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Viscoelastic boundary layer: 
the stagnation point flows as flows with dominating extensions 

S. ZAHORSKI (WARSZAWA) 

THE PLANE laminar boundary layer in the case of an incompressible viscoelastic (simple) fluid 
in a stagnation point flow is considered in great detail. The scaling procedure characterising 
the "elastic-type" boundary layer and the constitutive equations valid for thin-layer flows with 
dominating extensions (FDE) are applied. It is shown that the layer thickness as well as the vel­
ocity profiles essentially depend on the Weissenberg number and the extensional viscosity 
function. 

Rozwai:ono szczeg6lowo plask~, larninam~ warstw~ przyscienn~ w przypadku niescisliwej 
cieczy lepkosp~zystej (prostej) w przeplywie stagnacyjnyrn. Zastosowano procedur~ skaJowa­
nia charakteryzuj~~ warstw~ przyscienn~ ,typu spr~zystego" oraz r6wnania konstytutywne 
dla cienkowarstwowych przeplyw6w z dominuj~cymi rozci~ganiami (FDE). Pokazano, 2:e 
zar6wno grubosc warstwy jak i profile pr~dkosci zale~ istotnie od liczby Weissenberga i funkcji 
lepkosci przy rozci~ganiu. 

PaccMoTpeH ~eTaJILHO nJiocl<HH, JiaMHHapHLlli norpaHH'tiHhtii cJioii B ~ae HeCH<HMaeMoii 
BH3Koynpyroii (npOCTOH) >KH~KOCTH B CTarHa~HOHHOM TeqeHHH. fipHMeHeHa npo~e~pa MaC­
WTa6Horo npeo6pa30aamm, xapaKTepH3YJOI.I.laH norpaHH'tiHbm cJioii ,ynpyroro nma", a TS.K­
me onpe~emllOI.I.lHe ypaBHCHWI AJU1 TOHKOCJIOI{CTbiX Teqemm C ~OMHHHpyiDI.I.lHMH paCTH­
meHHHMH (FDE). fiOKa3aHO, ~0 TaK TOJII.I.lHHa CJIOH, KaK H npo<J;>HJIH CKOpoCTH cyi.I.lCCTBCHHO 
3aBHCHT OT 'lliCJia BeiicceH6epra H <J?~ BH3KOCTH npH paCTH>KeHHH. 

1. Introduction 

IN OUR PREVIOUS papers [1, 2] we discussed some aspects of flows in viscoelastic boundary 
layers of the "viscous-type", the scaling procedure for which was based on the assumption 
of high Reynolds numbers like in the classical Prandtl theory. The corresponding gover­
ning equations could be derived under the assumption of nearly viscometric or quasi­
viscometric approximations. It is noteworthy that other known solutions of the stagna­
tion point flows of various viscoelastic fluids were obtained under similar assumptions 
(cf. [3, 4, 5, 6]). All the above analyses are not expected to be valid near the leading edge 
of a bluff body where the Deborah or Weissenberg numbers may be appreciable, and 
where the customary concept of a boundary layer is open to question (cf. [?]).Therefore, 
for plane stagnation point flows we use the notion of the "elastic-type" boundary layer 
introduced by G. AsTARITA and G. MARRUCCI [8]. The corresponding scaling procedure 
is based on small values of the so-called elasticity number, i.e. the ratio of Weissenberg 
to Reynolds numbers. 

Since in the stagnation point flow or near the leading edge of a bluff body, the De­
borah number may be pretty high and the extensional effects are of greater importance 
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as compared with the shearing effects at the wall, we use the constitutive equations valid 
for the so-called flows with dominating extensions (FDE approximations) defined else­
where [9, 10]. It is shown that under the above assumptions the boundary-layer thickness 
as well as the velocity profiles essentially depend on the extensional viscosity function and 
its derivative with respect to the extension rate. Some particular cases of solutions can be 
discussed in greater detail without solving the corresponding two-parameter differential 
equations. 

2. The "elastic-type" boundary-layer equations 

In plane steady flows of an arbitrary incompressible fluid, the dynamic equations of 
equilibrium and the continuity condition take the following form: 

( 
a a ) ap ari, 2 aTi, 1 

e u axu +v ayu = - - +--+--ax ay ax ' 

(2.1) ( 
a a ) ap aTi, 2 aTi 2 

e u a~ +v a~ = -ay-+ax+ay, 

~+~=0 ax ay . 
where u and v denote the velocity components in the direction of x and y-axes, res­
pectively, Tij (i,j = 1, 2) are the extra-stress components, e is the constant mass density, 
and p - the hydrostatic pressure. 

