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Point defects and inclusions near solid surfaces and interfaces (*) 

B. MICHEL (HALLE) 

THE PAPER is concerned with the influence of solid surfaces and interfaces on the elastic energy 
of point defects and inclusions. The reactions between point defects and volume defects in 
solids are governed by diffusion-controlled processes, the diffusion current being strongly affected 
by the elastic potential gradient field grad E around the defects. Basing upon continuum me
chanics, the calculation of E is possible; the results are presented in this paper. Some new 
aspects of application in solid state physics and physical chemistry are discussed. 

Rozpatruje si~ wplyw powierzchni cial stalych i powierzchni styku cial stalych na energi~ spr~
zyst'l defekt6w punktowych i domieszek. Reakcje pomi~zy defektami punktowymi w cialach 
stalych rZCldzone SCl przez procesy kontrolowane przez dyfuzj~, poniewai: prCld dyfuzji pozos
taje pod silnym wplywem gradientu spr~zystego pola potencjalnego (gradE) wok61 defekt6w. 
Podaje si~ rezultaty obliczenia E na podstawie zasad mechaniki osrodk6w ciClglych. Przedysku
towano pewne nowe aspekty zastosowan rozwa:ianych zalei:no8ci w fizyce ciala stalego i w che
mii fizycznej. 

PaccMaTpllBaeTCH: BJIW!IDle nosepXHOCTH TBep~biX TeJI H noBepXHOCTH KOHTaKTa TBep~IX. 
TeJI Ha ynpyryro 3Hepi'HIO TOlJ:eq}{biX ~ecpeKTOB H npHMeCeH. Pea~HH Me>K~ TOlJ:eq}{biMH 
~e<l>eKTaMH B TBep~IX TeJiax OIIHCbiBaiOTCH: npoQeCcaMH KOHTpOJIHPyeMbiMH M<P<i>YSHeH, 
T. 1<. TOK ~H$$Y3HH OCTaeTCH: no~ CHJibHbiM BJlHJIHHeM rpa~HeHTa noTeHQHaJibHOrO ynpyroro· 
no.JUI (gradE) BOI<pyr ~eQ>eKToB. TipHBe~eHbi pesyJILTaTbl paclJ:eTa E, OIIHpaHcb Ha npHH
QHIIhi MeXaHHKH cnJIOIIIHbiX cpe~. 06cy~eHhl HeKOTOpbie HOBble acneKTbl npHMeHeHHH 
paccMaTpHBaeMbiX 3aBHCHMOCTeH B $It3HKe TBep~oro TeJia H B $H3ItlleCKOH XHMHH. 

1. Introduction 

IT IS A WELL-KNOWN fact that the majority of reactions between point defects in solids can 
be considered to be diffusion-controlled [1]. Diffusion of point defects has become the 
subject of many investigations [2, 3]. In recent years, there has been a growing interest 
in the diffusion equation for point defects including the elastic drift term due to the elastic 
interaction between the defects [4, 3]. 

Diffusing self-interstitials have been found to become trapped at impurity atoms within 
certain temperature regions [5]. A rough estimation already shows that the elastic energy 
of an interstitial in the strain field of an impurity comes into the order of magnitude of 
th~ thermal energy [6]. Coulomb interaction can be neglected when compared with the 
elastic interaction at least for distances larger than one lattice parameter [7, 4]. The phe
nomenological description of the drift diffusion yields essentially the same results as the
lattice theory does if the source of migrating defects is not close to the trapping sites [4]~ 

(*) This paper was presented at the 2()th Polish Solid Mechanics Conference, September 3-11, 1978: 
at PorClbka-Kozubnik. 

http://rcin.org.pl



74 B. Ml:CHEL 

2. Stress assisted diffusion of point defects 

The diffusion equation for point defects of concentration c in the presence of an elastic 
potential gradient field grad E is given by the relation 

{2.1) 

D being the diffusion coefficient, k the Boltzmann constant, and T the temperature [8, 9]. 
SEEGER [9] showed that for the steady-state case ,the first-order gradient term can be avoided. 
This leads to a Schrodinger equation: 

{2.2) 

where 'P is related to the concentration c by 

(2.3) . tp = cexp (:r} 
and 

{2.4) L1E (VE)2 

U1 = 2kT- 2kT . 

Equation (2.2) is important for describing the segregation processes of solute atoms and 
the formation of oxide layers. Experiments on the interaction-induced defects with impuri
ties have also pointed at the great importance of the elastic interaction potentials for the 
phenomenon of stress-assisted drift diffusion in solids [3, 4]~ The well-known theory of 
spinodal decomposition developed by CAHN [10], which has been further improved and 
applied by FILIPOVICH, DMITRIEV [11] and others, also manifests the great importance of 
the elastic energy of a defected region in a solid [13, 14]. 

