
Arch. Mech., 40, 1, pp. 119-134, Warszawa 1988 

Homogenization of fissured Reissner-like plates 
Part II. Convergence 

J. J. TELEGA and T. LEWINSKI (WARSZAWA) 

THE PURPOSE of the second part of the paper is to prove the results obtained in the first part 
by using the method of two-scale asymptotic expansions. The convergence is proved by means 
of an appropriate gener~lization of the results due to ArroucH and MURAT [1]. 

W drugiej cz~sci pracy zostaly udowodnione rezultaty, kt6re w cz~sci pierwszej wyprowadzono, 
stosuj(lc metod~ rozwini~ asymptotycznycb. W celu wykazania zbiemosci odpowiednio roz.. 
szerzono podejscie ArroucHA i MURATA [1]. 

l.lem.ro BTopoH 'llaCTH pa6oTbi HBJUieTCR: AOKa3aTeJILCTBO pe3ym.TaTOB, nonyqeHHbiX aCHMIJTo­
TH'lleCKHM MeTOAOM B nepBOH llaCTH. CxoAHMOCTD AOKa3aHa nyreM COOTBeTCTBeHIIOrO paCIIIH­
peHHH noAXoAa A-ryma H Mropa [1]. 

1. Introduction 

IN THE FIRST part of the paper [7] we have formulated and solved the problem of the homo­
genization of elastic Reissner-like plates damaged by periodically distributed fissures. 
Our attention has been focussed on unilateral fissures. The homogenization problem is 
non-trivial since it means the homogenization of a variational inequality posed on a domain 
dependent explicitly on a small and variable parameter s > 0. 

The m ~thod of two-scale asymptotic expansions has been used to derive the equations 
of effective or homogenized plates. Unfortunately, such an approach, though effective 
as a method of averaging, is formal and requires rigorous mathematical justification. 
Exactly such a justification has been proposed in the present part of the paper. Toward 
this end we follow an ingenious approach proposed by ArroucH and MURAT [I] in a 
purely scalar case. Our problem is more complicated due to the presence of one scalar 
and two vector kinematical fields. The study of convergence is restricted to the passage 
to a limit in an appropriate variational inequality. The method of T-convergence, or 
rather epi-convergence [1], is left apart as more complicated and leading to the same 
results. 

Roman numerals refer to the relevant sections, equations and references of the first 
part of the paper. The same notations as in Part I will be used here. 
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120 J. J. TELEGA AND T. LEWINSKI 

2. The study of convergence 

In our case we must pass to the limit with {we}e .... o and {ve, cpe}e .... o• see Section 1.3. 
The results obtained by ATTOUCH and MURAT [1] enable us to pass to the limit with the 
scalar sequence {we}e .... o· The results of these authors are not directly applicable to the 
vector case. The latter case has been solved in the present section. 

2.1. Preliminaries 

In the case under study the cracked domain !Je depends explicitly on e. Thus it varies 
as e --+ 0. To pass to a limit as e --+ 0 we shall construct a sequence {Qi w, Qi v.6 , Qi cps }e .... o 
such that Qi we E H6(Q), Q 2 ve E [H~(Q)]2 and Q; cpe E [HJ(Q)]2 . The linear and continuous 
operator Qi has been constructed in [1]. Its main property has been formulated by Attouch 
and Murat as Proposition 4.2. Here we reformulate it as 

LEMMA 2.1. For any sequence {we}e-+o satisfying supjjw6 jl 1 , s.le < oo there exists 
B>O 

a sequence {Qi W6 }e-+O bounded in HJ(Q) and such that 

• 
Let us note that the operator Qi is obtained from the operator Q 1 similarly as the 

operator Q~ from Q2 , see Remark 2.1. below. 

2.2. Extension operators 02 and Q~ 

An essential idea of Attouch and Murat [I] consists in working with a hole FTJ instead 
of the fissure F, see Fig. L 

FIG. 1. Subdomain FTJ, F = F c FTJ . 

The parameter 'YJ > 0 is kept fixed, 'YJ = 'YJo and F c FTJ. Moreover it is assumed that 
the boundary of F'~ is sufficiently smooth. 