Considering plane flows in a thin layer of thickness b, in a neighbourhood of a rigid 
impermeable wall, we introduce the dimensionless quantities (with overbars) through the 
following relations: 

(2.2) X= Lx, y = by, p = eUJp, u = Uou, v = eUov, 
where L denotes some characteristic length, U0 - some characteristic velocity, and we 
assume, moreover, that 

(2.3) 

The dimensionless extra-stress components result from 

(2.4) 

where 

(2.5) 

T t2 _ 'YJo Uo rrt2 
E--~-.I.E, 

'YJo . = lim'YJ = lim ( Ti.~) , 
"-+0 "-+" " w 

ii = 11' 22, 

(Tu-T22) N1 o = limN1 = lim E 
2 

E 

"-+0 x-+0 " w 
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define the material parameters with dimensions of viscosity [Nsm- 2] and normal-stress 
coefficient [Ns2m- 2

], respectively. These quantities are well defined since at the wall 
(w-denote values at the wall) any flow of an incompressible fluid is locally viscometric. 

Hence, Eqs. (2.1) can be expressed in the dimensionless form: 

a- a- a- 2 a'fl2 af'l1 _ u _ u _ p B- E -2El E 

u ox + v oy - - ox + Re oy + s ox ' 

(2.6) (
- ov _ ov) _1 op s- 1 oTi 2 

_ 3El oTi2 

s u ox + v oy = - r- oy + Re ox -+ s oy ' 
ou ov 
ax+ a-y = o, 

where 

(2.7) Re = eUoL, Ws = N1oUo' El = Ws = N1~' 
'YJo r;oL Re eL 

define the corresponding Reynolds, Weissenberg and elasticity numbers (cf. [8]). 
The concept of a viscoelastic boundary layer is based on rather intuitive than physical 

assumption that in many situations there exists some thin layer close to the wall in which 
not only viscous but also viscoelastic (normal-stress) effects are meaningful, and the 
outside flow is exactly an inviscid one, governed by the Euler equation (cf. [1, 7]). 

Thus, for sufficiently high Reynolds numbers, finite Weissenberg numbers and suffi­
ciently small elasticity numbers, viz. 

(2.8) El = Ws = O(s2), Ws = 0(1) > 1, 
Re 

we arrive at the following equations (zero-order approximations with respect to e): 

(2.9) 
( ou ou) dp* oT1 2 o ( 11 T22) e u-+v- = ---+--+- TE- E ' ax ay dx oy ax 

!!!__ + !!!__ = 0 ax ay ' 
where 

(2.10) 
8p* 
ay = o. 

The external flow is described by the Euler-type equation, viz. 

(2.11) U dU _ 1 dp* 
ax--edx' 

where U(x) denotes the velocity of an inviscid solution at the wall, i.e. for y = 0. 
For the "elastic-type" boundary layer defined by Eqs. (2.9), the inertia and pressure 

forces are mainly equilibrated by elastic (normal) stresses. Thus we have 

(2.12) e = 1 = o(JIEI) = o(Jf :l~ ), 
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and also 

(2.13) 

This result means that the thickness ~ of the "elastic-type" boundary layer is cons1ant 
independent of the velocity U 0 and length L. 

For plane stagnation point flows, an in viscid solution is of the form: 

(2.14) U = ex, V = - cy, 

where the extension rate 

(2.15) c = U0 /L. 

Hence it appears that U0 may be interpreted as the velocity at the distance L from the 
rigid wall. Equation (2.11) leads to the solution 

(2.16) * 1 u2 Po= 2e o· 

Introducing the corresponding kinematic quantities, viz. 

(2.17) 

we can also write 

(2.18) Re = UoL = UJ 
"o Vo c ' 

"to Uo "to Ws=---=-c, 
v0 L V0 

and, on the basis of Eq. (2.13) 

(2.19) tJ = o(~) = o( V •; y'ws )· 

El = "to 
£2 ' 

It is seen from the above expression that for higher Weissenberg numbers the thickness 
of the "elastic-type" boundary layer may be greater as compared with that for purely 
viscous flows. On the other hand, it is noteworthy that for Ws = 0 the above definition 
oses its sense. 

