
Arch. Mech., 32, 1, pp. 33-58, Waruawa 1980 

hreversible thermodynamics from the point of view of internal variable 
theory (a Lagrangian formulation) 

K. C. VALANIS (CINCINNATI) and V. KOMKOV (ANN ARBOR) 

A LAGRANGIAN density function is introduced. Variational principles are derived. The adjoin, 
system is introduced and its importance for inverse problems is discussed. 

Zaproponowano funkcj~ g~sto5ci Lagrange'a. Wyprowadzono zasady wariacyjne. Zdefiniowa­
no uklad sprz~ony i przedyskutowano jego znaczenie dla problemu odwrotnego. 

BBeAeHa <1>~ IDIOTHOCTH Jlarpau>Ka. BseAeHbi sapH~OHHbie np~I. Onpe.ll;e­
JieHmUI CHCTeMa H o6cy>K,Z:teHo ee 3HatieHile wm o6paTHoii 3a.ll;allll. 

General discussion 

IN A SERIES of papers VALANIS (14, 15, 16], COLEMAN and GURTIN (4, 11], RICE (13], LUBLI· 

NER [9] and others have considered the averaging effects of the internal structure on the 
constitutive properties of a deforming solid by introducing internal variables. These re­
present,· roughly speaking, the averages, of some molecular or atomic displacements. 
In this paper the internal variables will be denoted by qa., ex = 1 , 2, ... , n. These va­
riables are adjoined to observable thermodynamic variables such as temperature (or en­
tropy) and strain. 

Despite very serious objections of both physical and mathematical nature (see Appen­
dix 2), we are going to adhere to tradition by offering a pointwise definition of a thermo­
dynamic process, specifying in a region &I c 9t3 the functions 0, q, defined (a.e) pointwise 
in &1. See modern monographs such as TRUESDELL's work [21] or CoLEMAN, MARKOVITZ 
and NOLL [4] for rigorous mathematical definitions following this point of view. This 
is done purely for the sake of simplicity. Thus we regard, for example, the temperature 0 
as a positive function defined (a.e.) at each point &1, rather than a set valued function 
whose domain are subsets' of &1, of positive Borel measure. 

It is clear th::tt a microsystem can not be regarded as arbitrarily small, or infinitesimal, 
if the concepts of average physical quantities such as energy density, stress, entropy 
density, are to be physically significant in a physical medium which is made of particles. 
This is so since at an atomic level these quantities are either undefined or at best badly 
discontinuous. In the case of polymeric materials, regarding them as dissipative thermo­
dynamic systems, Valanis identified the internal variables as actual displacements along 
a typical very large molecule. Hence, in the study of polymers qa. could be identified with 
average displacements and corresponding generalized forces could be identified with the 
energy gradient o1p 1 oqa.. 
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34 K. c. V ALANJS AND V. KOMJCOV 

Here, qa., ex = 1, 2, ... , n, were discrete variables (see (19] for details). In this paper 
we shall pursue this line of approach, for convenience retaining pointwise definitions, 
but also retaining a strong mental reservation about all physical properties defined point­
wise in fA. 

We also follow a procedure which was originally introduced by Duhem and Hada­
mard by defining (for each point of fA) the specific internal energy density function e. 
In the case considered here e is assumed to depend on the temperature (or entropy), on 
the deformation, and on the internal variables qa.. Specifically.: 

(I) e = e(O, C, qa.), 

where() is the temperature, and C is the right Cauchy-Green deformation tensor. We also 
introduce the Helmholtz free energy density function pointwise defined: 

(2) 

where 17 is the entropy density function. 

1. Internal variables-the discrete case 

The studies made in [19] regarding polymers have been generalized to other materials, 
the internal variables being stili identified with statistical averages of displacements of 
material points at a microsystem level. It is an easy mental transition to associate such 
statistical averages of generalized displacements with the internal variables qa., and to 
introduce the corresponding generalized forces: 

generalized velocities: 

(1.1) 

generalized viscous friction: 

o'P 
-Qa. =-~-, 

uqa. . 

n 

(I .2) }; b,ilJ, 
J ... l 

and generalized inertia ma.qa., so that in the absence of internal forces one obtains the 
internal equations 

n 

(1 .3) OVJ \"1 b • •• 0 ( d) -
0
- + L.J a.1q1+ma.qa. = ex not summe . 
qa. )=1 

In [16] VALANIS has observed that the Clausius-Duhem inequality is violated if 'P 
is identified with the Helmholtz free energy ;p. However, this defect is rectified if an appro- · 
priate kinetic energy term is added to :;p, and the free energy density 'P becomes 

(1.4) 
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IRREVERSIBLE TID!RMODYNAMICS PROM THE POINT OF VIEW OF INTERNAL VARIABLE THEORY 35 

If y denotes the irreversible entropy (i.e. j> = 7}+ ~,h. denoting the heat flux vector) 

n 

(1.5) Oy = -}; Q«q« > 0; (see [16]). 
«=1 

The analogy between the dissipation term Oy and Q«q« suggest that the temperature 
could be regarded as a generalized force if the entropy is considered to be the (n+ 1) 

generalized displacement provided the distributed internal variables qa. are introduced. 
A philosophic discussion of mechanical interpretation of entropy and temperature will 
be given later in a future paper. For the time being we shall simply introduce a formal no­
tation in which qa., ex = 1, 2, ... , n, n+ 1, are the internal variables and we identify entro­
PY as q,+l· 

In the discrete case the equations of motion (1.3) are easily derived as Lagrange equa­
tions 

(1.6) ay . d ( a'P ) i-, . · 
oqCI + dt oiJa. = -it ba.jqJ = -fa., · 

where 'P - the Largangian density function - is analogous to the Lagrangian density 
function of classical mechanics, expressing the difference of kinetic and potential energy 
densities while la. are internal friction forces. 

Thus 
11 

(1.7) !t' = 2 ~ m,(q,)2 -;;p, 
i=l 

where 1jJ is the Helholtz free energy density function. Before proceeding from the discrete 
case to the case when qa. are distributed variables, we would like to redefine the terms of 
say Eq. (1.6) for the case when 'P is a functional depending on the (pointwise defined 
a.e. in &I) functions q, q. The classical derivatives will be replaced by Frechet (or Gateatix) 
derivatives (see Appendix I) without major changes in the arguments. 

For the sake of clarifying the subsequent discussion we shall first introduce a simple 
mechanical example. 

2. A simple example 

To illustrate the basic concepts and corresponding extension of a classical treatment 
we consider a mechanical system which is a one-dimensional elastic body (a rod) subjected 
to certain time dependent compressive ~r tensile forces (stresses) at the boundary. For 
simplicity's sake the boundary is assumed to consist of a single point with either the rod 
extending to - oo, or else being rigidly held at some point to which we have no access. 