We shall first construct the extension operator Q 2 • 
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HOMOGENIZATION OF FISSURED REISSNER-LIKE PLATES. PART II 

LEMMA 2.2. There exists an extension operator 
P2: [H1(Y"'-F11)]

2 -+ [H1(Y)]2 such that 

(a) IIP2v !l o.Y ~ cllvllo,Y" F,p 

(b) J: ll y1Xp(P2 v)llo,Y ~ c}; IIYIXp(v) ll o,Y" F,1 ~ clly(v) llo.YF· 
IX,{J IX,{J 

121 

P r o o f. Such an operator may be constructed as follows. Let Bt denote the space 
of rigid displacements. Then each v E [H1 (Y"-F71)]2 can be decomposed according to 

(2.1) V=V1 +r, 

where r E f?A and v1 j_&t in [L2{~F71)]2. 
To extend v on Y we extend v1 continuously, see [3, 9] . This linear and continuous 

operator is denoted by P 2 • Thus 

(2.2) 

Let us prove (a). We have 

II P2v ll o.Y = II P2v1 +rllo,Y = II P2(v1 +r)llo.Y ~ cll vl + r ll o.Y" F71 = cllv ll o.Y" F11 • 

The first inequality in (b) has been proved by Lene [5, 6]. The second one is 
obvious since Y"""-F11 c YF. 

REMARK 2.1. For the scalar case an extension operator P 1 may be defined as follows 

(2.3) P1 :H1 (Y ,F11)-+ H 1(Y), 

w-+ P1(w) = PUw-(w)Y" F11)+(w)y" Frp 
where 

(2.4) (w)Y "- F11 = IY~F I J w(y)dy. 
71 

Y"'-F11 

P~ is the linear and continuous extension operator, P? : H 1 (Y"-F11) -+ H 1 (Y), see [3, 9) 
and 

IIP?wll t.Y ~ cllwiiLY ".F7p 

IIP?wllo.Y ~ cllwllo.Y" F11 • 

The extension operator Q 1 :H1(YF)-+ H 1(Y) is defined by 

(2.5) 

where R 1 is the restriction operator 

R1 : H 1 (YF) -+ H 1 (Y"'F11). 

The operator Q2 is defined similarly. 
DEFINITION 5.1. The extension operator 

Q2:[H1 (YF)]2 -+ [H1 (Y)]2 

is equal to 

(2.6) 

• 
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122 J. J. TELEGA AND T. LEWINSKi 

The operator Q2 is characterized by 
LEMMA 2.3. The operator Q 2 has the following properties 

(i) Q 2 v = v on Y ,F11 • 

(ii) II02 vllo.r ~ cllvllo.r"-F71 ~ cllvllo.rF = cllvllo.r· 
(iii) lly(Q2 v)llo.r ~ clly(v)llo.r" F71 ~ cl!y(v)llo.rF· 

(iv) II02 v- vllt,rF ~- clly(v)llo.rF· 

P r o o f. The property (i) follows immediately from the definition of Q 2 • 

(ii) II02 vllo.r = IIP2(R2 v)llo.r ~ ci!R2 vllo.r'\.F71 = cllvllo.r '-F71 ~ cllvllo.rF, 

(iii) lly(Q2 v)llo.r = 1!y(P2(R2 v)llo.r ~ clly(R2 v)llo.r"-F71 = cl!y(v)llo.r"-F71 ~ clly(v)llo.rP, 

by using the property (b) of the Lemma 2.2. 
(iv) Korn's inequality implies 

II02 v- vllt,F~ ~ clly(Q2 v- v)llo,F~; (X= 1, 2, 

since Q2 v-v = 0 on a part of the boundary of~ of strictly positive length, see Fig. 2. 

FIG. 2. Extension of F 
Y = Y1vY2vl', Y1nY2 = 0, 

F = F~vF~u<l:nF11), ~ = F11nYcx, tX = 1, 2. 

Hence by using the properties (i) and (iii) we obtain 

IIQ2v-vllt.rF ~ c 2; lly(Q2v-v)llo,F~ ~ c}; (lly(Q2v)llo.rcx+lly(v)llo.rcx) 
ex ex 

~ c(lly(Q2 v)llo.r+ lly(v)llo,YF) ~ CCtiiY(v)llo.rF+clly(v)llo.rF = c(c1 + l)lly(v)llo.rP· 

Thus the lemma is proved. • 
We observe that the property (iv) implies 

(2.7) 

and 

(2.8) IIV(Q2 v- v)llo,rF ~ c!ly(v)llo,rF, 
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HOMOOENIZ-'TION OF FISSURED REISSNER-LIKE PLATES. PART II 123 

where 

Vz = (za,p). 