3. The stagnation point flows as flows with dominating extensions 

The plane flows with dominating extensions (FDE) have been defined and discussed 
elsewhere [9]. In what follows, we repeat only the most important properties relevant for 
the "elastic-type" boundary layer. 

Many plane steady-state flows can be presented in the following form: 

u* = cx+u(x, y), 

v* = -cy+v(x, y), 
(3.1) 

where c is a constant and u, v denote additional velocity components along the axes x, y, 
respectively. If, moreover, the above flows are realised in a thin layer, in which one of the 
characteristic dimensions L is much greater than the dimension ~ describing the layer 
thickness, i.e. Eq. (2.3) is satisfied, we can write the velocity gradients as 
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(3.2) 
~~ = c(l+• ;n 
av• 2 av 
ax ::;: CE ax' 

au* au 
ay = c a-y' 

av• ( av) ay = c - 1 + e a-y , 

w* = ~ c ( ;; - e2 :~ ) , 
where Eqs. (2.2) have been taken into account. It is seen that for small vorticities ro* the, 
first terms in diagonal components (3.2) may be more meaningful than the remaining 
terms (they are at least of order O(e)). 

On the basis of Eqs. (3.1), we arrive at the following Rivlin-Ericksen kinematic tensor 
(cf. [liD: 

(3.3) 
[ 

2 !!!__ _au + ~l 2c 0 ax ay ax 
[A~] = [A,]+ [A~] = [ 0 - 2c] + !!!._ + !!!._ 2 !!!._ ' 

ay ax ay . 
and its invariants 

trA! = o, trAT 3 = o, 
(3.4) trA~2 

= trA1 +(trA.)' = 8c2 + I6c :: +8 ( :: r +2 ( ;; + ;: r 
where the primed part refers to the additional velocity field introduced in Eqs. (3.1). 

On the other hand, the constitutive equation of an incompressible simple fluid in 
plane\. extensional flows can be presented as ( cf. [11]) 

(3.5) T = - pl + f3(/2)A1, /2 = tr Af, 

where the function {3 depends only on the second invariant. In our paper [9] we defined 
the plane ''flows with dominating extensions" (FDE) as such thin-layer flows in which 
the constitutive equations (3.5) may be used in a form linearly perturbed with respect to 
additional velocity gradients (3.2). This means that for FDE we have 

(3.6) T* = -pl +{3A1 +fJA~ + ~ c'A1 , 

where the linear increment of the extension rate c, denoted by c', amounts to 

(3.7) 
I au 1 au 1 au av 

( )2 ( )2 
c = ax + 2C ax + 8C ay + ax . 

Thus we have the stress components : 

T*11 = -p+2f3c+2{3 !.!!__ + !_ d{J [sc ~ +4 (~)
2 

+ (~ + ~)
2

], ax 4 ac ax ax ay ax 

(3.8) T* 22 = -p-2f3c-2{3 ~- !_ d{J [sc ~ +4 (~)
2 

+ (~ + ~)
2

], ax 4 de ax ax ay ax 

T*12 = f3 (!!!._ + ~). ay ax 
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The terms involved in Eqs. (3.8) are of different orders of magnitude with respect 
to small par~eter e = <5 j L. Substituting the above relations into the boundary-layer 
equations (2.9) 1 and retaining only terms of the highest order of magnitude with respect 
to e, we obtain the equation: 

( 
ou* ou* ) dp* a2u df3 au a2u 

<3·9) (! u* ox +v* ay = - dx +{3 ay2 + dc ay axay 

or, after taking into account Eqs. (3.1), (2.11), (2.14), 

(3.10) 
au au au au o2u db au a2u 

CX 7fX +cu-cy ay +u ax +v ay = Vob(c) ay2 +vo dc ay axay, 

where we have denoted 

(3.11) f3/e = v = vob(c), vo = 'YJofe. 

It is also noteworthy that the simplified constitutive equations, leading immediately 
to Eqs. (3.9) or (3.10), can be written as follows (cf. [9]): 

(3.12) 

T*u = -p+ _!_ df3 (!.:!__)2 
4 de ay ' 

T*22 = -p-_!_ df3 (!!!__)2 
4 de ay ' 

T*12 = f3 ~~ . 

The function f3(c) (or the dimensionless function b(c)) can be simply related to the 
corresponding planar elongational viscosity 'YJ*(c), viz. 