We are capable of observing only the state variables (displacement, stress) at the 
boundary point B, and do not have any means of observing the state variables at 
interior points. 

3* 
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36 K. C. V ALANIS AND V. KOMKOV 

We identify the deformation function q(x, t) which assigns to the point occupied at 
time t, the point of the rod which was at the coordinate x at the time t0 • We denote 
E = q(x, t0). The subscript t0 can be omitted, and we assume that the material density, 
cross-sectional area and the length of the rod are approximately constant. See later the 
discussion for a rigorous explanation of "approximately constant". 

We have no physical means of observing the values of q(x, t) except at the boundary 
point x = 1. 

However, the kinetic energy T and potential energy V are easily computed for a given 
function q(x, t) 

1 

T(t) = ~ J (q(x, t))2dx, 
0 

We refer to q(x, t) as an internal variable. q = oq~; t) can be called the internal 

velocity, iJq~; t) the internal deformation gradient. Note that C = q(1, t) is the Cauchy­

·Green tensor which is observable. 
So far no dissipation has been introduced and q(x, t) must satisfy the differential 

equations arising from the Euler-Lagrange principle of stationary behaviour of the action 
integral 

t 

6 f (T- V)dt = 0. 
to 

In this case we obtain a classical form of the wave equation in one space dimension for 
q(x, t). 

X .. 

X 

1 

E(x> 
p(x) 

I 
I 

FIG. 1. 

c(tJ 

Let us complicate slightly the example shown on Fig. 1 by introducing viscous damping 
arid some forces transmitted at a distance from one part of the rod to another. 

We can think of enclosing the rod in a vessel with a viscous fluid, and attaching some 
linear springs to various points of the rod. (Let us label these points x, x' .) 
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IRREVERSIBLE THERMODYNAMICS FR.OM THE POINT OF VIEW OF INTERNAL VARIABLE THEORY 37 

Strictly, there is of course no such thing as an instant transmission of forces at a dis­
tance, since at least the velocity of light presents a definite barrier to instant "communi­
cations" between different parts of the material. This is not, however, a serious objection 
to the physical usefulness of our mathematical model in cases when the speed of prop-

K(x,x') 

pq Viscous 

q(x,t) 
Fluid 

~: .. r 
I .... 

X J 
c 

x' 

FIG. 2. 

agation of information about the state of the material is large compared to the rates of 
processes in the material. 

The kinetic energy is still of the form 

The Helmholtz free energy (potential energy) becomes 

1 1 

tJf(t) = ~J J K(x C) iJq(x, t) . iJq(t'-.!laxdC 
2 ' dx oC ' 

0 0 

where K(x, C) is positive L2 (0, 1) function. 
The kernel K(x, C) being square integrable, i.e. 

1 1 

f f (K(x, C)) 2dxdC < oo 
0 0 

implies that the transformation T defined by 

1 

c/J(x) = f !(C)K(x, C) = Tf(x) 
0 

is of the Hilbert-Schmidt type, i.e. the operator T is a Hilbert-Schmidt operator, hence 
it is compact. 

If K(x; C) = K( C, x), which is reasonable in our model where E(x) is modified by 
attaching linear springs (after all it is Betti's reciprocity principle), then the spectrum ofT 
lies on the positive part of the real line, and is discrete, with zero as the only possible 
accumulation point of the spectrum. 

We can introduce a space Jf with the following product for any u, v E J'f: (u, v) = 
= T(u, v)+v;(u, v)+D(u, v), where the products T, v;, D are defined as 
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38 K.C. VALANIS AND V. KoMKOV 

1 

fi(u v) = _g_ f ou(t' x) ov(t' x) d 
' 2 at at x, 

1 

- 1 f ou(t, x) 
D(u, v) = 2"" 1-'(x) 

01 
v(t, x)dx. 

0 

When I' = 0 (hence D(u, v) = 0), Yf can be identified with the Sobolev space Wj· 1 • (For 
definitions, see [10] and Appendix 2.) 

Observe that (u, u) > 0, if u :F 0, and the triangular inequality has to be satisfied by 
physical arguments. Therefore Yf is a metric space, d(u, v) = (u-v, u-v) defining the 
distance. 

!i'(u, v) = T(u, 'll) -('YJ(u, v)+D(u, v)) 

will be called the Lagrangian product of u and v. 
If the kernel K(x, C) is symmetric, the expression for the Helmholtz free energy pro­

duct can be simplified: 
1 1 

tP(u' v) = ~ f I K(x' C) ou~; x) ov~c C) dxdC. 
0 0 

Obviously the value of P(u, v) is invariant under the interchange of the variables x and C. 
Frechet differentiation with respect to v now yields exactly the equations of motion 

of the rod. This simple example was specifically produced to demonstrate a number of 
concepts. The internal variable q (identified with u(t, x) in a subsequent discussion) was 
shown to obey a partial differential equation of the wave type 

iJq2 1 iJ2q . ou 
ox2 - Cl 012 = f(x, t) where f ts /-'(x) Tt 

derived form· the Euler-Lagrange necessary condition for an extremum of the Lagrangian 
functional fi(u, v) = T-(tJt+D), by setting the Frechet derivative fi, = 0. (See Ap­
pendix 1.) 

So far the discussion was limited to a simple example of mechanics, with no heat 
flux, and no changes considered in th~ therm()dynamic variable 8, 'I'J· 

It is the purpose of the next section of this paper to extend the concepts illustrated 
in Sect. 2 to a description of an irreversible process allowing us to average the mi­
croscopic phenomena, and to introduce corresponding variables in the language of 
classical continuum mechanics. 

3. The notion of internal generalized forces and of internal generalized momenta 

The existence almost everywhere of the Helmholtz free energy density function ip is 
postulated. 
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IRREVERSIBLE THERMODYNAMICS FROM THE POINT OF VIEW OF INTERNAL VARIABLE THEORY 

The total free energy density function is defined by 

(3.1) - 1 "" (. )2 '~' = '1'+2 .L.J e q, , 
i 

where q1 are distributed internal variables. 

39 

Following VALANIS [16] we define the internal inertia to be -eq1, and we can define · 
the internal (generalized) momentum 

a~ 
(3.2) p1 = -. (or~q1 in a simplified notation) aq, 
where ajaq, or the subscript q1 denotes the Frechet derivative of the functional" with res­
pect to the vector q1, where tacitly it is assumed that~ is Frt!chet differentiable. 

Q1 will denote the generalized (distributed) force corresponding to the internal dis­
placement qi 

(3.3) 
a~ -Q,=-. aq, 

We observe that the rate of work performed by the generalized force Qi is given by 

(3.4) . (a~ . ) w, = (Q, q,) = - aq, , q, . 

If pointwise description is used, then the density of W; at a point is defined by Q1q1• The · 
stress-strain relationship is obtained simply by setting x = 1. 

