L; and L, = LI, Due to the symmetry of
By in Eq. (4.3);, only the diagonal components of Bg will be non-zero (for the proof see
[15]), hence Eq. (4.4) is reduced to

(4.5) BEY = %Bé"’—(Lsz)“”,
4.6) B = %Jf%) BE? —(Lp BY®.

From the incompressibility condition det Bz = 1 we get the component B§”. For known
B; and « the stress T is obtained from Eq. (4.1), where p is determined from the equilib-
rium equation of the quasi-static motion

S0 (0, 8) =S(o, 1) , .
3 -

The normal force N(t) on the faces perpendicular to the z-direction and the resultant
moment M(t) (the moment M(t) is exerted by the normal stresses acting upon faces & =

4.7 p(r, 1) = SO, 1)+ f
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= const and is taken with respect to a point on the axis r = 0, a unit height is considered)
that have to be applied to maintain the deformation are

48 NG = 29, [ TO9(e, Dode, M) = [ T (o, Dede.

To give a numerical example the system (4.5), (4.6) and (3.13) was solved and the trac-
tions evaluated from Egs. (4.1), (4.7) and (4.8) for a simple model of the elasto-plastic ma-
terial. For this elasto-plastic model we choose in Eq. (4.1) S = Bg and in Egs. (3.12), (3.13)
f=11-10a, G = 1—(I/3)Bz!, A = 1+Bg, the initial value of a is @, = 1. The calcula-
tion was performed for the motion (4.2), where A(¢) = =2, B(t) = ¢/3 in the time inter-
val {0.2,2) and X, =4, X, =5, Y, = 5, Z, = 0.5. The deformed body is “closest” to
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the shape of the reference rectangular block at ¢t = 1/3. At ¢t = 3xn/5 the annular wedge
is deformed to the complete annulus (see Fig. 1).

Figure 2 indicates that yielding begins to occur at f = 1. The corresponding values
of the second invariant II(¢) of Bg, the second invariant Ip(t) of Bra(t), the force N(z),
and the moment M(¢) are shown in Figs. 2 and 3.
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