(3.13) 

In what follows, we shall call the function f3(c) the extensional viscosity function. 
According to Eqs. (2.5)2 and (3.12), we can define the Weissenberg number for the 

flows considered in the form: 

(3.14) 

. ( T*11
- T* 22 ) 1 df3 

Nlo = hm 2 = -2 -d ' 
H-+0 " W C 

1 db 
Ws = TTcc. 

This number is proportional to the derivative of the extensional viscosity function with 
respect to the extension rate c. 

The boundary conditions in the case considered are exactly the same as those for 
purely viscous flow (cf. [1, 12]), viz. 

u* = v* = 0 at y = 0, 
(3.15) 

u* = U(x) = ex at y -+ oo. 

It can be verified that T*12 as well as T*11 - T* 22 tend to zero for y-+ oo, if also 
aujoy-+ 0 at y-+ oo. The latter condition directly results from the asymptotic proper­
ties of Eqs. (3.15)2 • 
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4. The similarity transformations and governing equations 

For plane stagnation point flows there exists neither characteristic length L nor vel­
ocity U0 , but only the ratio c = U0 /L. A dimensional analysis of Eq. (3.10) proves that 
it can be expressed in a dimensionless form, if 

(4.1) u = cx(f' -1), v = -vvoc (f-'YJ), 
Vo V
-

Y='YJ c' 
wherefis a function of 'YJ only, and the condition of continuity is satisfied automatically. 
This also implies that 

(4.2) u* = cxf'('YJ), v* = -vvoc f('YJ). 

Calculating the corresponding derivatives, viz. 

(4.3) 

!!!__ - J!/ c3 ·~""( ) 
a - XJ 'YJ' y Vo 

(J2u - ~ ·~""'( ) 
(Jy2 - Vo XJ 'YJ ' 

au ax= c(f'('Y})-1), 

~ = -. / c3 /"( ), 
(Jx(Jy v Vo 'YJ 

where primes denote differentiation with respect to 'YJ, and substituting Eqs. (4.1), (4.3) 
into Eq. {3.10), we arrive at 

(4.4) 

where according to Eq. (3.14)2 

(4.5) 

bf"' +f"f-!'2 + 1 = -k/"2
, 

db 
k=2Ws=dcc. 

Similarly, on the basis of Eqs. ( 4.2), the boundary conditions (3.15) lead to 

(4.6) /(0) = /'(0) = 0, lim f'('YJ) = 1. 
'1-+00 

The governing equation ( 4.4) is a nonlinear ordinary differential equation of the third 
order. Its solution satisfying the boundary conditions (4.6) depends on the following 
two parameters: the dimensionless extensional viscosity function b(c) and the Weissen-

1 
berg number Ws = 2 k. 

For b = 1 and Ws = 0, Eq. (4.4) takes the form well known for Newtonian fluids 

(4.7) !"' +f"f-/'2 + 1 = 0. 

The numerical solutions of the above equation can be found in numerous references 
(cf. [12]). The corresponding values off, f',f" etc. are usually tabulated; at the wall, i.e. 
for fJ = 0, we have: /(0) = 0, f'(O) = 0, f"(O) = 1.2326, /"'(0) = -1. 

Some particular solutions of Eq. (4.4) with boundary conditions (4.6) can be discussed 
in greater detail without solving the differential equation in a numerical way. To this 
end, we shall consider certain relations resulting from Eq. (4.4), especially those satified 
at the wall (fJ = 0). 
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5. The boundary-layer thickness and possible velocity profiles 

According to Eqs. (2.19) and (4.1)3 , we obtain for the "elastic-type" boundary-layer 
thickness the following expressions: 

(5.1) "o - J'o V- v-~cl = fJel c yWs = 1JI c' 
where both 1Je1 and 1]1 denote the values at which the velocities reach 99% of the maxi­
mum values corresponding to 1J -+ oo (cf.Eq.(4.6)). It results from Eq.(5.1) that 

(5.2) 1Je1 = .1]
1 

; 
y'Ws 

hence, 1Je1 = 1]1 only for Ws = 1. At this place it is noteworthy to repeat once more that 
the concept of the "elastic-type" boundary layer has been introduced for Ws = 0(1) > I; 
for Ws = 0 it loses any physical sense. On the other hand, for the "viscous-type" boundary 
layer we have (cf. [12D 

(5.3) "o V-
~N = 2.4 c· 

It can also be verified that at the wall (1J = 0) the Newtonian solution substituted 
into Eq. (4.4) leads to 

(5.4) /Jbf:/'(0) = -k/~'2(0), /Jb = b-1. 