At this point we shaH make the fol1owing observation. Carefully distinguishing the 
temperature from the internal (displacement) variables, we obtain identical mathematical 
formulas for each q1 and 0. 

If the Helmholtz free energy 1p depends on temperature, and the existence of entropy 

is either postulated or proved, following some axioms (see [16]), then 'YJ = - ~: can be 

regarded as another generalized force associated with the generalized displacement 0. 
The total rate of work performed by the generalized forces is 

(3.5) 

where q,+ 1 = 0, and 

n n+l 

W 0 . "" a~ . "" a" . =- 1]+ .L.J --q, = - .L.J aq,, 
i=l aq, i=l q, 

a~ 
1J = --aq = Q,+l· 

n+ 1 

As before all derivatives are regarded as Frechet derivatives. 
" We recognize W = -h(% as the rate of heat flux which balances the work performed by 

the internal forces Q1, i = 1, 2 ... , n+ 1. 
Equation (3.5) is in fact an entropy balance statement. The equations (3.1)-(3.5) ~re 

understoo::l to be defined pointwise almost everywhere in the distributed parameter case. 
A generalization to weak solution of Eqs. (3.1) -(3.5) is fairly trivial, involving the ~ppli-
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40 K. C. V ALANIS AND V. KOMKOV 

cation of the definition, i.e. for all 4> in a suitable class (/J of test functions it is true that, 
for example, 

(3.6) 

where (, ) 0 denotes in this case the usual L 2 (D) product, D being the region of 9f3 occupied 
by the body fl. 

Thus Eq. (3.6) is replacing Eq. (3.5) and similar replacements take place for other 
pointwise equalities. 

tP is so chosen that (for all</> E tf>) (1Jt/>)" and { ~ <f>)"are L,(!J) functions even if q 

and 'fJ are not differentiable. 
A philosophical point should be made whether a microsystem described by the pointwise 

equations (3.1)-(3.5) does really represent the behavior of the body fJI after "patching up" 
neighbouring small pieces of the body, or should some (and perhaps different) averaging 
processes be applied to describe the observable behavior of ffl. 

The arguments in favour of considering only weak solutions of the thermodynamic 
equations describing the state and the rates thermodynamic processes appear to be irre­
futable, unless a complete break is made with tradition, and infinitesimal behaviour is 
studied using completely rigorous mathematical formulation (obviously in a non-standard 
version of 913 x time) and then "patched up" in a rigorous manner, stepping up from one 
galaxy to another in the nonstandard terminology (see [26], Chapter VII). 

In the spirit of "weak" interpretation, we shall introduce bilinear products which are 
analogous with our mechanical example in Sect. 2. 

3.1. An example of application 

A polymer molecule. An approximate kinetic theory analyses the behaviour of a large mo­
lecule by estimating the probability p(~, 'fJ, C) that one end of the molecule may be situated 
in a neighbourhood of the point (~, 'fJ, C) having the volume dV, in a total volume equal 
to one, while the other end is fixed. This is accomplished by envoking the random walk 
formula. Approximate formulas have been obtained in the literature by assuming that 
the chain consists of rigid links, each link having the same length J.. Introducing the va-

t 

riable 1 = n2 )., various authors proceed to the limit (n --. oo, ). --. 0, 1 = const), obtaining 
the formula 

_ ( 3 )
3
/
2 

{ Jr2} p =pfdV = 
212

:rc exp -
212 

, 

where r2 = ~2 + 1]2 + C2 (see for example K. VALANIS [17]). 
From the point of view of the internal variable theory, we identify the macroscopic 

behaviour of the polymer by performing some tests which consist in applying forces to 
the faces of the test specimen, and recording the response of the test sample. 

Since continuum mechanics arguments are used, the validity of the entire argument 
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A 

a molecule m 

The end of a molecule 

C= Cauchy-Green stress tensor 

FIG. 3. 
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must be questioned if the size of the specimen is of the same order of magnitude as the 
chain element of the molecule. 

The point A is the only point along the entire length of the molecule Jt at which the 
stress tensor is observable, whereas the stresses and strains along the length of Jt due to 
the interaction of Jt with other molecules must be regarded as inter:r:tal variables. 

Suppose that we denote the displacement along the i-th molecule Jti to be the internal 
variable qi. The forces acting on the molecule ..lti are opposing the motion of the mole­
cule. Hence KiiliJ ~ 0; (neither i, nor j is summed). The subscript j denotes the j-th 
coordinate; j = 1, 2, 3. Conceptually the situation is similar to the example illustrated 
in Fig. 1 of Sect. 2. 

While the molecule experiences a force field along its entire length, the only observable 
force is exerted at the point A with the spacial coordinates x = x0 situated on the face 
of the specimen. 

A few simplifying assumptions can be made at this point. Let us suppose that the 
force exerted is purely entropic, and the free energy of the molecule is given by 

1p = -kOlogp, 
that is 1p is of the form 

(3.7) { ( 3 )} { J1 

llx,W } 1p = -3/2 kOiog 
2
nP +3/2 k 0-

12
- ds , 

0 

·where xi denotes the position vector along the i-th molecule and k is the Boltzmann con­
stant. 

For the sake of simplicity let us consider an isothermal deformation. The force ne­
cessary to change the position of the i-th molecule from xi(s) to y1(s) is given by 

I 

(3.8) f = 3/2(k0/f2) J (x, -y,)2ds. 
0 

To represent the motion of the system we can introduce a Hilbert space of vectors 
Dt

1
, U;

2
, representing different continuous displacements of the i-th molecule. We assign 

the foil owing weighed L 2 product: 
I 

(ul, u2) = J (C(s)uli(s)u 2 i(s))ds, 
0 

where C(s) is a positive function. We shall take C = 3f2(knfi2) = const. We also define 
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42 K. C. V ALANIS AND V. KOMICOV 

the product (u01 • U0 2), where. denotes ordinary multiplication, the numbers U0 t, u02 re­
presenting the boundary' values Of the functions Ut, U2 On the surface F of the specimen. 
(The subscript i was omitted because of the inconvenience of triple subscripting.) As 
before the subscripts 1 and 2 denote the first and second mode of displacement, while 
the subscript i refers to the i-th molecule. 

The product ( · , · ) trivially generates an inner product space H0 , isomorphic to R x R, 
representing an · ordinary multiplication of the observable displacements on the face r 
.of the specimen. 

We can now define a product { , } on the inner product space H 1 ff)H0 : {uu u2 } = 

= (u1 , u2)+ (ut, u2). Let w1 EH= Ht tf)H2 represent the displacement of the i-th mo­
lecule. The force acting on this molecule is represented by the Frechet derivative 

{3.9) 
oL1'P 

f,(s) = ow,(s) . 