The aim of the present paper is to deal with the elastic interaction between point de
fects and more or less extended inclusions ("volume" defects) under the immediate influence 
of the solid surface and an interface, grain boundary surface etc. 

3. Influence of surfaces and interfaces on the elastic interaction energy of defects 

A dilatation centre in an isotropic body can interact with hydrostatic stress only. Hence 
it follows that interaction between two dilatation centres exists only in finite bodies 
[15, 16]. The theory of elasticity provides a convenient framework for calculating the 
internal stress and strain field associat~d with point defects and volume ·defects in solids 
!17-22]. Moreover, it has long been known that a free surface, a surface layer or an inter
face attract or repel defects. In 1972 BACON first gave an exact solution for the interaction 
energy of a dilatation centre with a surface layer of arbitrary thickness applying Hankel 
transforms [21]. WoLFER and MANSUR. [22] investigated the same type of defects near 
a spherical surface layer. By comparing this results with . those already known from litera
ture, Bacon showed that the latter (EsHELBY (23], BuwuoH, LoVE and others [21]) had 
·been approximations only. This was confirmed by the investigations of the authors [24, 

http://rcin.org.pl



POINT DEFECTS AND INCLUSIONS NEAR SOLID SURFACES AND INTERFACES 75 

30, 32]. We have generalized some formulae of Bacon's paper taking into consideration 
the shape and the size of the defects, the mojulus effect between defects and matrix being 
neglected. 

If we discuss the defect configuration shown in Fig. 1 for the case of a so-called 
"internal" interface (d--+ eo, the surface is far remote from the interface z = 0), we arrive 

d 

Z=-d Z=O 

FIG.l. 

z 

at the problem of defects in coupled semi-spaces. The problem (in the static case) is not 
difficult and can be solved using the theory of elasticity. If the defects with the volumes V1 

and V2 are characterized by their relative "quasi-plastic" volume dilatations (first stress
-free strain invariant) ~'Y/ 1 and ~'Y/ 2 with respect to the matrix [24], the elastic interaction 
energy between vl and v2 is given by the following expression [25]: 

(3.1) Ef;l = -9n(~~v)[!);~~~:v)] J J J J ~'Y/1 a;~2 
dV+ J J J ~'YJ 2 ~;~1

dV}, 
l vl v2 

where y = G11 /G denotes the ratio of the shear mojuli of interface layer and matrix, res
pectively, v is the Poisson ratio of the matrix. ~'Y/i can be an arbitrary function of position 
inside the defects Vi. The influence of ~'Y/i on the strain energy of a spheroidal defect was 
discussed by LoGES [12]. The formula (3.1) follows from the theory of elasticity [25] taking 
into account the well-known fact that the mean value of the trace of the stress tensor va
nishes: 

(3.2) 

the integral being taken over the whole solid which is not acted upon by additional exter
nal tractions. Equation (3.2) was derived by NowACKI [26] and HIEKE [27] 

Equation (3.1) is a generalization of a previous formula of the author concerning only 
the interaction energy of such kinds of defects where ~'Y/i was held constant [24]. C/J1 and 
tP2 are the "image" potential functions 

(3.3) c!J,(P) = j f f ~'YJ 1(P1)R(P1P1)dV(P1), 
v, 
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with the kernel functions 

(3.4) 

for the interaction energy El~l of one defect with the interface the expression 

(3.5) 

is obtained. Equation (3.5) is a generalization of a formula given by BACON [21]. 
The influence of a free solid surface on the defect is described by the condition y = 0. 

This yields 

(3.6) Ef!l = 

. The case ~'YJi = constant is investigated in detail in [28-30]. 
The total elastic energy E,c;,~ i stored in the medium containing one defect is obtained 

by adding the Crum-Nabarro energy E0 ,i of the defect Vi in an unbounded isotropic ho
mogeneous matrix 

(3.7) Eo,, = 2G(l +v) ~V 
9(1-v) ,. 