Having defined and examined the operator Q2 we pass to the extension operator Qi 
acting on functions determined on Qe. From the formula (1.3.1) we know that pe = 

= U Fe.i where Fe.i c Ye.i for every i E /(s) and Yf".i is the sY cell corresponding to i or 
i e /(e) 

Ye,t = sY+~t,e' ~t,e E R2
• 

Next operators Q~· i are constructed, see the ·scheme below. The global operator Q~ is 
derived from Qi· i by the method of stitching the operators Q~·i. The global operator Q1 
is obtained in the following way 

z E [H1 (!Jt)]2 

I restriction 

::.i E [H1 (Y. F. )] 2 = [H1(sYF +t: )]2 
e,i '- e,t "::i ,e l translation and change of scale 

z1 E [H1 (YF)]2 or z1 (y) = Z8'i(ey+~1 • 8) (i not summed !) 

l restriction and extension 

z2 = 02 Zt E [H1 (Y)]2 

l translation and change of scale 

( X-~ )(1) 
Z3 = Q~iz2 E [H1 (Ye.t)J2 or z3(x) = z2 t.e 

I 
' s 

stitching with respect to i E /(s) ... 
Z4 = Q~z 

According to our earlier assumptions the operator Qi may be set equal to the identity 
near the boundary r of Q, see the property (2.9) below. Then 

z E [Hl{.Q8
)]

2 => Qiz E [HJ{.Q)]2 • 

The basic properties of the operator Q~ are given by 
LEMMA 2.4. For each s > 0 the operator Qi: [H1 (.Q8

)]
2 --+ [H 1 (.Q)]2 is linear and 

continuous. Moreover we have 

(2.9) Qiz = z on Q ,f"1, Fi = uf'i,i, 

(2.10) IIQi zl/o,.o ~ cl!zllo,.o, 

(2.11) lly(Qiz)l!o,.o ~ clly(z)llo,.oe, 

(2.12) IIQiz -z:fo,.o ~ cely(z)l/0 ,.ae, 

(2.13) IIV(Qiz-z)llo,.oe ~ clly(z)llo,.ae· 

P r o o f. The scheme preceding the lemma shows that Qi is a composition of linear 
and continuous operators. 
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114 J. J . TELEGA AND T. LEWINSKI 

The properties (2.9), (2.1 0) and (2.11) result immediately from the properties (i), (ii} 
and (iii) specified by the Lemma 2.3. 

To prove (2.12) we first consider the cell Ye ,i. We have 

(2.14) J 1Qi'iz(x)-z(x)l 2dx = J IQ2z(cy+;1,e)-z(cy+;;,e)l2c2dy 
Ye,i Y 

since y = (x-;i,e)/c. Further, the properties (2.7) and (2.14) yield 

J 1Qi'iz(x)-z(x)l 2dx ~ c J jyY(z) (cy+;t,e)l 2c2dy ~ c J lyx(z) (cy+;t,e)l 2e4 dy. 
hi IT IT 

Now we set x = cy + ;i,e. Hence 

J IQ~·iz(x)-z(x)j 2dx ~ cc2 J ly(z(x)) l2dx. 
Ye.i Ye.i"Fe,i 

Adding over all cells Ye ,i we arrive at 

J IQ~z-zl 2dx ~ ce2 J iy(z(x))l 2dx. 
D .ae 

From the last inequality follows the required result or (2.12). 
Finally, since the change of scale equally affects both sides of (2.8), the inequality 

(2.13) results immediately. Thus the proof is complete. 

• By noting that (2.12) and . (2.13) yield 

(2.15) IIQ~z-zllt,D£ ~ (c1 e+c)l!y(z)llo,.ae 

we can formulate 
THEOREM 2.1. (Korn's inequality for !J'} For each z E [Hf(.Qt)] 2 Korn's inequality 

(2.16) 

is satisfied. Here 0 < c < co and e0 is held fixed. 
P r o of. The assumption implies that Q~ z E [HJ(.Q)]2 • Korn's inequality applied to 

Q~z yields 

IIQ~z/lt,.a ~ clly(Qiz)llo.n· 

Hence by using the property (2.11) we obtain 

(2.17) IIQ~zllt,.a ~ cl!y(Q~z)llo,.a ~ c1 1ly(z)llo,.ae· 

The triangle inequality furnishes 

(2.18) 

since the Lebesgue measure of Qe is equal to that of .Q or j!J'j = j.Qj and IIQ~zllt,.ae = 

= IIQiz!lt,.a· 
Substituting (2.15) and (2.17) into (2.18) we get 

llzllt,De ~ (c2 c+cJ)I!y(z)llo,.ae+ctiiY(Z)IIo.~ = (c2 c+C}IIy(z)llo,.ae· 

Hence we infer that for 0 < e < e0 (c0 -fixed) Korn's inequality is satisfied. 

• 
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HOMOGENIZATION OF FISSURED REISSNER-LIKE PLATES. PART II 125 

REMARK 2.2. For the scalar case a similar role is played_ by the Poincare inequality in 
which the parameter c also enters explicitly [1]. For perforated domains the proof of the 
Korn inequality is straightforward (see CoNCA [I.13]). 

• Now we can formulate the vector counterpart of Lemma 2. 1. 