Hence the resistive property of molecular motions is represented by the inequality 
N I 

(3.10) ~ J · :L1(~) · q(s)ds ~ 0. 
l=l 0 qi 

This result is an analogue of the continuum mechanics equations of the form (1.6). 
Adjoining the entropy y, we can evidently write for the system of N molecules 

N I 

(} . \"1 J aL1, • o 
YJ = - .L.J aw wJ ~ , 

J= 1 0 J 

(3.11) 

where w(s) = q(s) is the internal variable ifs > 0, and w(O) = u0J(x, y) is the observable 
displacement if s = 0. Here x, y are restricted to the face of the specimen. 

An almost analogous example, which leads to a similar expression, involves a simple 
quantum mechanical model of the nonlinear field theory, namely the model of a one di­
mensional elastic chain of atoms subjected to an external field. If time is measured in units 
of cfwt where Wt is the lowest natural frequency, and c is the natural speed of propa­
gation of disturbances (analogous to the speed of sound) then the displacement of the 
.elastic chain in an appropriate limit is described by the linear Klein-Gordon equation " 

(3.12) 
o2u (]2u 
ot2 - ox2 +u = 0, 

with one end condition: either ou(O' I) = 0, or u(O, I) = 0. The other end is free. 
OX 

Alternatively, the behaviour of this chain is described by the nonlinear equation 

(]2u (]2u 
(3.13) ot2 - ox2 +u-ulul2 = 0, 

with identical end conditions. Equation (3.13) has the following physical interpretation. 
The displacement u is complex valued. Its real and imaginary parts correspond to displace­
ments in mutually orthogonal directions, the chain being capable not only of transverse 
vibrations, but also of internal rotations of the molecules. The term u -lul 2 

• u represents 
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the unobservable interaction due to the elastic bonds between the molecules. At this point 
most authors make some simplifying assumptions, such as the monochromatic property 
of the solutions; see for example [29]. In fact the assumption leading to Eq. (3.13) amounts 
to the specification of the equation of state. The additional monochromatic assumption is 
equivalent to the uncoupling of the different modes of vibration, so that variables can _be 
separated. A different approach could stipulate that the unobservable dissipative internal 
rotation of the molecule is represented by an internal variable q, the basic equation of 
motion assuming the form 

iJ2u iJ2u 
---+u(l-lql2

) = 0 q(O, I) = 0. ot 2 ox2 ' 
(3.14) 

The complex valued displacements allow us to formulate Eq. (3.13) as a variational equa­
tion, corresponding to a stationary behaviour of the functional 

lluxll 2 -llu,ll 2 + ~ llull2 -l/4llull4
, 

where 

!lull = (u, u)s,x[O,T]· 

Introduction of a bilinear product 

Let {q1 , fh}, {q2 , Ol} describe states of a thermodynamic system corresponding to two 
(possibly different) thermojynamic processes on the time interval (t0 , T), or (if one speci­
fically recognizes the strain components) {q1(t), C1(t), 01(t)}, and {ql(t), Cl(t), 02 (t)}, 
not identifying them with specific values of q (say at the boundary). 

The products defined below are well known in continuum mechanics and appear under 
names of "mutual compliance". Of course, they are simply "energy products" in the lan­
guage of mathematical physics. See for example MIKHLIN [10]. The subscript 1 will denote 
the actual system considered. Subscript 2 denotes "adjoint" system which does not ne­
cessarily obey the physical laws of thermodynamics. 

We define at time t the product 

(3.15) tP1,2 = VJt,l(qb C1, ql, Cl) j = K(x, ~)A1,2(qt, C1, ql, Cl)dx~, 
• 

where K(x, ~ is a positive definite symmetric kernel. 
Ah2 is a symmetric operator 

(3.16) At,l(qt, C1, ql, C2) = Al,t(ql, Cl, qt, C1); 

fPt, 2 has the property that 

(3.17) 

is the Helmholtz free energy 'P associated with the state {q1 , Ct}. 
NoTE 1. 0 is regarded here as one of the generalized displacements: q,+ 1 .• 

NoTE 2. There is no reason why K(x, C) should not be a history-dependent kernel. 
For the sake of simplicity in discussing the concepts introduced here, this aspect shall 
not be stressed. 
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We also introduce the kinetic energy product 

(3.18) f1,2(q1' cl' Cb, C2) = ~ f (e(x)itt Cb)dx+ ~ f 2 "~""(x)C1,tX{JC2,,,dx' 
~ ~ ~~ 

ptXfJ'" is a positive definite symmetric matrix. Here we have assumed a single internal va­
riable q, however, the term 1/2 J (eq1 q,)dx is easily modified otherwise to read 

~ 

(3.19) ~ J 2 (eulJuq12)dx, 
~ ij 

where f!tJ is a generalized density matrix. Generally, eu is a constant diagonal matrix. 
The terms (3.18) and (3.19) include() as one of the internal variables q. In fact more 

than one temperature variable could be. introduced as the generalized internal variables 
q'-s. 

We also introduce the product ip1 , 2 which is defined below. 

To identify the form of i/J1 , 2 we introduce a variable S1, such that S; = Q, = - ~:~ . 
We notice the identifying qn+t with the temperature() and we have 

t 

f Sn+ 1 dt = -rJ, or Sn+t = -i]. 

The symmetric product for n + 1 variable () is identified as 

ifit.2<n+t> = ! f (SiJ1 +St 02 )dx 
~ 

(the index (n+ 1) now being omitted). Hence ip1 , 2 could be assumed to be of the form 

n+l 

(3.20) ifi1,2 = L, (Sx
2
qg

1 
+Sx

1 
IJx)dx, 

K=l 

the· subscripts 1, 2 referring to different states. 
- The total energy is defined as the Hamiltonian H(t) in analogy with classical mechanics. 

We define 

(3.21) 

and 

(3.22) f£1,2(t) = ~ J (Ptib+P2itt)dx+ ~ J llt,8 C2,8 +ll2,8 C1, 8dx-Ht,2• 
fl ~ 

where p1, ll1 stands for 

(3.23) 

where qn+ 1 = Sn+ 1 and 

(3.24) 

af,,, . 
p, = -!1-.- = eq, ; = 1, 2, 

uq, 

li ar,, ~., tX{J"" 
'oefl = -.-·- = L.; p c,,a. 

ac,~ ,a 
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An internal dissipation function D(qb q2 , qv q2) is now introduced. In the model de­
veloped in this paper it is assumed that the dissipation function Dh2 due to the internal 
displacements q1 , q2 is of the form 

(3.25) D1,2 = ! J (qtbq2-q2bq,)dx, 

where qz = 0 on odl. 
Integration by parts yields 

(3.25') 

91 

D1,2 = ~ J (q1 bcjz)dx. 
91 

As before it is understood that q1 and q2 contain more than one component, and the 
terms on the right ha~d side of Eqs. (3.25) and (3.25') constitute tensor products. 

