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Existence and uniqueness of solutions of some mixed problems
for ideal incompressible magnetohydrodynamics
Part 1. The case of impermeable boundary

W. M. ZAJACZKOWSKI (WARSZAWA)

EquaTioNs of magnetohydrodynamics which describe the motion of an ideal incompressible
fluid with infinite conductivity in a bounded domain are considered. Vanishing of normal com-
ponents of velocity and magnetic induction on the boundary are assumed as boundary condi-
tions. Existence and uniqueness of classical solutions (local in time) are proved.

Rozpatrzono réwnania magnetohydrodynamiki opisujace ruch idealnej niesci§liwej cieczy z nie-
skoficzona przewodnosécia w obszarze ograniczonym. Jako warunki brzegowe przyjmujemy
znikanie skladowych normalnych predkosci i indukcji magnetycznej na brzegu. Pokazano
istnienie i jednoznaczno$¢ klasycznych rozwigzan lokalnych w czasie.

PaccMOTpeHbl YpPaBHEHMsI MArHETOTHAPOAVHAMUKH, OIHCHIBAIOLIME IBIDKEHHE HACAJIBHON
HEC)KHMAEMOH MKHIKOCTH C OECKOHEUHOH 3JIEKTPOIIPOBOLHOCTHIO B OrPaHHYEHHONH 06/1acTH.
Kak rpaHiuyHble yCJIOBHsS NPUHHEMAEM MCYE3HOBEHHE HOPMAJIbHBIX COCTaBJISAIONIMX CKOPOCTH
M MArHMTHOM MHIYKIMM Ha rpanuue. [TokasaHo CyIECTBOBaHME M €JHHCTBEHHOCTH KJac-
CHYECKHX, JIOKAJIBHBIX BO BPEMEHH peIlIeHMii.

1. Introduction

In THIS PAPER the following systems of equations

(1.1) v,+v-V'v+Vg+#erotB=f in 2x]0, T[ = Q7,
0

(1.2) B,+v-VB—B-Vo =0 in 2T,

(1.3) dive =0, divB=0 in QT,

(1.4 Vo = Vo, Blieo =B, in 2,

(1.5) Uuls =0, Bys=0 on $x]0, T[= ST

is considered in a bounded domain 2 <= R? with a boundary S. Herev, =v-n, B, = B-n
and 7 = n(x) is the unit outward vector normal to the boundary. The Egs. (1.1)-(1.3)
describe a motion of ideal incompressible infinitely conductive fluid in a magnetic field
where v = v(x, t) is the velocity, p = p(x, t) the pressure, g, the constant density,
B = B(x, t) the magnetic inducton, f = f(, ) the external force field.

From Egs. (1.3)-(1.5) the following compatibility conditions are found

(1-6) diVi)o = 0, divBo = 0 in Q,
(1.7) vo'i=0, By-i=0 onS§.
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It is shown in [4] that the problem (1.1)-(1.5) is well-posed. Hence, in order to prove
the existence of solutions of the problem, there are introduced new quantities (see [4])

B2
(18) w = 5 o =v+w, ﬁ:‘z}—-a), q=p+ .
V 4mo, 870,
so that from the initial conditions (1.4) we define
B
(1.9) Wy = ——=—=, Op =¥o+wy, fo="To—wy.
1/41190

Using the quantities (1.8) we replace the problem (1.1)-(1.5) by an equivalent system of
problems (see [4])

a+f Vo =f-Vqg in 807,
(4) a0 = Go in @,

B,=0 on ST,
where 8 and g are considered to be known functions,

Bi+a-VB =f—Vqg in QT,
(B) Blio = Bo in Q,

o, =0 on S7;
Here « and ¢q are treated as given quantities; finally,

0
(E) ’1 = n+nl.xjatﬁj on SX(I},

dn
[a=0
2

where a, f§ are prescribed.

The aim of this paper is to prove the existence and uniqueness of solutions to the
problem (1.1)-(1.5), which is replaced by the equivalent problem (4, B, E). The existence
of classical local solutions is proved (see Theorem 1). Uniqueness is stated in Theorem 2.
This paper is based mostly on [2].