Taking into account the values of/~'' (0) and /J:.(O) resulting from the solution of Eq. ( 4. 7). 
we arrive at 

(5.5) 
!Jb !Jb 
T = 2Ws = 1.52 · 

The above result means that the inclination of the velocity profile at 1J = 0 is exactly 
the same as for the Newtonian case, if the ratio !Jbjk takes the value (5.5). 

On the other hand, an approximate solution of Eq. (4.4) for 1J -+ oo {j'(O)-+ 1, 
/"

2 (0) -+ 0) leads to 

(5.6) f" (q) ~ C exp [- ;b ( '1- 0.62)2
]. 

where C is an integration constant. Comparing the above result with the corresponding 
Newtonian expression (for b = 1, k = 0), it is seen that for b #= 1 and 11bfk = 1.52 
the velocity profile is steeper as compared with its Newtonian counterpart. This also means 
that for Ws = 1, 1Je1 = 1]6 is essentially greater than 2.4 (1]6 can be estimated as 5.6), 

The velocity profiles in the "elastic-type" boundary layer are shown in Fig. 1 for 
!Jbjk = 1.52 and various values of the Weissenberg numbers Ws. For comparison the 
approximate Newtonian profile is shown by a broken line. Thus we see that for /Jbfk = 1.52, 
the increasing Weissenberg numbers make the velocity profiles fuller as compared with 
those for Ws ~ 1. 
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FIG. 1. 

It also results from Eqs. (4.4), (4.6) that at the wall (TJ = 0), we havl,; 

(5.7) b(c)/"'(0)+1 = -k/"2(0). 

Denoting by /"'(0) = -1 +Lif"', we arrive at 

(5.8) /"
2 (0) = ~b - ! Af"', 

and 

/"2 (0) > Ab for Af"' < 0, 
k 

(5.9) 

/"2 (0) < Ab for Llf'" > 0. 
k 

295 

Taking into account the result (5.4), we note that Af"' = 0 if Ab/k = 1.52. For other 
values of Abfk and for small values of Af'", and this is the case at rJ = 0 where /"'(0) 
does not differ essentially from f~" (0) = - 1, we can assume that approximately 

(5.10) 

The corresponding velocity profiles in the "elastic-type" boundary layer are schema­
tically shown in Fig. 2 for Ws = 1 and various values of the ratios LJbfk. For compa­
rison the Newtonian profile is shown by a broken line. Thus we see that for constant 
Ws = 1, the increasing ratios LJbjk make the velocity profiles fuller as compared with 
those for smaller Ab fk. 
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FIG. 2. 

Another meaning of the ratio 11bfk results from Eq. (4.5). For the dimensionless 
extensional viscosity, we can write the expression: 

(5.11) 
k 

b(c) = 1+ac.1b, 

where cx is a constant. Therefore, various values of the ratio 11bfk determine possible 
variability of the extensional viscosity function with respect to the extension rate. For 
instance, 11bjk = 1 corresponds to a linear function b(c), i1bfk = 2 gives a square-root 
function b(c), while 11bjk = 0.5 expresses a parabolic dependence of b(c). For 11b/k = 1.52 
in particular, we obtain 

(5.12) 

b(c) 

FIG. 3. 

152 

2 

c 
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It is clearly seen from Fig. 3 that smaller values of the ratio iJbfk (or smaller values of 
iJb for constant k = 2 Ws) determine faster increases of the extensional viscosity function. 
According to Fig. 1 very small iJbfk may correspond to high increases of b(c) and, in 
consequence, to very steep velocity profiles. 

6. Conclusions 

At the end of the present considerations the following conclusions can be formulated: 
1) the thickness of the "elastic-type" boundary layer does not depend either on the 

characteristic length or velocity; it is constant for constant normal-stress coefficients; 
2) the thickness of the "elastic-type" boundary layer may be much greater than that 

for purely Newtonian flows (of the "viscous-type"); 
3) the increasing Weissenberg numbers for established variability of the extensional 

viscosity function with respect to the extension rate (e.g. linear, parabolic etc.) give the 
velocity profiles fuller as compared with smaller numbers; 

4) the increasing ratios responsible for variability of the extensional viscosity function 
with respect to the extension rate (higher ratios correspond to weaker variabilities) give 
the velocity profiles fuller as compared with smaller ratios; 

5) the concept of the "elastic-type" boundary layer seems to lead to reliable results 
or Weissenberg numbers greater than unity. 
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