The Hamiltonian H1 • 2 is defined 

(3.26) 

and the Lagrangian 

(3.27) 

where Qu Q2 are internally applied forces. 
Let qi be an internal variable in either state "one" or "two". Then 

(3.28) a!£,.1 - mp + ~b • ·· · ·1 2 ---aq;-- OCI.t - + tJq, z,J = ' ' if::j, 

where + or - signs apply depending on the state ( + for state "one", - for state "two"). 

Introducing the "vectors" w 1 , w 2 , 

(3.29) w, :::;: {q, c, 0,} 

and taking a Frechet derivative of It' 1, 2 with respect to w2 or w1 , we obtain a system of 
Euler-La grange equations: 

(3.30) 

or more generally a weak form 

(3.30') 

for all q, in a chosen test space fJ. Q 1 is a generalized force applied directly to some re­
gions in the interior of D. ( , ) denotes the usual L 2 product in !J. Similar equations de­
rive for the c,- s. 
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Omitting the subscripts j, we can at this point identify the solutions of the differential 
equations: 

(3.31) o!l'1.2 _ ..!!:_ ( o!l'_1.2) = QA 

oq2 dt oq2 1
' 

(3.32) o!l'1.2 _..!!_(o!l'_1.2) = Q2, oq1 dt oql 
as the displacements of the physical system considered, and as the displacements corres­
ponding to an adjoint system, respectively. 

Because of the form of the dissipation product D1•2 , the physical system dissipates 
energy proportionally to the velocity of the generalized displacements (including temper­
ature!), i.e. we have assu~ed viscous (or dashpot) type damping. 

As is usually the case with non-conservative systems, the adjoint system is marching 
backward in time, displaying negative dissipation. An interesting-observation can be made 
at this point that tp(q) can not be an algebraic quadratic form in all variables, contrary to 
simplistic expectations. If it were so, the following argument could be advanced. Setting 
ijJI 2 = J (qKq2)dx, we would have · 

• 91 

otp A 1,2 _ Kq aq;-- 1' 

and the internal displacement q1 obeys a second-order differential equation 

((Kq1 +bq1 +efi1), t~J> -<Q1, t~J> = o. 

If the coefficients K, b, I! are not functions of time (as would be the case if they were 
memory dependent), then in the one-dimensional case the classical solution can be easily 
written down for the case Q1 = 0, i = 1, 2. . 

Identifying S,.+ 1 with ~ and using the second law of thermodynamics in the form ~ = 
= - h1• ,{(), and ignoring the effects of all other variables on the behavior of the system, 
we obtain, by differentiating tp1, 2 with respect to the second state variable, otpt,2/oS2 = 
= 7}1 , Eq. (3.30') in the form 

(3.10") 

Using Fourier's law 

h1 = -KfJ,, 
h,,, = -~~' 

and omitting the subscript "one", Eq. (3.20).z becomes 

-KfJ.u+bO+efi = 0, 

which is the heat conduction equation with "the wave -term". A comment should be made 
that tp1, 2 is not an explicit function of fJ. It is a functional and the derivative OiPt.2/ofJ has 
to be regarded as a Frechet derivative. 

NoTE. The functional nature of dependence of the basic energy terms on the generalized 
forces and displacements is fairly easily justified by considering the Clausiils-Duhem ine-
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quality. An argument to that effect is offered by C. E:RrNGEN in [27], (vol. 2), pages 98-99,. 
where he gave an example of constitutive equations of the type 

T(X, t) = T(x, 0), 1p(X, t) = ~(x, 0), 

Q(X, t) = Q(x, 0), rJ(X, t) = 7}(x, 0), 
"' P(X, t) = P(x, 0) 

and showed that the assumption that the energy terms are functions of the generalized 
forces and displacements implies isothermal, rigid body behaviour. 

3.1. An example 

Let us consider a class of perfectly elastic materiais obeying the constitutive equations 

TKL = 2eoo~(C, O)foCKL or t"' = 2eoJ- 1(01p/OCKL)x".Kx'.L, 

1J = - o~(C, O)foO, e = ~ -Oo~foO, Q = 0, 

where t"' is the Cauchy stress tensor, TKL is the Piola-Kirchhoff stress (or rather pseudo­
-stress) tensor, related to t"' by the constitutive relation 

t"1 = 2_g_E_x" x' . (?o oCKL ,K ,L 

Following some well-known arguments, see for example [28], we can rewrite the consti-· 
tutive equations in an alternative form: 

TKL = 2eo oe(C' rJ)foCKL or t"' = 2eoJ-l(oefoCKL)x~.KX1,L, 

o = oe(c, rJ)forJ, 1p = e-rJoeforJ . 

. This system of equations is easily restated in the generalized Hamiltonian form as defined' 
by B. NOBLE [23], and given by Eqs. (4.2h and (4.2h in the next section of this paper,. 
by assuming a simple static form of the Hamiltonian: 

ii12 = ~ {(TfL, CKL2> +(01' 1J2) +<T:L, CKL) +(02, 1Jt) }. 

More realistic assumptions would consider some kinetic and dissipation effects. 
We can modify the constitutive equations by considering the inertia and dissipation 

terms derived form the modified Hamiltonian: H 12 = ii 12 + Tu+ D 12 , where the kinetic 
and dissipation functionals are given respectively by 

T12 = J (PKLMN(:KL
1 
CKL)dx, 

!J 

D12 = J (TfLCKL +O~)dx. 
!J 

(We have deliberately omitted the constant term 2e0 , which can be easily absorbed in the­
definition of the product (,).)The Hamiltonian H12 given above could serve as an illustra­
tion for the subsequent discussion offered in Sect. 4 and 5 of this paper. 
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-4. The Hamiltonian formulation and associated variational principles 

Formulas (3.12) and (3.13) define the Legendre transformation which introduces the 
generalized momenta 

p,,II,«P 

and establishes the relation between the Lagrangian and Hamiltonian functionals 

Lt,2(qt,q2, Ct, C2)<B> = ~ f (fi1C2+n2Ct)dx ~ f (ptq2+P2qJdx-H1 , 2, 
91 91 

where 

H1,2 = Tt,2+'Pr,2+Dt,2 

and where all products m~ are componentwise sums, i.e. 

n 

(X~ = ~ rJ.,{J,. 
i=1 

We obtain directly 

(4.2) 

( • oH1,2 oH1,2 c·
1 

___ oH1,2 · oH1 2 
4.3) ql = -~, q2 = -~, an2 , c2 =- an: . 

The system (4.2), (4.3) is the complete set of Hamilton's "canonical" equations. 
It is equivalent to the vanishing of Frechet derivatives 

oft't.2 _ o!i'1,2 _ o!i'1,2 _ o!i'1,2 _ 
0 --aq;- -~ - ac;- - --oc.- - ' 

o!i'1,2 _ o!i'1.2 _ o!i'1.2 _ aiR1.2 _ 0. 
~-~- an2 - an~ - ' 

hence, to the existence of a critical point of the Vlgrangian functional !i' 1 , 2 • We summarize 
Eqs. ( 4.4)1 by the variational statement 

~!i'1,2 = 0. 