2. Notations

We assume
Hu”W,E(n) = |lully, p» Hu”Lp(o,T,w.!m)) = |lully, r,p,07> leN,
r,peR, 1<r,p<g 0.
For non-integer / we set
llullwhesy = llulli,p,s-

Finally, the summation convention over repeated indices is assumed.
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3. Existence of solutions

To prove the existence of solutions of the problem (1.1)-(1.5) we shall use the follow-
ing method of successive approximations (see [2])

m+'1 m m-l’-l m .
— o +p-Va =jf-Vg in 07,

A ma+1

o lioo = in 2,

m m
where ¢ and f are given and

3.D Bols =0 on ST,
m+1 m m+1 m .
i pi +a-V B =f-Vqg in Q7,
( B m+1

48 lt=o = Po in 2,

m m
where g and « are given and

m

(3.2) Ols =0 on ST.

m m m
Finally, for given « and g, total pressure ¢ is determined for the Neumann problem

Aq = divf—V,a,V,f, in Qx {t}, 1€]0, TL,

m

m aq m m
(E Gp =Jatn,uf, on Sx {1},
f qg=0.
Q
0 0
In the above formulations we assume m = 0, 1, ..., and & = a4, f = f, are such that
(33) g * ﬁls = 0, ﬂo'ﬁls = 0, divao = 0, dlvﬁo = O.
m
Now let us explain why the quantities y’ (where from now on « and § will be replaced
m m m+  m+l
by y) are introduced and find the relations between y’ and p. The functions « f

M-H) m+1

m+1
determined by the problems ,\ B ), respectively, are such that, in general, div 9" # 0

m+1 m

and y,|s = 0. But the problem (E) will have solution if the compatibility condition
for the Neumann problem is satisfied what can be fulfilled if

m m
(3.49) divy=0 inQ", 9,=0 onST, m=12,..
Therefore, in order to satisfy (3.4) we introduce the projections

m+1m+1 m+1 m+1

(3.5) m, ¥y =9y Ve

7*
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such that
m+1 m+
A, =divy in QF,
am+l -
s (P‘)" oo " - T
(3.6) n = Y n on §7,
m+1
Py = 0,
o

and then we assume
m+1 m4+1lm+1

3.7 y =mn, ¥
Now let us determine the existence of the presented sequence and the necessary a priori
estimates to prove the existence of solutions of the problem (A4, B, E). Assume that o,
ﬁme C® ([0,T]; WX&D), r >3, a, foe W7 () and satisfy Eq. (3.4). Moreover,
Vq:fELl(O’ T: Wrz(g))'
m+1 m+1
Then the existence of solution to problems ( A ), ( B ) is proved by means of the

m+1
method of characteristics Moreover, by applying DZ to ( ) (lo] < 2), by multiplying

m+l m+
it by D% o' |DS o |" , integrating over {2 and repeating the same procedure also for
m+1
( B ) 1> one obtains
(3.8 H « ”z r < Cllﬁllz rH « Hz ,+C(ilfllz.'+HV¢lz r)” " ”2 v
d m:l m m+1 m mil
(3.9) g B 112 < ellallz, I B 113, 0+ (UL f1l2,r +11Vgll2, DI A7 1127

(here and in the sequel each constant depends at most on r and ).
Integrating the equations (3.8) and (3.9) with respect to time one obtains

1 Ol < Dlatolla, et [ (1112, + Vg2, D Txp(ct L. v, .00
(3.10) °
m+1 m m
1B @lla.r < Bolla,ste f U1 N2, e+ 11V4l12, Dt Texp(ct[allz, . o.0)s

m+l m=1

so «', p’' €L, (0, T, WA2). Now let us prove that " , mﬁ € C"([O T] WA (Q)).
Applying once more DI to A )1(|Ul < 2), multiplying by D: cz ID;‘ rx' l'"z, inte-

grating the result over £ and, next, with respect to time from ¢’ to ¢ (a.nd repeating the

m+1 4
same procedure for ( B ), one obtains
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G 17 O5.~Ia @5, = 5 [ DI~V o