THEOREM 2.2. For any sequence {v6t: .... o satisfying sup jj v6// 1 ,n6 < oo there exists a 
e>O 

sequence {Qi Y' }6 .... 0 bounded in [H1 (.Q)]2 and such that 

11 Qiv6
-V

8 1l o,n ~ 0 as c ~ 0. 

Proof. The assumption gives ll y(Y') II o,n6 < oo . Hence by using the inequality 
(2.12) we deduce 

The theorem is proved. 

• 
2.3. Boundedness 

In the sequel we shall restrict ourselves to the constraint set K~ defined by 

The index Ll is dropped. 
We observe that the remaining cases can be studied by similar techniques and are 

usually simpler. 
For 0 < c < s0 the variational problem &'; is equivalent to, see (1.3.6) 

(2.19) min g <t.(z , u . .j.o: z, u , .j.o)-f.(z , u , .j.o) j(z , u, .j.o) E K,} 

or 

(2.20) 1 6 e . e e 6 e e e 2 cfe(yB, w , cp , v , w , cp) -.fe(v, w, cp) 

~ ~ a;(z, u, ~ ; z , u, ~)- /e(z , u, ~) , (z, u, ~)EKe . 

From the definition of the set considered Ke we deduce that (z , u , ~) = (0 , 0 , 0) E Ke. 
Then (1.2.50) and (2.20) i11 conjunction with the Cauchy-Schwarz inequality result in 

(2.21) J (ct ly(v6
) /

2 + c2 jp(cp6
) /

2 + c3 jgrad W6 +cp6
j
2)dx ~ J (pwe+ PrxV~ +mrx([J~)dx 

ne Q 

( J. )1'2 (I )1'2 (I )1 '2 ( r· )1'2 = p2dx (w6
)

2dx + PrxPrxdX . v~v:dx 
[} u ! J [} 

+ ( f mrxmrxdxf
12 

( f ({J!({J~dx r 2 • 

[} [} 

The Poincare inequality implies 

(2.22) 
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126 " J. J. l'ELEGA AND. T. LEWINSKI 

Note that the constants c2 and CJ in (2.21) can be chosen such that c2 
- c3 > ·o~ 

ce+c1 
where c and c1 are constants entering (2.16). Taking account of (2.16), (2.22) and (1.2.12) 
we arrive at 

where c is a new constant. 
Hence 

Thus 

(2.24) 

Now taking account of (2.24) in (2.21) and (2.22) we obtain 

(2.25) sup(lly(ve)~.aell+llp(cp8)/15,ae+llgradweii5,De) ~ const < oo, 
B>O 

and 

(2.26) sup(llyBIII,Ds+ Jj cp8 lltas+ ll wllf.ae) ~ const < oo, 
8>0 

respectively. 
The estimate (2.25) implies that the sequences {N~p }8 ... 0 , {M~p }8 ... 0 and {Q~ }a ... o are 

bounded in the space L 2 (Q). 
Here 

(2.27) 

(2.28) 

(2.29) 

N~p( yB' cp8
) = AcxfJ.lJt Y..ti yB) + E~AJA e AJl (cps)' 

M~p(ve, cps)= EcxfJJ.IlY.tJ'(ve)+GcxfJ..tl'e.tp(cpe), 

Q~(W6, cp8
) = Hafi (w:p+cpp). 

To proceed further we recall two basic properties of the extension operator 01 [1] 

(2.30) 

(2.31) 

JJQ~wl/ o,.o ~ cll wJJ o,D• wE Hl(Qe), 

llgradQ1 wl/ 0 ,.o ~ cl!gradwjJ 0 ,.oe, wE H 1(!J8
). 

The estimates (2.25), (2.26) and the inequalities (2.30), (2.31) imply that {Q~ w8 }s ... o is 
bounded in H 1(Q). Similarly, using the estimates (2.25), (2.26), the inequalities (2.11), 
(2.12) and the Korn inequality applied to the domain Q we deduce that the sequences 

{~yB}e---o and {Q~cp8 }6-+ 0 are bounded in the norm II· ll 1 ,.o. Thus we have 

(2.32) Qi W 8 ~ w strongly in L 2 (Q), 

(2.33) Q~ve -+ v, Q~cpe-+ cp strongly in [L2 (Q)]2, 

for subsequences, still indexed with e. 