In the event when one wishes to obtain the boundary conditions directly from the La­
grangian, one can do so by moiifying the L~grangian. For example, if the boundary 
conditions are of the form 

(4.5) 

then, one can introduce an additional . term 

Ht<anxo> = P2r1 (q, C)(anxo) 

into the Hamiltonian, and a corresponding term p/J •<an x O>- H1<an x O> into the Lagrangian. 
Su;:>po3e this moii fied L~grangian assumes a stationary value. Extending the Frechet 
differentiation to functi~ns definei o.J. Q and continuously extended to (o!J xO) completes 
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this development, whereby a critical point of the modified Lagrangian !t' 1.. 2 yields simulta­
neously the set of equations ( 4.2)-( 4.3) and the boundary -c~ridition ( 4.5). It is easily seen 
that other initial boundary conditions could be handled by a similar set of tricks. See ori­
ginal ideas presented in [7] or a more recent development in [2]. 

The condition that !t' 1 , 2 attains a maximum or a minimum (or neither) is completely 
determined by the nature of the operators defined as the second Frechet derivatives of 
the Hamiltonian H1,2. 

For example we can check the behaviour of 

iJ 2
H1.2 iJ2

Ht,2 O'YJ1 O'YJt 
aq;+l = atf2 = aol + ao1- · 

If we hypothetise that 'fJ(O) lq,C=const is a monotone function, then the existence of a sup­
port hyperplane foiiows, and keeping C, q constant !t' 1, 2 attains an extreme value at 
the point in Hilbert space if and only if Eqs. (4.2) and (4.3) are satisfied. 

The dual variational principles associated with Hamiltonian systems of the type ( 4.2), 
(4.3) are weii known. However, in general, the dissipation terms will cause problems con­
cerning the sign of the second Frechet derivatives, and only a set of necessary conditions 
for the existence of a maximum or a minimum can be formulated in the general case for 
the Lagrangian !t> 1 , 1 , unless additional information .is given concerning relations between 
the variables q, q, C, C, etc. In fact to determine the extremal behaviour of the Lagrangian, 
we need in addition to Eqs. (4.2) and (4.3) a set of constitutive equations. 

If we assume that the Hamiltonian system (4.2), (4.3) is deterministic, then, given a suffi­
cient number of initial conditions, the system (4.2), (4.3) can be solved, provided the func­
tion H1 , 1 is known. Of course, the problem arising in material science is the inverse pro­
blem. H1, 1 is not supplied in advance. Instead, due to some experimentation and/or guess­
work some relations are given between the variables q, C, q, C, and H1, 2 , !£ 1 , 1 are de­
rived or guessed by us, so that the system (4.2) agreeswith the experimental findings. This 
is sometimes difficult to achieve. As an example consider the simplest form of Hooke's 
Jaw 

iJH1 1 
--~- = K · C1 (K · C1 stands for K,1kt C1k1). acl 

This agrees with Eq. (4.2)4 only if we postulate Newton's second law 

e· Ii = K· c, i.e., ell1 = K· C2. 

This introduction of Newton's law is not really objectionable, but it must be regarded 
with suspicion by anybody trained in the classical theory of elasticity. In fact, it appears 
that the system ( 4.2) does not provide sufficient flexibility to encompass most classical 
theories. 

However, generalization of Eq. (4.2) exists and we could adapt a scheme originally 
proposed by B. NOBLE (see [23], RALL, [13], KoMKOV [6], [7]), and suggest the following 
representation which is best explained in a Hilbert space setting. 

Let Tbe an operator mapping a Hilbert space of functions H 1 into a Hilbert space H 2 • 

The domain _of T is dense in H 1 , and consequently the operator T*: H2 --. H1 is de-

4 Arch. Mech. Stos. nr 1180 
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fined. T* will be only a formal adjoint of T in this discussion. Suppose a Hamiltonian 
"' " functional H can be found H\H1 , H2) such that for the suitable functions 4> E H1 , p E H2 , 

aii 
a4> = T*p (in !J), 

aii = T4> (in D) ap 
domain of 

4> = Q s;;; R"; 
domain of 

p =Ds;;;R", 

O'p(l/>) = l/>p on aD, 

are satisfied. 
Then {4>, p} is the critical pair of i' where 

!l' = (l/>, T*p)n-J'f(lj>,p)+(p, O'p(l/>))ao 

while ( , ) denotes the inner product in H1 ; ( , )an is the boundary bilinear form. 
It turns out that the Hilbert space setting is unnecessary, and no change in this theory 

is required if other bilinear forms are substituted, such as convolution products. (See 
GUR.TIN's article [11], or [12]). 

5. A more general variational formulation 

Following the ideas of [23, 6, 13], we could consider more general forms of the Lagran­
gian !i' 1 , 2 . and the Hamiltonian H 1, 2 • 

Suppose that the internal variables q1 and the components of the strain tensor Ccxp are 
elements of a Hilbert space H of functions whose domain is PA. A, B, ~and 1'J are linear 
operators mapping H into H; the domains of A, B, ~' 'YJ are dense in H. A and B are nor- . 
mal operators. Define 

to be 

Tt,2(Aq1, BC1, Aq2, BC2), 

Dt,2(Aq1, q2, BCt, C2) 

1 
T1,2 = T[(Aqt,Aq2)+(BCt,BC2)], 

D1,2 = ! [(<5qt, q2)+(1'JC1, C2)]+ ! [(qt.' ~*q2)+(C1, rJ*C2)]. 

As before VJ1, 2 depends on the variables q1 , q2 , C1 , C2 • 

We define again the total energy to be 

H1,2 = 1/'t,2(t)+Tt.2(t). 
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The momenta are defined as before 

(5.1) 

and the Lagrangian 

!l\,2 = (Pt, Aq2)+(D1, BC2) -(Ht,2 +D1,2). 

Then the vanishing of the Frechet derivatives given by Eqs. ( 4.4)1 and ( 4.4h is equivalent 
to the generalized Hamiltonian system. Denoting by H1,2 = H1,2+D1,2 we obtain 

(5.2) A* _ af1t,2 
p,-~, 

B*ll = afl1,2 
' ac2 ' 

A* _ afl1,2 P2---
aqt 

B*ll = afl1,2 . 2 acl , 

(5.3) A ail1'2 q1 =--, 
aP2 

Aq2 = afl1,2 , 
apl 

BC = afl1,2 
1 an2 , BC2 = _a::r:2 . 