Jal<2¢’

m m+1 m+1
+f—VqlD: o' |Dg o' |"~2dxdt, t>1t,

and

G12 WF O @, = Y [Dd—a-VE

<2 ¢’

m+

m 1 m+1
+f—Vq)-D; p' |Dg B’ ""*dxdt, t>1t'.
From (3.11) and (3.12), using Eqgs. (3.1), (3.2), estimates (3.10) and the fact that f,
Vg € L,(0, T; WA(Q)) it follows that

w1 m+’1 r ’
G13) [l O, —Il o @), < [l!—t H1Bll2,r, w0, 07

mﬁl 4 m m+1
N zars gt + [ U1z, + Vgl )t | 1o 152 40,
¥
and

m+1 m+1 m
@G14) (1B O~ 8 @5, ] < [lt=21 el r, o, 07

m+1 £ m m+1
N Nzerwor+ [ U llzsr+ Vgl )] 1B 11572 o ar-

So, by the theorem on the absolute continuity of the integral (see for instance [1], p. 63)

we have proved the theorem.
m+1 m+1 .
Due to the properties of o' , B’ shown above we conclude that solutions of the

problem (3.6) belong to C°([0, 7]; W/ (£2)) (the existence easily follows because the ne-

cessary compatibility condition for the Neumann problem is trivially satisfied); hence
m+1l m+1

«, B also belong to C°([0, T; W}(£2)), and

m+1 m+1
(3.15) v llz,rweor < el ¥ lz2,rwa0r:

m m
Similarly, from the problem (E) for S € C* follows the existence of g € L, (0, T; W3(Q))
such that

m m m

(3.16) l1glls,r, 1,07 < cllifllz,r,1,097 +2l&ll2,r, 0,07 B2, r, 0, 07]-
Introducing the quantity

m m m
(3.17 ¥(@) = llall2,r, 0,00 FIBll2, r, 0, 00
and

Yo = llaollz, »+11Boll2,»
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from Egs. (3.10), (3.15), (3.16) one gets

(3.18) "0 < yote| SISO, ndt + 12 (0)] 77
0

Let ¢ > 1 and let y(¢) < gyo. Then there exists time 7,(p) such that the following ine-
quality

z
(3.19) yore| [ 1112, rdt’ + 1023 | 0% < oy,
0

is valid for ¢ < t,(p). Hence we have obtained the estimate

(3.20) W) < oyo, for m=0,1,..., and < 6.

Therefore we have proved

LeEMMA 1

Let SeC* oy, Boe W), feL,(0, t; W}(2)), r > 3. Let ¢ > 1. Then for
t < t,(p), where t,(o) is a solution of the equality in (3.19), the estimate (3.20) is valid,

»(t) being determined by (3.17).

REMARK 1
m+1 m+1

To obtain the estimates (3.8), (3.9), (3.13), (3.14), the third derivatives of o , f’
are required to belong to suitable spaces; this, however, is not so important because they
do not enter the final estimates (here density-type arguments must be used).

m m m m

To prove the convergence of the sequences {y, y', ¢, ¢, }, the following problems must
be considered:

m+ 1 m+l m m+l m m m
(") A, +B-VA +B-Va' = —VQ,
m+1
A o0 =0,
m+1
ﬁn |S =0,
where
m m m-—1 m m m=1 m m m=1
A =d—-a, A=a—a, B=p-p,
m m m-1 0 0
Q=q-q, A=ua, B=/fo,
m+1 m m+1 m m m
B +a-VB +4-Vf' = —-VQ,
m+1 m+1
(b) B ll‘=0=0!
m
an]S=Oa
where
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m-—

m m m 1 m
40 = —(Vi4;V,+V, o; V,B),

m aé mm m—-1m
(e) ‘%—L = ny,x (4 B+ a; B),
Jo-o,
2
m+1 m+1
A @,, =divI"’,
4D, | t
m+
(3.2 an” iS = I" -n|s,
m+1
["® =o,
o
where