Using Lemma 2.1, the inequality (2.13) and (2.32), (2.33) we deduce 

(2.34) W
6 ~ w, v~ ~Vex, cp~-+ Cf!rx strongly in L 2(!J) 

(2.35) M~p ---"' Mcxp, N~p __..Nap, Q~ ___,. Qcx weakly in L2 (Q) 

since, for instance 

! JQiyB- yello,.o = II (Q~ yB- v)- (yB- v) Ji o,.o ~ \ IIQi ve- vllo,!2 - llr- vllo.n\ 
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and 

2.4. Localization 

Before proving the convergence we shall first localize the variational inequality (1.3.6), 
which now can be written in the form 

find (v8
, W'' , cp8

) E K8 such that 

(2.36) J {N~p(V8, cp8)Ycxp(z-v;)+M~p(V8, cp8)ecq~(~-cpe)+Q~(cp8, W 8)((u-w),cx 
ae 

+1pcx-q;~)}dx ~ J {p(U-W8)+pcx(zcx-V~)+mcx(1pcx-q;~)}dx, V(z, u, ~) E K6 • 

[J 

For this purpose we take z = vt ± 8, ~ = cp8 ± YJ, u = W
8 ± ~' where ~' Oa, 'YJa E ~(.Q). 

Here ~(Q) denotes the space of infinitely differentiable functions with compact support 
in !J. Noting that (z, u,~) E Ks and applying the Green formula one readily obtains 

1 2 

(2.37) J ( -N~p.pOa-M'/,.p,p'YJcx-Q~.a~+Q~'YJa)dx+ J {(N~p-N~p)npOa 
ae P 

1 2 1 2 
+ (M~p- M~p)np'Y}a+ (Q8-Q8)~}ds = J (p~+pcx(}a+mcx'Y}a)dx \1~, (}ex, 'YJa E ~(.Q), 

[J 

where 

Hence 

(2.38) 

(2.39) N!p,p+Pa = 0, Q~.cx+P = 0. 

Obviously, the equilibrium equations (2.38) and (2.39) are to be understood in the sense 
of distributions or ~' (.Q). From (2.37) we also have 

t 2 1 2 1 2 
(2.40) N~pnp = N!pnp, M~pnp = M~pnp, Q8 = Qe on Fe. 

In the last relations we recognize the principle of action and-reaction on Fe. 
Let us return to the variational inequality (2.36). Performing the integration by parts 

and · taking account of (2.38), (2.39) and (2.40) we arrive at 

(2.41) J { -N~pnp[zcx-v~]-M~pnp[1pcx-q;~]-Q8 [U-W6]}ds ~ 0 V(z, u, ~) E K8 , 

FE 

where 
1 2 

N~p := N~pnp = N~pnp, etc. 

The localization of (2.41) is performed as follows. It can be written in the equivalent form 
of three inequalities 

(2.42) - J N~pnp[Zcx-V~]ds = - J (N:[zn-v~]+N:[zT-v~])qs ~ 0 v z E x:i, 
F'' FE 
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128 J. J. TELEGA AND T. LEWINSKI 

(2.43) - J M:,SnP.["''cx-<p~]ds = - f (M!['lJ'n-<p~J+M;[VJr-<p;])ds ~ 0, V~ E K:1, 
FB pe 

(2.44) - J (r[u- W
8]ds ~ 0 VuE x:. 

p 

Since for the case considered no constraints are imposed on Zr and "''r therefore, by taking 
zn = v!, ?f'n = lp~, we deduce that N; = 0, M; = 0. Then the inequalities (2.42) and(2.43) 
reduce to 

(2.45) - J N![zn-v!)ds ~ 0 Vz E x:i, 
p 

(2.46) - J M!["''n-lp~)ds ~ 0 V~ E JQi, 
FB 

respectively. It is thus sufficient to localize one of the inequalities (2.44)-(2.46), for instance 
the second one. For this purpose we take Zn = (1 ~e) v!+Or], where e E !i}(Q), 0 ~ e ~ 1 
and [r]]FB ~ 0. Noting that these inequalities are positively homogeneous we readily obtain 

(2.47) J ON![rJ-V~]ds ~ 0 veE ~+(!J) VrJ,[rJ]Fe ~ 0, 
pe 

where 

~+(!J) = {0 E ~(D)IO(x) ~ 0, xED}. 

Now we take rJ = 0 and next rJ = 2v!. Hence 

(2.48) 

By taking rJ = v~+C, [C]FB = I, from (2.47) we obtain 

(2.49) 

since 0 E !i}+ (D). The unilateral conditions satisfied on pe are of the Signorini-type. Their 
final form is 

(2.50) [v~] ~ 0, N! ~ 0, N; = 0, N![v~] = 0 on F 8
, 

(2.51) [lp~] ~ 0, M: < 0, M: = 0, M![lt1!] = 0 on P, 

(2.52) [we] ~ 0, Q6 ~ 0, Q8 [w8
] = 0 on F 8

• 

Having in mind a later application let us return to (2.42)-(2.44) and take z = (1-0) r + 
+OYJ, ~ = (l-O)cp8 +0YJ, u = (l-O)ws+O~, [rJnJP: ~ 0, [~]Fe ~ 0 and 0 as previously. 
We obtain 

