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Exact solutions for the uniaxial extension of a mixture slab

M. V. GANDHI and M. USMAN (EAST LANSING)

RasagoraL and WINEMAN [1] have recently established several new exact solutions to bound-
ary-value problems in nonlinear elasticity. They have shown, for example, that a nonlinearly
elastic slab can exhibit nonuniform uniaxial extension solutions, in addition to the classical
uniform uniaxial extension solution. In this paper, a slab consisting of a mixture of a nonlinearly
elastic solid and an ideal fluid is modelled in the context of Mixture Theory. The problem of
uniaxial extension of this slab mixture is considered, and the possibility of an infinity of exact
solutions is demonstrated.

RAJAGOPAL i WINEMAN [1] otrzymali ostatnio szereg nowych rozwigzan Scistych zagadnien
brzegowych nieliniowej teorii sprezystosci. Pokazali oni np., ze rozwazenie warstwy nieliniowo
sprezystej prowadzi¢ moze do nier6bwnomiernego rozciggania jednoosiowego, niezaleznie od
klasycznego stanu rOwnomiernego rozciggania. W obecnej pracy rozwaza sie w ramach ogodlnej
teorii mieszanin warstwe skladajaca sie z mieszaniny stalego ciala sprezystego oraz cieczy dosko-
nalej. Bada sie zagadnienie jednoosiowego rozciagania takiej warstwy oraz przedstawia sie
mozliwo$¢ istnienia nieskonczonej liczby rozwigzan scistych.

Pasronans u BaaemaH [1] monyunin B noclieiHee BpeMsi psIf HOBBIX TOUHBIX peLUEHMI Kpae-
BBIX 3a/lay HEJIMHEHHOH Teopmm ynpyroctd. OHH IIOKasaJl HAalpHMEDP, YTO PacCMOTPEHHE
HeJIMHEeRHO yapyroro Cjaosi MoO)KeT OPHBECTH K HEPABHOMEPDHOMY OOHOOCHOMY PaCTAXKEHHIO,
HE3aBMCHMO OT KITACCHYECKOro COCTOSIHMS PABHOMEPHOrO pacTshkeHusi. B Hacrosimeit pa-
6oTe paccMaTpMBaeTCs, B paMKax oOLIell Teopuu CMeceil, CJIOH, COCTOSILMI M3 CMECH TBep-
JIOr0 YOPYroro Tejla M ujaeanbHoM »uaKocTH. Mccrnenyercss 3ajaua oJHOOCHOTO pPaCTKEHMS
TAKOTO CJI0A, & TaK)Ke NPEJCTABIAETCSI BO3MOYKHOCTH CYINECTBOBAHHA GECKOHEUHOro KoJH-
UeCTBa TOYHBIX pelIeHHH.

1. Introduction

RECENTLY, RAJAGOPAL and WINEMAN (1] have presented new exact solutions for bound-
ary-value problems in nonlinear elasticity. In particular, for the problem of uniaxial
extension they have demonstrated that an axial variation of the stretch ratio is possible
for nonlinearly elastic materials. In addition, they have obtained an infinite class of exact
solutions for the uniaxial extension of a neo-Hookean slab of finite thickness whose other
dimensions are infinite, the top and bottom surfaces of the slab being bonded to rigid
plates. In this work, the same boundary-value problem is studied for a slab which is
a mixture of a nonlinearly elastic solid and an ideal fluid. Boundary-value problems for
solid-fluid mixtures of this kind have been studied previously [2-5] in the context of
Mixture Theory [6, 7]. The same approach is adopted in this paper to study the uniaxial
extension of a slab mixture, and the possibility of an infinity of exact solutions is de-
monstrated. The preliminaries and the basic equations of Mixture Theory are presented
in Sect. 2. The constitutive equations for a mixture of a nonlinearly elastic solid and an
ideal fluid are discussed in Sect. 3. The problem of non-uniform uniaxial extension of
a mixture of a nonlinearly elastic solid and an ideal fluid is presented in Sect. 4.
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2. Preliminaries: notations and basic equations

A brief review of the notations and basic equations of Mixture Theory (also known
as the Theory of Interacting Continua) are presented in this section for completeness
and continuity. The historical development and a detailed exposition of the theory are
succinctly presented in the comprehensive review articles by ATKIN and CrAINE [6] and
Bowen [7].

Let 2 and £, denote the reference configuration and the configuration of the body
at time ¢, respectively. For a function defined on £2 xR and 2, xR, V and grad are used
to represent the partial derivative with respect to £2 and £,, respectively. Also d/dt and
d/at denote the total and partial derivative with respect to ¢, respectively. The divergence
operator related to grad is denoted by div.