Finally, we have the relations

(3.22) =1 -vo,,
wEre
nt m  m=1
I'=sy— y.

m+1 m+1
From the problems ( a ) and ( b ) it follows that
d m+1 m+,1 m m m+ | m+,l
G23) AL+ B, < elllalla, +11Bl2,0) - (1AM, 411 B []3,0)
m m m+1 m
+ellellz,l|Blly, I A" 1137 +llB1l2,r

m m+1 m m+ll 7 m+'l "
Al Al B 57 +llQllz, (1 A" 157 + 11 B [157).
Introducing the new quantity |

(3.24) F(t) = 14, re gt H 1B Nl

m m m
and Y(¢) for A and B, after integration of Eq. (3.23) with respect to time, we obtain
m+1 ~[., £ m
(3.25) Y () < e"[ctY(t)+cf HQ(t’)Iiz_,dt’], m=0,1, ...,
0

where ¢ = coy,, use being made of the equality

m+1 m+1
A4 Ny, »+11 B |l1,)le=0 = 0.
m+1
The problem( e ) implies

m m
(3.26) NQll2,r, 1,0t < C2Y(2)
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and from (3.21) and (3.22) we have

m+1 m+1

(3.27 Y (1) < cY (1).
Using (3.26) and (3.27) in (3.25) we get

m+1 -~
(3.28) Y (t) < cteY(t), m=0,1,...

0
Knowing that ¥ = |[|a||4,,+ ||foll1,r = Yo, from the inequality (3.28) and sufficiently small

t<t, (¢, Y,), it follows that the sequence {y,9’,q, ¢,} converges to a solution of the
problems (4’, B, E) and (3.6) for the limit function y, y’, g, ¢, and 9’ = n,y (where

(4", (B) denote problems (4°), (B) for the limit functions).

It remains to show that for the limit functions we have ¥ = ', so that div ' =0,
y'-nls = 0. Then ¢, = 0 and y, g are solutions of the problem (4, B, E). To show it
let us use [2]. Taking the divergence of (4’) and (B’) and using (E), (3.5), (3.7) one ob-
tains
(diva),+ 8- Vdiva'+V,8,V,V,¢, =0 in QT
divg),+a-Vdivg' +V,,V;V,9; =0 in Q7.

Projecting the normal components of (4") and (B’) on S and using (E), (3.5), (3.7) one
obtains

(3.29)

tp+p-Vo,=p4-VnV,g, on ST,
ﬂ,’,,,+tx'Vﬂ; = a'Vn;V,(pﬁ on ST.
Using the problem (3.6), we obtain from (3.29)

(3.30)

d .. —_ ;
ar [ldive'|lo,2 < ¢l[VBllo, oll@ullz, 2 < €lIVBIlo, o - (1divy’[lo, 2+ lanll1/2,2,5)
(3.31)

¢ 191V llo, 2 < ellVallo,ol1@pll2.2 < cliVallo, - (1divBllo, 2+ 1Bull12,2,5)-

To obtain the estimates for «,, f, on S, we introduce the following curves on S

%y(x,t;S)=a(y(x,t;s),s) on ST, y(x,t;t)=x on S,
(3.32)

Ez(x, t;5) = B(z(x,1;5),5) on ST, z(x,t;)=x on S.

Therefore Eq. (3.30) can be written in the form

% a;(z(x, t;s), s) = Bi(z(x, 1;5), s)V,‘nJ(z(x, t; s))V,Jcpa(z(x, t;s), s),
(3.33)

-gg—ﬁ:,(y(x, t;5),5) = ay(¥(x, t;5), $)V,,n(y(x, t; s))V,J(pﬂ(y(x, t; 5), 5).