It follows that 

(3.8) <t> ( 1 +v JJJ,. ~ o2(,J)'d ) Etot,i =Eo,, 1-
2 

· U'YJtT'l V, 
2n( brJ1) V, Vi z 

the mean square value ( brJi)2 being defined by 

(3.9) 

For a spherical defect of the radius e1, and supposing a constant value brJi, we arrive at 
the formula 

(3.10) Elo'l,·{ = £ 0 , 1( 1- It ~:;), 
~i being the distance between the centre of the defect and the surface [21, 32, 33]. An in
compressible defect immediately at the boundary surface (e, = ~~)is connected with a re
duction of energy by 25% due to the influence of the surface. JAoER compared the expression 
(3.10) with the results obtained by the lattice theory and found a good agreement [33]. 
The influence of an interface upon two spherical volume defects (or point defects) was 
investigated by the author [28]~ This yields 

(3.11) E<n2t) = 32n(y -1) G(1 +v)2 (b ) (b ) 3 3(8 E2 2) (4t2 2)- 5/2 
f 81(1-v)[1 +y(3 -4v)] 'YJt · 'YJ 2 l!t (!2 ~ -a ~ +a ' 

• ~1 +~2 e1 and e2 bemg the radii of the two defects. ~denotes the mean distance ~ = 
2 

a is explained in Fig. 1. 
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For y = 0 we obtain the following expressions for the interaction energy of two 
spherical defects under the influence of a solid surface: 

-32n 
(3.12) E/il· s = 

81 
(
1
-v) (1 +v)2G(6111 ) (6112)e~eH8E2 -a2) (4~2 +a2)- s12. 

A discussion of Eq. (3.12) is found in [30]. 
Also of interest is the fact that the interface influences the interaction energy of the two 

defects in such a way that both attraction and repulsion occur, depending both on geomet
rical and mechanical parameters. A hard layer (y > 1) leads to a repulsion force between 
the defects if the distance between them is small enough. Attraction occurs if the defects 
are very remote from each other. In contrary, two defects of equal kind near a free surface 
[28] repel if their distance is great. If the distance tends to zero, there exists a bound state. 
A comparison of the results with those obtained for the interaction energy in the unbounded 
anisotropic medium leads to the assertion that a solid surface acts on the defects like a crys
tal anisotropy [30]. 

The model presented in this paper has been investigated in detail for many special 
cases of the defect anisotropy. For spheroidal defects, for instance, the integration of Eqs. 
(3.1) and (3.5) was carried out and suitable approximation formulae were established. 
It is also possible to take into account the additional influence of a finite thickness d of 
the surface layer or interface layer [25]. 

If the condition 

(3.13) 

is satisfied, for defects near the interface at z = 0 (see Fig. 1) the following approximation 
formula can be derived: 

(3.14) <l> _ 4G(1 +v)
2 J (J { 1-y o2t~J, o2

tp,} 
Eint - - · 9n[l +y(3 -4v)] v, 4(1-v) 6'YJt oz2 +Y6'YJ' oz2 dV, 

where tp, is given by 

(3.15) tp,(P) =·· f ff T(P1 P1)6'YJ1(P1)dV(P1), 

Vt 

with the kernel function 

(3.16) T(P, P1) = [(x-x1) 2+(y-y1) 2+(z+z1+2d)2]- 112. 

The formula (3.14) can be improved taking into consideration more terms of a perturba
tion series ("image" terms). From.Eq. (3.14) we can draw an interesting conclusion, name
ly that for y > 1 and for constancy of the interaction ~nergy EMl of spherical defects 
will change its sign if d becomes small enough. This means that surface exerts a predomi
nant influence on the defects if the surface layer is very thin. This conclusion agrees with 
the results obtained by Bacon for a singular dilatation centre. 

For 6'YJi =constant the following criterion can be derived for volume defects near an 
"internal" interface ( d --. oo): 

(3.17) Ef!l ~ 0 if y ~ I. 

From this it follows that a surface of a solid always attracts volume defects of this kind 
for arbitrary shape and size. For dilatation centres this was already proved by Bacon. 
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4. Conclusions and remarks 

The presented formulae have to be considered as correction terms for the total mecha
nical energy of the defects (defected regions) near mterfaces or free surfaces. These formulae 
provide the basis for further improvements of the theory of liquation processes and rela
ted diffusion phenomena near interfaces, which require improved calculations of. the 
elastic part of free energy [ll, 13, 35., 14]. The next step to a more comprehensive model 
is the additional consideration of th~ "defect-matrix modulus effect" as it has been done, 
for instance, by EsHELBY [34] for an inclusion in the_bounded medium. From the viewpoint 
of -the solid state physicist,_the decisive problem doe~ not consist _in solving the boundary 
value problem numerically, but in deriving suitable analytic expressions (~s a rule this 
means suitable approximations) for the elastic interaction energy. This can be applied for 
further investigations in ·different branches of solid state physics and physical chemistry, 
for instance as driftpotentials in Eq. (3.1). A wide application of the energy formulae is 
due to the dependence of quasi-plastic volume dilatation ~1Ji on concentration fluctua
tions in solids near surfaces and interfaces. 
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