(2.53) - I ON~pnp[Zcx-v~Jds ~ 0, veE ~+(!J), Vz, [zn]Fe ~ 0 
pe 

(2.54) - f OM~np['lJ'cx-lp~]ds ~ 0, VO E ~+(!J), V~,[V'nha ~ 0 
pe 

(2.55) - f O{r[U-W6]ds ~ 0, veE ~+(!J), Vu, [u]Fe ~ 0. 
Fe 
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The variational inequality (!.3.17) gives 

)( E Ms(R), E E Ms(R), 

(2.56) J {A(XPAp(sA11+yrp(v1))+E(Xp;.p(u;.p+er"(<p1))}y~p(z-v 1)dy ~ o Vz E K~~· 
pe 

Now we take z = v1 +6, e E K~~· Hence 

(2.57) J {A(Xp;.p{s;."+yrp{v 1 ))+E(XPA"(u;.,.,+er"(<p1))}y~p(6)dy ~ o veE K~~· 
YF 

Let us take Oa E !?)(YF), that is ()(X equals zero in a neighbourhood of o(YF) = oYuF. 
Hence 

(2.58) - [A(Xp;.11 (s;.11 +y~p(v1))+Ecxp;.11 (u;.p+etJ<p1 ))),p = 0 in !?)'(YF) 

or taking account of (!.3.12) 

(2.59) -naP,P = 0 in !?)'(YF). 

In a quite similar manner the variational inequality (1.3.18) leads up to 

(2.60) J {EaPAp(s;.p+yrp(v1))+GaPAp(uA11 +e~(<p1))}eaP(YJ)dy ~ 0 VYJ E K~~· 
yp 

Hence 

(2.61) - [Eap;.u(c;.ll+y~(v1))+Gap;.11 (uA11 +e~(<p1))].P = 0 in !?)'(YF), 

or from (1.3.13) 

(2.62) -maP,P = 0 in !?)'(YF). 

Finally, the variational inequality (1.3.19) gives 

(2.63) f Hap(wp+ 
0
;

1

) ~E dy ~ 0 VEE K~F· 
YF Yp Ya 

Thus 

(2.64) 

or taking account of (1.3.14) 

(2.65) -qa,a = 0 in !?)'(YF). 

Let us return to the inequality (2.57) and take 6 E ~~equal to zero in a neighbourhood 
of F. By using the Green formula and taking account of (2.59) we infer 

(2.66) lncxJJnp takes opposite values on the opposite sides of the basic cell Y. 

Here (nJ is the outward unit normal to oY. 
Similarly, from (2.60) and (2.63) we get 

(2.67) lmaPnp and qana take opposite values on the opposite sides of Y. 

Due to (2.59), (2.62), (2.65) and (2.66), (2.67), we can write 

(2.68) 

9 Arch. Mech. Stos. 1/88 
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(2.69) 

(2.70) 

-m~fJ. fJ = 0 in .@'(R2"'.u(F+(ntYt, nzYz))), 

-q~.~ = 0 in .@'(R2"'.u(F+(nty1 , nzYz))) 

where n 1 , n 2 E Z and (y1 , y 2 ) E F. Here Z ·stands for the set of integers. 
Let us examine the variational inequality (2.56). Taking z such that z = v1 in a neigh­

bourhood of BY and performing the integration by parts we obtain 

(2.71) J {~~pNp(z~-v&), 1 -~~pNp(z~-v~)12 }ds ~ 0 
F 

for any z such that [~N] ~ 0 on F, since (2.59) ·is satisfied. Now n~pNp = nNN~+nT T~, 
nN = n~{JN~Np, nT = n~pN~Tp, n«fJNfJZa = nNzN+nTzT. 

Hence 

(2.72) J {hN(zN-.bN)It +hr(Zr-v~)lt-~N(zN-v~)lz -~T(zr-v}),2 }ds ~ 0, 
F 

for any z such that [zN] ~ 0 on F. 
By a reasoning similar to that which resulted in (2.47) we obtain 

(2.73) 

for any z such that [zN] ~ 0 on F. 
Next, the variational inequality (1.3.18) gives 

(2.74) 

for any ~ such that ['/f'N] ~ 0 on F. 
From (1.3.19) we obtain 

(2.75) 

for any u such that [u] ~ 0 on F. 
Let us set 

(2.76) 

(2.77) 

(2.78) 

Ww(Y) = W1 (y)+(w, y) = W1(y)+waYoo 

v.(y) = v1(y)+P1 (y), 

cp;((y) = cpt(y)+P2(y), 

where P~(y) = BafJYp, P~(y) = u~pyp. By using the localization technique similar to that 
which resulted in (2.47) and replacing z, ~' u in (2.73), (2.74) and (2.75) by z-Pt, ~-P2 

u- ( w, ·), resp~ctively, we eventually arrive at 

{2.79) J 6 {(za-Vccx)!dAaf3ApYfp(v.)+EaflAttf!~p(cpx)],lN{J- (za-v.~)l2 [Aa{JApyf/v.) 
F 