This is a complete system of generalized equations of Hamilton describing the behaviour 
of the physical system, and of the adjoint system. 

This reduces to the equations of motion of the form (3.20) and to the ad joint equations 

if A= B = ~ = 'YJ = !!.._, 
dt 

5.1. An example: The Onsager-Machlup theory 

Following the basic papers of L. ONSAGER and S. MACHLUP [30, 31] one could form 
an analogy between irreversible thermodynamic phenomena and quantum mechanical 
behaviour of particles in a Coulomb gauge. The macroscopic variables follow the On­
sager paths corresponding to a minimum value of a functional related to the entropy pro­
duction of the system. The part played by 11 in quantum mechanics is assumed in this 
theory by the Boltzmann constant k. If one. assumes that the evolution equation for the 
macroscopic processes is of the form 

&, = G1(a1)+F1(t), 

where cx1 are the macroscopic variables, G1 are functions of cx1 which are assumed linear 
in the Onsager-Mach1up theory, and Fi are random fluctuations·with a zero mean value. 
According to Onsager and Machlup, cx(t) follows a path which minimizes a functional of 
ex and ti in a manner analogous to the minimization of the action integral in classical 
quantum mechanics. By assuming the random fluctuations to be Gaussian, the Onsager­
·Machlup theory leads to the Fokker-Planck equation for conditional probability 

P(cx, a0 , t-t0 ) = exp( -Sfk), S = S(a, t), 

where S is the solution of a corresponding Hamilton-Jacobi equation 
• 

as ~ as 1 ~ as as [ 1 ~ a2s ~ aG,] 
at + L,; G, acx, + 2 L,; Ru aa, fJcx, = k 2 .L.J a ex, aa. Ru+ L.J acx, ' 

I I J . ~j J l 

4* 
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which in the first order of approximation becomes 

_..!__ "Ru aso aso + "'G, aso + aso_ = 0. 
2 ~ aa., arx1 LJ aa., at 

1,} 

(See BYUNG CHANG Eu (32] with credit given to N. HASHITSUME [33] for the derivation 
of these equations) where R0 are the coefficients related to the diffusion coefficients a.;J 
by the simple relation 

I . 
R-J =- a.J 

' k '' 

au ()(t --r:) = (F1(t), F,( -r:)). 

Following [32] we could define 

"P = 2; ([Jt- 1)iJGtG1 • 
i,j 

We introduce simultaneously with the physical variables a.1 the adjoint (unphysical) va­
riables Ph and formulate the dual Hamiltonina ~ 1 • 2 as follows. 

We define the momenta 
a so 

rip,= -a-· a., 
a so 

IIr~., = ap, ·. 

We can copy the Onsager-Hashitsume derivation of a Hamiltonian by offering 

~1.2(.rx, P.IIa.,IIp) = ! {2 [Ru(Ila., +A1) (IlpJ +B1)+RtJ(Ilp, +B1) 

where 

i,j 

'l'(a., {J) = 2; (R- 1)tJ[G1H1+ G1H1], 

i,j 

~ 1 • 2 satisfies the canonical equations 

diia., a~12 anfJ, a~12 
-(it = - ap, ' dt- = - arx, ' 

If the quantities a., {J are regarded as elements of a suitable Hilbert space, then the 
quantities H 1, B1 are defined by the equalities 

1 drx1 \ 
- \(it• fJ; =(a., H(ft)), 

B1 = (R- 1) 11H1 • 

The Lagrangian generalizing the Onsager . function is given by 

!i' 12 = 2; (Ila., p, +lip, a,) - 'Xu. 
I 
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Appendix. 1. Infinitesimal calculus in Hilbert spaces 

1.1. Parametrized curves and integration 

H will denote a Hilbert space which shall be identified as a space of functions with 
an inner product ( · , ·). By a parameterized cunre (curve segment) r we mean a continuous 
map f: I--. H, where I is the unit interval (0, 1). The curve r is said to have end points 
h0 , h1 EH if /(0) = h0 , .f(l) = h1 • It is called simple if for any rt E (0, 1) f(rt) is single 
valued, i.e. rt, {3 E {0,1) and rt #= {3--+ /(rt) #= f(/3). A parametrized curve F(A) is closed if 
f(O) = f(l). It is differentiable if for sufficiently small values of L1A = A1 - A2 , we have 
/(A1)-f().2) = h1 -h2 =f'(A)L1A+C where f'(A) is a (parameterized) vector in H, A 
is any value of A in (A1 , A2 ) and (the remainder) vector C has the property 

Iim l!ffi = o i.e., IICII = O(L1A). 
IL1.tl-+0 Ll A ' 

A straight line segment containing end points h0 , h 1 is a parameterized curve of the 
form/(A) = Ah1 +(1-A)h0 • Clearly f'(A) is the constant vector h1 -h0 , the remainder 
term being identically equal to the zero vector. Usually the domain of the functions in H 
is some subset .Q of &(. Q is regarded as fixed in the discussion of derivatives or inte­
grals of the elements (i.e. functions of H). Suppose that the product (/,g), f EH, g EH 
is defined as the integral 

J W(x)f(x)g(x)dx, 
n 

where W(x) > 0 in Q is a weight function. Then the following statement which we label 
Lemma 1 is easily proved. {Simply apply the Cauchy-Schwartz inequality!) 

LEMMA 1. Let F{).) be a parametrized differentiable curve in H. F().) = /{0,1). Then 
f'(A) EH for all A E {0,1). 

We define the Riemann integral along the parameterized curve F( A) EH to be the 
limit of the Darboux sum 

n 

lim }; f(A 1)L1A, = J f().)dA, 
.1At-+O i= 1 r 

(LIA1 = 11+ 1 -A1 > 0). 

LEMMA 2. For any parameterized curve F(A) the integral J f(A)dA exists. 
r 

Outline of proof. This is a direct consequence of the continuity of /(A). Observe 
IlL'/( A;) L1 A; 11 < L'll/( A;) IIL1 A; < oo. Now use continuity off to show that it is impossible 
to have more than one limit point for the Darboux sum. To show that at least one limit 
point exists, assume the contrary, and obtain a contradiction to Ell/( A;) L1 A; 11 . < oo. 