The solid-fluid aggregate will be considered a mixture with S, representing the solid
and S, representing the fluid. At any instant of time ¢, it is assumed that each place in. the
space is occupied by particles belonging to both §; and S,. Let X and Y denote the ref-
erence positions of typical particles of §; and S,. The motion of the solid and the fluid
is represented by

2.1) x=X,X,r) and y=x,(Y,1).

These motions are assumed to be one-to-one, continuous and invertible. The various
kinematical quantities associated with the solid 5, and the fluid S, are
velocity:

_dx, _dx,
(2.2) u= —dr ) V= ar’
acceleration:
d?x, d*x,
(2.3) r = dtz 3 g — dtz 5
velocity gradient:
du av
L= M=%
rate of deformation tensor:
1 1
(2.4) = 7(L+L"), N = 7(M+M").
The deformation gradient F associated with the solid is given by
ax,
(2.5) F = =%
The total density of the mixture ¢ and the mean velocity of the mixture w are defined by
(2.6) e = 01102,
2.7 oW = @, u+0,V,

where p, and g, are the densities of S; and S, in the mixed state, repectively, defined per
unit volume of the mixture at time ¢.

The basic equations of the Theory of Interacting Continua are presented next.
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2.1. Conservation of mass

Assuming no interconversion of mass between the two interacting continua, the appro-
propriate forms for the conservation of mass for the solid and the fluid are

(2.8) e1ldetF|| = ¢4,
and
29 %: 1 divieam) = 0,

where g,, is the mass density of the solid in the reference state.

2.2. Conservation of linear momentum

Let o and = denote the partial stress tensors associated with the solid S, and the fluid S,,
respectively. Then, assuming that there are no external body forces, the balance of linear
momentum for the solid and fluid are given by

(2.10) dive—b = g;f,
(2.11) dive+b = g,g.

In equations (2.10) and (2.11), b denotes the interaction body force vector, which accounts
for the mechanical interaction between the solid and the fluid.

2.3. Conservation of angular momentum

This condition states that
(2.12) 6+7n = 6T +mxT.

However, the partial stresses @ and 7 need not be symmetric.

2.4. Surface conditions

t Let t and p denote the surface traction vectors taken by S, and S,, respectively, and
let n denote the unit outer normal vector at a point on the surface of the mixture region.
Then the partial surface tractions are related to the partial stress tensors by

(2.13) t=¢™m, and p=n"n.

2.5. Thermodynamical considerations

The laws of conservation of energy and the entropy production inequality are not
explicitly mentioned here for brevity. However, the relevant results are quoted. A com-
plete discussion of these issues is presented in [8).

Let the Helmholtz free energy per unit mass of S; and S, be denoted by 4, and 4.,
respectively. The Helmholtz free energy per unit mass of the mixture is defined by

(2.19) 04 = g1 4, +024,.
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Note that by setting

(2.15) b = gradg, +b = —gradg,+b,

(2.16) ¢ =¢,1+0,

(2.17) n=¢, I+,

where

(2.18) ¢ = 01(4,—A), ¢2=0:(4:—4), ¢,+¢,=0,
Equations (2.10)-(2.12) become

(.19 dive—b = o,f,

(2.20) divit+b = g,f,

(2.21) G+% = aT+r".

The terms in o, 7€ and b which depend on ¢, and ¢, do not contribute to the equations
of motion or the total stress. This was first pointed out by GrReen and NAGHDI [8].

2.6. Volume additivity constraint

Attention is restricted to a mixture of incompressible materials. It is assumed that the
volume of the mixture is the sum of the volumes occupied by the solid and fluid constitu-
ents in their reference states. This implies that the motion of the ineracting continua is such
that it meets the following volume additivity constraint (cf. [9]),

(2.22) LATICTE < SO

210 Q20

where p,, is the mass density of the fluid in the reference state.

3. Constitutive equations

A mixture of an elastic solid and a fluid is considered. The solid is assumed to be
nonlinearly elastic, and the fluid is assumed to be ideal. Thus all the constitutive functions
are required to depend on the following variables:

F,VF, 0,, grad g,, T, grad T, u and v,.

where T denotes the common absolute temperature of the solid and the fluid.

A lengthy but standard argument, based on the balance of energy, entropy production
inequality, restrictions due to material frame indifference and the assumption that the
solid is isotropic in its reference state, leads to the following results (cf [2]).

The constitutive equations are written in terms of the Helmholtz free energy function 4
per unit mass of the mixture, and the form of this function is given by

3.1 A=Al L. L, 0., T),
where 1,, I, I, are the principal invariants of B = FFT defined through
3.2) I, = irB,
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3.3) I, = %[(trB)z—trBz],
3.9 I; = detB = (detF)2.
Using Egs. (2.8), (2.22) and (3.4), I, can be expressed in terms of p, by the relation
(3.5) I3? = detF = (1—p2/020)".