+E.xfJApe~/cpx)],zNp}ds ~ 0, 

(2.80) J 6 {(1f'a-fPxa)lt [E~{JApYrp(v.) + G~fJApe!p(cpx)],tNfJ- (1f'a- fPxa)lz [E~fJApY~u(v.) 
F 
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(2.81) 1 o{(u-ww)ll ( H.p ~;;LN.- (u-ww)l2 ( H.p ~;; t N.}ds;, 0 

for any z, ~' u such that [zN]F ~ 0, ['!f'N]F ~ 0, [u]F ~ 0; () E ~+ (.Q). 
Now we shall change the scale knowing that y = xfe. Toward this end we define 

(2.82) 

(2.83) 

(2.84) 

w~(x) = eww(xfe) = (w, x)+ew1(xfe), 

V:(x) = ev.(xfe) = P 1(x)+ ev1 (x/e), 

cp~(x) = ecp,c(xfe) = P 2 (x)+ ecp1 (xfe). 

We see that [w~]pe ~ 0, [v!n]Fe ~ 0, and [(/J!n]FE ~ 0. 
The equations (2.68), (2.69) and (2. 70) give, respectively~ 

(2.85) -(AcxBAJlY!Jl(v!)+EcxfJJ.p[)).icp!)),p = 0 in fi)'(.Q~), 

(2.86) - (EcxfJAJlY~iv!)+GcxfJAJleiicp!)) , p, = 0 in fi)'(.Qe), 

(2.87) -(Hcxpw;.,, fJ),cx=O in fi)'(.Qs). 

Further, the inequalities (2.79), (2.80) and (2.81) transform, respectively, into 

(2.88) J () {(zcx-V!cx)lt [AcxfJAilY;.Jl(v!)+Eccp;.Jl[)).,Jcp!)]ltnp 
pe 

(2.89) f () {('!f'cx- (/J!a)lt (EcxtJ;.IlJ'Ail(v!) + Gcxp-tll(};.~'(cp!Ht np 
FE 

- {'!f'a- (/J!cx)l2 [EcxtJAJl?'Ail(ve) + Gap;.Jl[);.1.(<p!)]l2np)ds ~ 0, 

(2.90) J 8{(u-w~), 1 (HatJW~ . .B)I 1 na-(u-w~)I2 (HcxpW~,tJ)I 2 ncx}ds ~ 0, 
ps 

2.5. The last step: identification of v, w and <p 

The final step consists in proving that v = v0 , w = w0 and cp = cp0 , see (1.3.7)-(1.3.9) 
and (2.34). 

As we know, the stored energy function g given by (1.2.38) is convex and differentiable. 
This implies subdifferentiability and maximal monotonicity of the subdifferential og 
[2, 1.37]. The latter property results in 

(2.91) lf := f ()(x) {Aap;.1,Y;.Il(ve)+EcxfJA~J[);.Il(cpe))- (AcxfJA~JI'AJl(v!) 
!Jt 

+:::x.BA~J[)AJl(<p~))}Ycxp(V8 -V!)dx ~ 0, 

(2.92) J~ := J O(x) {(EcxfJAJl?'AJl(ve) + GcxfJAJl[),ti<p~) )- (EcxfJAJl?'AJl(v:) 
!JE 

+Gcxp;.1~!?A~J(cp~))}eap(<pe-cp!)dx ~ 0, 

(2.93) J~ := J ()(x){Hcxp(w:p+qJp)-HatJW~ _ p}((w~cx+(/1~)-w~.a)dx ~ 0. 
ne 

9* 
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Here wE R2, E EMs (R1), x EMs (R1
), () E ~+(.Q) and the test functions w~, v: and <p)( 

have been defined earlier. 
Let us now pass to the limit in (2.91). To this end perform the integration by parts 

and next take account of (2.27), (2.39)1 and (2.85). Then 

(2.94) Ji = - J {N~p- (Aap;.py;.p(v:) +Eap;.pe..l.p(<p~) )} O ,p(v~-v!a)dx 
!JB 

+ J ()poc('lfoc-v:a)dx+ J (J{(v~-v!cx)ll(Aoc.B..l.py..l.p(ve)+Eap..l.JJe;.,l(<p6))11 
{16 F8 

Fe 

+ Ea.B..l.JJe;.JJ(<p~) )It- (v~-v!a)I2(Aoc.B..l.JJY..l.p(V:) +Eap..l.pe;.p(<p!))l2 }ds ~ 0 