LEMMA 3. Let/(A), g(A) be two parameterized curves rl' r2 in H. 
If 

(A.1.1) F(A) = (/(A), g(A)) 
f. I 
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is defined for each value of A, then 
1 

(A.l.2) J F(A)dA = Jl,~o}; F(A1)Lfl1 = lim }; <f(l,), g(l,))Lfl, . 
0 f.g ; fg Ll>.t-+0 I 

Proof. Trivial- (Observe that F1•2 is a real valued continuous function, the real 
variable A). There is no reason why in general the equality 

0 0 1 

· f F(A)dA = ([ /(A)dA, f g(A)dl) 
1 /,g 1 0 

(A.1.3) 

should be true for arbitrary functions f( A), g( A). 
If 

(A.l.4) f(X+th)-f(X) = tf~(h)+C(x, h), C = O(h), 

where /~ is continuous (in h), then f~ is called the Frechet derivative. (This is not 
a uniformly accepted definition.) In a Hilbert space the Riesz representation theorem 
is applicable and /~(h) can be written (for a fixed h) as a product f~(h) = (Dfx, h). 

Then Dfx E H is frequently referred to as the Frechet derivative off at the point x. 
However, the concept of differentiation given by formula (A.1.4) has been introduced 

in arbitrary normed spaces E, F and does not require Hilbert space structure. What we 
require is the existence of a bilinear representation for f~(h). (See [11]). f'(h) = (h, z), 
where z is unique and independent of h. In many works z is defined as the FnSchet de­
rivative off with respect to x at the point x = x. This can be generalized to arbitrary 
bilinear forms, or to arbitrary normed spaces. Let p denote a linear normed space, and P* 
its topological dual. Let x E p, fe p•, i.e. f: p--. PJt (linearly and continuously). 

If f(x+th)-f(X) can be written as 

where 4> E P* and 

f(X+th) -f(X) = tlf>(h)+C(X, th) 

limJ!f!L = 0 
t-+0 llthll 

for every h, then 4> can be denoted as f~ and can be designated as the derivative off at x. 
The Frechet derivative of a bilinear product {u, v }, if u, v are regarded as independent, 
is easily computed since 

{u+th,v}-{u,v} = {th,v} = t{h,v}. 

However, if the parameterized path F(A) is restricted to a finite dimensional subspace 
of H, then Fubini's theorem can be applied directly and the equality (A.1.3) is valid. 

We define the line integral F1,1, of the bilinear product (f(l),/'(1)) to be the circula­
tion of/( A) along r. 

Let N be an operator whose domain is H. Following ToNTI [25] we define the cir­
culation of N(j"(A)) along F to be 

f (N (f('TJ) ),J' (A))dA. 
r 
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The problem arises whether an equation Au = fin a Hilbert space H can be derived 
by Fn!chet differentiation of a potential functional F(u). The partial answer can be found 
in [20] and also in [7, 13]. The expected answer is the independence of path r of cir­

. culation along r of (Au-f). This is hinted in the notes [22] and in a very formal fashion 
obtained in [25]. 

This theory breaks down non-self adjoint operators, and a flat statement is made in 
[25] that no potential exists, for example, for the equations N(u) = f(u, u'). 

On the other hand, there exist known variational principles for such equations. The 
insistence on Hilbert space setting was questioned by HERRERA and BIELAK [12] who pointed 
out that the Frechet differentiation yields identical formulation for arbitrary bilinear 
products, and the insistence on the inner product space structure only hinders a consistent 
development of the theory. 

1.2. The Frechet and Gateaux differentiation 

Let E, F be any normed (Banach) spaces. Then a map f: E -+ · F is called Gateaux differ­
entiable at x- if for any h E E, and x E E, such that for all constants t the vector x+ 
+ th E D(fJ (the domain of f). 

For sufficiently small values of t E at we have by bilinearity of the Gateaux deriva­
tive {, }. Hence, using our previous definition {u, v }, = v. Using similar arguments, one 
obtains for a linear map A: {Au,v}., = A*v provided A* is defined. For an arbitrary 
function 

f E C1(V) (u E V) {j(u), V }u = f'(u) ·V, 

if a~~) is defined. 

Generally if f, u are vectors in a Hilbert or Banach space, of/ ou is a tensor product. 
If f, u are n-dimensional vectors, off ou is the Jacobian matrix. 

Appendix 2 

-Some concepts from functional analysis. 

The Schwartz space f»(Q) is the same as C(f'(Q). Here C(f'(Q) denotes functions whose 
Support Q is compact and each function jE C(f' has derivatives of any (arbitrary) order 
in Q. u has derivatives of order IX in the weak sense if 

(A.2.1) J uD"cf>dx = ( -1 )~~ J vcf>dx 
D !l 

for some locally integrable function v E Q, /Y". is the usual multi-index notation 

Arx ·Drx = 2: Aoc,ocz ... rxn DrxsDrxz ... D«n, 
«1 +«z+ ... «n= 1«1 
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where Di = ~ . The locally integrable function v in (A.2.1) is caiied the weak derivative 
OXj 

of u, (i.e. nrxu ~ v) if for any x E Q there exists a neighbourhood Nx of such that (A.2.1) 

holds and J vPdx exists. Let CM!J) denote the set of functions such that u E C! if 
Nx 

}; J IIY'-u lP dx exists. 
JrxJSiD 

(A.2.2) 

is a norm if f ~ p < oo, and Q is a bounded domain in Rn. The space Jli'P(Q) is the Ba­
nach space obtained from the closure of C~ with respect to the 11 • IIJ,P norm. The Sobolev 
space Wi(!J) is a space of ail functions having all weak derivatives up to order j in Q, 

where all such derivatives belong to LP(Q). A norm in Wi is defined by the formula (A.2.2). 

THEOREM 

NoTE. If p = 2, the index 2 is omitted in this notation. Hence W~ = Wi = Hi. Wt are 
called the Sobolev spaces. If different orders of weak differentiability are required (if, 
for example, u(x, y) needs to be twice (weakly) differentiable with respect to x but only 
once with respect to y), an appropriate Sobolev space can be introjuced: w;· 1 the space 

of functions u E W2 •1 whose weak derivatives !!!__, _!!!__, 02
u are elements of LP(Q). 

OX oy ox2 

The uses of Sobolev spaces in problems of mathematical physics are outlined in MIKHLIN'S 

monograph [10]. For an extensive study of their properties a number of exceiient mono­
graphs are available, for example A. FRIEDMAN[Partial differential equations, R. E. Krieger 
Publ. Co., Huntington, New York 1976]. 

Conclusions 

This paper accomplishes a twofold purpose. First, the internal variable description of 
thermodymamic processes of continuum mechanics is generalized from a discrete to the 
continuous case. The internal variables are pointwise defined continuous functions. Appro­
priate definitions of Frechet derivatives generalize the Euler-La grange equations. Some 
simple examples are offered to illustrate the physical interpretation of these concepts. Se­
condly, a novel formulation is give~ of Hamilton's cannonical equations for irreversible 
processes, based on a physical-unphysical duality, the physical process, and its unphysical 
dual corresponding to a stationary behavior of a joint Lagrangian. 

"The missing link" between the classical mechanics and the irreversible thermodyna­
mics of continua is provided by the introduction of a kinetic energy and a dissipation term 
into the free energy of the system. 
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