Furthermore, on restricting attention to isothermal conditions, Eq. (3.1) reduces to
(3.6) A=A, 1,,0,).

The components of the partial stresses in the solid and fluid, and the interaction body
force for isothermal conditions are given by

B Ty= =P 91‘ 6k¢+2n:(g£ gA II)B“ 32 Bk,,,Bm,},
(3.8) Ty = —Pé% 841 — 002 %m,,
Y WY N
3}4 B,,}B,, e -Qﬁl‘o-a (t—0y).

In Eqgs. (3.7)-(3.9), P is a scalar which arises due to the volume additivity constraint.
The constitutive parameter « accounts for a contribution to the interaction body force
due to relative motion between the solid and the fluid. The interaction between the solid
and the fluid is evident in these equations, where the partial stress of each constituent
is affected by the deformed state of both the constituents. It is also useful to record the
representation for the total stress

o 04 d4 04 0A
B.10) Ty = o+, = "Pdkl"‘QQZ 6ki+2 {( al, 81 I1)Bu 81 BkmBm!}

In the remainder of this paper, only o, and & and b, will be used. Hence, for notational
convenience, the superposed bars are dropped.

The results in the subsequent section are derived by assuming [2-5, 10] that the func-
tional form for the Helmholtz free energy function A for the mixture is given by

(3.11) A = A1)+ A(ey).

Furthermore, the mixture is assumed to be of a “neo-Hookean-type”, that is, A is a linear
function of I,. :

4. Non-uniform uniaxial extension

Consider a mixture slab of a nonlinearly elastic solid and an ideal fluid. The slab is
assumed to have finite thickness, and the other two dimensions of the slab are assumed
to be infinite. Let (X, Y, Z) denote the coordinates of a particle in the reference configura-
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tion and (x, y, z), the coordinates of the same particle in the deformed configuration.
Consider the deformation

“4.1) x=f2)X, y=f2)Y, z=A.2).
The deformation gradient F is given by

foxr
4.2) F=|0 f Y[

00X

The prime denotes differentiation with respect to Z. The Cauchy-Green tensor B = FFT
can now be represented as
f2 +X2f12 X*yfrz Xf’ﬂ.'
4.3) B= XYf'?  frP4Y% 2 YA
Xf!),l Yfrlt 1!

The equilibrium equations are expressed in terms of the reference configuration for com-
putational convenience. Assuming no external body forces, the equations of equilibrium
for the mixture take the form

aTu 1
4.9 X, F,t =0.
The tensor F~! that appears in these equations has the form
Ly X
f S2
1 Yf’
4.5 F'l=] 0 5 — 2~
1
i 0 0 7 |

The equilibrium equations for the mixture reduce to

(4.6) z; +44,0Xf"2+24, X =~ f a (f/i’) =0,
) d ,
4.7 37 +44,0Yf'2+24, Y o (f;l)
and
f P f -
(4.8) -z +44,0f'1'+24, = ¥a BZ (0A"?)

Fl.ep _oP| f @ a4
7 [X?Y” ridinvg 32(29 o Ral
In Egs. (4.6)-(4.8),

o4

Al =—ar-
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Let
"’ f r
2
Then, Eqs. (4.6)-(4.8) may be written as
apP
(4.10) - 5y tX8@) =0,
(4.11) i +Yg(Z) =

’ ) 4

and
dP 44 of A 2 & 5 o Feea a ( 04 )

: —_ = —_— Y - —| =0.
(412) =+ =L 24, AN+ V1D - g (a0 5] = O
The scalar P is eliminated by the standard procedure of cross-differentiation to obtain
(4.13) gZy=2 j} g(2).

The equilibrium equations for the solid take the form

30'” :
4.19) X, F;i'—b, = 0.
The equilibrium equations for the solid reduce to
opP 910 12 910 f @ )
(4.15) -7 +24, —= Xf 2o+02)+24, — X Tz (of'2)
oP
(4.16) - Sy F2, 2 9“’ Y[ Q0+02) +24, C;“’ ! ‘9 7 ef') =
1
and
P f oP aP
4-17 - Ql ’ I u] el
(4.17) [ A +24; = YA (gl)] +4pA, A + o ¥ [X +YaY]
04 "3
—oge B —aaig I e v, By
+2(X2+ YD +242"1=0
Let
8
4.18 hz =24 @10 122 P10 f I
(4.18) 2) s —f"?(2e+02)+24, — o A az(fﬂ*

Then, Eqgs. (4.15)-(4.17) may be written as
opP

(4.19) - 3 +XH(Z) = 0,
opP
(4.20) - 5y +Th(2) =0,

8 Arch. Mech. Stos. nr 2—3/88
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and

@ [ 2 on Doen)| L rseas i & e rn)