On account of (2.53) and (2.88) the integrals over pe are non-positive. 
Hence 

(2.95) - J {N~p-(AocfJAJJY;.u(V:)+Eap..l.pe..l.p(<p~))}(),p(v~-v:OC)dx+ J ()poc(v~-V!a)dx ~ 0. 
Qt QB 

Further, we have, cf. [4], p. 268 and [1.38], p. 77 

(2.96) V6 -V!--+ v-P1 strongly in [L2(.Q)]2 as c--+ 0, 

(2.97) AapApy;.p(V:)+EapAue;.p{<p~) ~ I~/ J (AocfJApY~p(vc)+Ecx,B;.pei~(<px))dy 
YF 

aw 
weakly in L 2 (.Q) as c--+ 0 

We recall that W( E, x, w ), see Part I. 
For e--+ 0 the inequality (2.95) in conjunction with (2.96) and (2.97) gives 

(2.98) - J(Nap- :cw )e,p(Va-P~)dx+ J ()poc(va-P~)dx ~ 0. 
D cx,B D 

Integrating by parts we obtain 

(2.99) f ()Nap,p(va-P~)dx+ f e(Nap- :cW )Yap(v-P1)dx+ f ()poc(va-PJ)dx ~ 0. 
D D ocfJ D 

The relation (2.35h and Eq. (2.39)1 result in 

(2.100) Nap,p+Poc = 0 in ~'{.Q). 

Substituting (2.100) into (2.99) we get 

(2.101) f o(N.~- :.: )r.~(v-P1)dx;;, OVOe~+(.Q). 
D 

Hence 

(2.102) (N.~(x)- :.: ) (Y«i!(v(x))- ··~);;, 0, VEE M,(R1
) 

for almost every ( = a.e.)x E .Q. 
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The functional JL given by (2.92), can be studied in a similar way. Now Eq. (2.38) 

and (2.35) 1 , (2.35)3 give 

(2.103) Map,p-Qa.+ma. = 0 in ~'(Q). 

Further, we arrive at 

{2.104) 

Thus 

(2.105) 

From (2.35)3 and (2.39)2 we infer 

(2.106) Qa,a.+P = 0 in ~'(Q). 

To pass to the limit as c ~ 0 with J~ we write it in the form 

(2.107) J O(Q~-HapW~.p)(we-w~).cxdx+ J O(Q~-Ha.pW~.p)q;~dx ~ 0. 
~ ~ 

The passage to the limit as c ~ 0 in the second integral is straightforward since q;~ ~ ({Ja. 
strongly in L 2 (!J). Thus we obtain 

(2.108) J O(Q~-Ha.pW~,p)q;~dx ~ J o(Qa.- -~: )q;a.dX 
~ Q a 

since 

weakly in L 2(!J). 

The passage to the limit in the first integral entering (2.107) is carried out similarly as 

previously. Finally, from (2.90), (2.106), (2.107) and (2.108) we get 

(2.110) 1 o( Q.- ~=) (w .• + <p.-wJdx )o 0, Vw E R2
, VO E f0+(Q). 

Hence 

(2.111) ( Q.(x)- ~=) (<p.(x) + wJ(x)-w~) ;. 0, Vw E R2
, a.e. x E !l. 

The maximal monotonicity of the subdifferential oW (see Part I) and the relations (2.1 02), 
(2.1 05) and (2.111) imply, cf. [2, p. 22] 

(2.112) Nap(x)=oWfoyap, a.e. xE!J, 

(2. I 13) 

(2.114) 

Ma.p(x) = oW/O(!a.p, a.e. X E Q, 

Qa(x) = oWjo(w,o.+({Ja), a.e. X E!J, 

where W = W(y(v(x)), p(cp(x)), grad w(x) +cp(x)). 
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Taking account of (2.112)-(2.114) in Eqs. (2.100), (2.103) and (2.106) we arrive at the 
equilibrium equations (1.3.32)-(1.3.34) where 9Jl = M, m = N, .0 = Q and v0 = v, 
w0 = w, cp0 = cp. Thus the proof of the convergence is complete. • 

REMARK 2.3. The above proof of convergence is based on the energy method of the 
homogenization [10, 11] originally proposed for scalar equations. The same result can be 
achieved by using the method of the so called epi-convergence [1, 1.7]. However, in our 
case, the proof would still be longer and more complicated. On the other hand, .the epi­
convergence results in the convergence of the total potential energy of the fissured plate 
to the total potential energy of the homogenized plate, that is 

(2.115) 
1 

2a:(ve, we, cpe; ve, we, cptJ)-fe(r, we, cpe) 

~ J W(y(v), p(cp), gradw+cp)dx-fe(v , w, cp). 
[J 
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