Setting &'(x, ;1) = o'(z(x, 7; 1), 1), B'(x,7;t) = f'(y(x, 7;:1),t) and proceeding
similarly with respect to other functions from (3.33), one gets
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d
Ha [ly2,2,5 < < c|lfllz, r”'Pa”ﬂ/z 2,5

(3.39)
r 1Ballyy2.2,5 < cllallz, |@Ppll3)2, 2,5 -
Using the inequalities
CexP(_Cf”aHz,r,m.a')”ﬁ.’.“uz.z.s ]ﬁ;“uz 2,5 < cexp(ct||allz, r,0.0) Hﬁp’.”uz,z,s;

CCXP(_“|jﬂ£|2.r.m.ﬂ')“a:xf]uz,z,s ol 1/2,2,5 < CexP(Ct”ﬁHz.r,w,n')”&;nl/z,z,s

and similar inequalities for ¢, and g5 one obtains from Egs. (3.34), (3.6)

(3.35)

<
<

d
at N1@all1/2,2,5 S coloyo) ([ldive|lo, 24 [|&l1/2,2,5)
(3.36)

”.3 l1/2,2,5 € col@¥o) (Itdivg’|o, 2+”)8u“1[2 2,5)-

Here condition (3.20) has been used and ¢, denotes a certain function. Using (3.35) at
the right-hand side of (3.31) and knowing that diva'|,_o = divf'|i0 = dlsli=0 =
= Pulsle=o = 0, we see that equations (3.31) and (3.36) imply dive’ =divp’' =0,
ayls = Prls = 0. Therefore it follows that ¢, = ¢ = 0, so that a’ = o, ' = f.

Hence we have proved

THEOREM 1. Let S € C*, oy, fo € W (), divag = divfy =0, g nls = o nls =0,
r > 3. Then there exists such T = min {t,(g), t;(c, Yo)}, sufficiently small (see (3.19),
(3.28)) that for t€l0, T[ and fe L,(0;¢; W} (Q)) we have a, feC° ([0;t; W7 (D))
nWi(0, t; W,’(.Q)), qeL,(0,1; W,?(.Q)), which are solutions of the problem (A, B, E)
in £,

If fe C°([0,t]; W2 (), then «, peC°([0,1]; W,E‘(.Q))nCi([O,t]; Wi (Q)) and
ge C°( [0, t]; WP(8D), hence a, B, q are classical solutions of (A, B, E).

From Eq. (1.8) we find the classes to which belong v, B and p.

Finally, let us prove the uniqueness. Let (o, fi, i), i = 1, 2, be two solutions of the
problem (4,B,E). Let A=a,—a,,B=f,—0,,0 = q,—q,. Then from problems
(A4), (B), (E) we get

(3.37) A“+‘ﬁl VA+B- Vaz = —VQ, A|I=0 = O’ Anls = 0’
(3.38) Bi+a,-VB+A -V, = —VQ, Blo=0, Bs=0,
AQ — —-VAVﬁl—VOI2VB = —dng,
d -
(3.39) af n; x_,(A Bij+oxyB) = —g-n,
Je=o,
Q

where g = A- VB, —B- Va,. Multiplying (3.39), by Q, integrating over £ and using
(3.39), one gets

(3.40) [IVQllo,2 < llgllo,2 < SuP(lVazHlVﬂll) (I14llo,2+1|Bllo,2)-



274 5 W. M. ZAJACZKOWSKI

Multiplying (3.37) by 4 and (3.38) by B, adding these results, integrating over £ and
assuming

(3.41) z2(t) = [|ADII5,2 +IBO)II3, 2,
one gets
2 P
(3.42) i 22 g 2 Esgp(wa,]+|Vﬁ,|)22+4|lVQ| 0,22.

Using (3.40) in (3.42) and integrating the result with respect to time one obtains

: 2
3.43 2(4) € z2(0 ! Va, Dt
(3.43) z2(t) € z%( )expcbf 2 Sl})p(! o]+ VB de

i=1

Hence we have proved

THEOREM 2. Let o, f € Ly(0, T; W.(2)), g€ L,(0, T; W}()), Vr > 1 be solutions
to the problem (A, B, E). Then the solutions to the problem (A, B, E) are unigue in the
class L,(0, T; Ly(2)) x L, (0, T; L,(8)) x L ,(0, T; W3 (£2)), respectively.
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