'3
~e g S 2t Lo a2l gy

+2(X?+Y?) f’f”+2}.’}.”] =0

Again, the scalar P is eliminated using the procedure of cross-differentiation to obtain

(4.22) n(Z) =2 ? h(Z)+h(Z),
where
(4.23) h(Z) = 44,0, 9‘° [f” ’2]

A simple integration of Eq. (4.13) yields
4.24) g(2) = Cifa,

where C, is a constant.
By virtue of (4.9), Eq. (4.24) may be written as

fl" t 2fr2 le_
_f+ f m_

Similarly, Eqs. (4.18), (4.22), and (4.23) may be combined to yield

(4.25) | A

2 2 Cl LE
(4.26) o:f [sz rn e Wre ] = 0.

Exact solutions to Egs. (4.25) and (4.26) are presented next.
First, consider the case when the density of the solid remains constant. That is

4.27) O _ comst.
@10
Using Eqs. (4.27) and (2.22), Eq. (4.26) is identically satisfied. By virtue of Eq. (2.8)

(4.28) L T

which reduces Eq. (4.25) to

3 2!!2 AIC
4.29 " 1 =
(4.29) N el 204,

In Eq. (4.29), A4, is a constant when the Helmholtz free energy function A for the mixture
is linear in /; (a “neo-Hookean-type” mixture). Then,

132
(4.30) P _3_ ’}, Yy



EXACT SOLUTIONS FOR THE UNIAXIAL EXTENSION OF A MIXTURE SLAB 283

where

_~—G
- 2QA1 ’

When C > 0, it can be shown that

1
; c c. )
A,sin 5 Z+ B, cos 5 VA

Consider a mixture layer of thickness H, fixed at the bottom, whose deformed thickness
s h. The appropriate boundary conditions are

(4.31) A(Z) = = n(4,, B, C, Z).

(4.32) 2(0) = 0,
4.33) z(H) = h.
Then,

zZ
(4.34) 2Z) = X2) = [ (4., B,, C, Z)dZ.

0
When C < 0,

1
4.35 A(Z) = - e — 5
. @ A ¢ 7.8 ¢z y
¥V 2 S
where C' = —C, and C’" > 0.
When C = 0,

(4.36) A'(Z) = const,

is a solution to Eq. (4.30), which corresponds to the classical solution.

Now, consider the general case where the density of the solid is a function of the space
coordinates. For this case the equilibrium equations for the mixture (4.25) and the solid
(4.26) reduce to

(4.37) fzf’}_”+(f2f"+2fff2_cf3)lr+(9109:0920 )f” =0,
and
(4.38) K2 =0,
respectively, where K = -22122 % Equation (4.38) can be solved independently of Eq.
(4.37) to obtain f(Z).
When K < 0, let K = —a?, a > 0. Equation (4.38) has solutions given by
(4.39) 5= e,
(4.40) fo = Pae™ ™.

When K > 0, Eq. (4.38) has imaginary solutions, which are not physically meaningful.

8+
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When K = 0, Eq. (4.38) admits the classical solution,
(4.41) f(Z) = const.

Equation (4.37) can be used to obtain the transverse stretch ratio A(Z) corresponding
to f1(Z) and f>(Z) given by Eq. (4.39) and (4.40). Substituting Eq. (4.39) in Eq. (4.37)
gives

(4.42) A +4al —ye” %% = 0,
where
_ 010=00 &
e Q20 ﬁ% ’

which admits a one-parameter family of solutions
(4.43) HZy ?yfz‘ 224 [, e 4T,

Substituting Eq. (4.40) in Eqgs. (4.37) gives
A —4al —y,e* = 0,
where

ary Q10— 020 4@
? Q20 132 ’

which admits a one parameter family of solutions
(4.44) M2) = — et e,
Corresponding to the classical solution for f(Z) given by (4.41), Eq. (4.37) admits the

classical solution given by (4.36). Figure 1 shows the variation in the deformation along
the thickness of the layer with respect to the reference coordinate Z for various values

2007
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FiG. 1. Variation of deformation along the thickness ot the layer.
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FiG. 2. Variation of stretch ratio f(€) as a function of reference coordinate Z.

of the parameter . The appropriate boundary conditions used in obtaining the results
presented in Fig. 1 by using equation (4.43) are:

z(1) =2 and z(0) = 0.

Figure 2 shows the corresponding variation in lateral stretch ratio f(Z) with respect to the
reference coordinate Z for various values of the parameter a.

5. Conclusion

In this work, the possibility of an axial variation of the stretch ratio for the problem
of uniaxial extension of a mixture of a nonlinearly elastic solid and an ideal fluid has been
demonstrated. In addition to the classical solution, a one-parameter family of solutions
has also been presented.
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