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Homogenization of fissured Reissner-like plates
Part II. Convergence

J.J. TELEGA and T. LEWINSKI (WARSZAWA)

THE PURPOSE of the second part of the paper is to prove the results obtained in the first part
by using the method of two-scale asymptotic expansions. The convergence is proved by means
of an appropriate generalization of the results due to AtroucH and MuRraAT [1].

W drugiej czgsci pracy zostaly udowodnione rezultaty, ktoére w czeéci pierwszej wyprowadzono,
stosujac metode rozwinigé asymptotycznych. W celu wykazania zbieznosci odpowiednio roz-
szerzono podejscie ATTOUCHA i MURATA [1].

Ilenso BTOpOI YacTH paGoThI ABIAETCA AOKA3aTENIBCTBO PE3YNbTATOB, MOJIYUEHHBIX aCHMIITO-
THUYECKUM MeTofoM B NepBoit yactu. CXouMoCTh JOKA3aHa ITyTeM COOTBETCTBEHHOTO PacilM-
peunsa moxaxona Atyma u Miropa [1].

1. Introduction

IN THE FIRST part of the paper [7] we have formulated and solved the problem of the homo-
genization of elastic Reissner-like plates damaged by periodically distributed fissures.
Our attention has been focussed on unilateral fissures. The homogenization problem is
non-trivial since it means the homogenization of a variational inequality posed on a domain
dependent explicitly on a small and variable parameter ¢ > 0.

The m:thod of two-scale asymptotic expansions has been used to derive the equations
of effective or homogenized plates. Unfortunately, such an approach, though effective
as a method of averaging, is formal and requires rigorous mathematical justification.
Exactly such a justification has been proposed in the present part of the paper. Toward
this end we follow an ingenious approach proposed by ATroucH and MURAT [1] in a
purely scalar case. Our problem is more complicated due to the presence of one scalar
and two vector kinematical fields. The study of convergence is restricted to the passage
to a limit in an appropriate variational inequality. The method of I'-convergence, or
rather epi-convergence [1], is left apart as morec complicated and leading to the same
results.

Roman numerals refer to the relevant sections, equations and references of the first
part of the paper. The same notations as in Part I will be used here.
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2. The study of convergence

In our case we must pass to the limit with {w®},, and {v, ¢°},,,, see Section L.3.
The results obtained by ATToUCH and MURAT [1] enable us to pass to the limit with the
scalar sequence {w°},,,. The results of these authors are not directly applicable to the
vector case. The latter case has been solved in the present section.

2.1. Preliminaries

In the case under study the cracked domain £2* depends explicitly on &. Thus it varies
as ¢ =+ 0. To pass to a limit as ¢ — 0 we shall construct a sequence {Qfw*, Q5v*, Q5¢°}._,
such that Q§ w® € H)(2), Q,v* € [H3(£2))? and Q5 ¢° € [H}(£2)]?. The linear and continuous
operator Q% has been constructed in [1]. Its main property has been formulated by Attouch
and Murat as Proposition 4.2. Here we reformulate it as

LemMma 2.1. For any sequence {w°},,, satisfying sup|/w®||; g¢ < o0 there exists

&>0
a sequence {QSw*}._o bounded in H{(2) and such that
QW —Wlo,o >0 as &-0. ]

Let us note that the operator Qj is obtained from the operator Q, similarly as the
operator Q% from Q,, see Remark 2.1. below.

2.2. Extension operators Q, and Q5

An essential idea of Attouch and Murat [1] consists in working with a hole F, instead
of the fissure F, see Fig. 1.

Fic. 1. Subdomain F,, F= F< F,.

The parameter > 0 is kept fixed, = 7, and F < F,. Moreover it is assumed that
the boundary of F, is sufficiently smooth.
We shall first construct the extension operator Q,.
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LEMMA 2.2. There exists an extension operator
P,:[HY(Y\F,)]* - [H'(Y)])? such that

(a) [IP2vllo,x < cllVllo,y\ryo

(b) 2 [17as (P2 ¥)llo,y < CZ lves(Wllo,y -y < cllYWMlo.ye-
a,p a,f

Proof. Such an operator may be constructed as follows. Let # denote the space
of rigid displacements. Then each v e [H'(Y\F,)]* can be decomposed according to
(2‘1) Y=Y, -i-l',
where re # and v, | Z in [L*(YN\F)P’.

To extend v on Y we extend v, continuously, see [3, 9]. This linear and continuous
operator is denoted by P,. Thus
2.2) P,v=P,v,+r.

Let us prove (a). We have
[IP2¥[o.y = [IP2¥y +rllo,y = [[P2(vi+1)|[o,y € cllVy ‘i:T][o.r‘\Frp = ¢|[|¥|[o.y\Fy-

The first inequality in (b) has been proved by Léné [5, 6]. The second one is
obvious since Y\ F, < YF.

REMARK 2.1. For the scalar case an extension operator P, may be defined as follows
(23) PrH'(Y \F)- H\(Y),

w = Pl(w) o P?(w_'<W>Y\Fn)+<w>Y\-_va
where

i d
2.4 w = w(y)dy.
( ) < >Y\F'7 IY\Fq‘ " (}") Y
\Fn
? is the linear and continuous extension operator, P{:H'(YN\F,) - H'(Y), see [3,9]
and

[IPYwlliy < cllWlliyry»
[IPYWllo.y < cllWllo,y~py-
The extension operator Q,:H'(YF)— H'(Y) is defined by
2.5 Q, = PRy,
where R, is the restriction operator
Ri:HY(YF)—» H'(YN\F,).

The operator Q, is defined similarly.
DEFINITION 5.1. The extension operator

Q:[H'(YF)P* - [H' (V)]
is equal to
(2-6) Qz = P,R,,
where R,:[H'(YF)]* » [H'(YN\F,)P is the restriction operator.
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The operator Q, is characterized by
LemMA 2.3. The operator Q, has the following properties

(i) Q,v=v on Y\F,.
@) 11Qzvllo.y < clIVllo.rry < clIVlloxr = cll¥llo.x-
Gi)  [[v(Q2Wloy < cllyMllo, v~y < ellYWMllo,yr-
(i) 11Q2v—Vlliyr < cllY(Mllo.xs-

Proof. The property (i) follows immediately from the definition of Q,.
()  11QxVllo.y = I[P2(R2V)lo,y < clR2 V|0, \pn = cllvllo,ynry < cllVllo,vr>
(iii) ”T(Qz Vllo,y = ||Y(P2(R2 V)”o,v < C”Y(Rz")“o,y\rq = C'”Y(V)”o,y\rq < C'”Y(")”o.vr;
by using the property (b) of the Lemma 2.2.

(iv) Korn’s inequality implies

1Qev—vll1,7 < cllY(Qav—Vlo,% a=1,2,

since Q,v—v = 0 on a part of the boundary of Fj of strictly positive length, see Fig. 2.

Fi1G. 2. Extension of F
Y=Y, uY,u), YinY,=0,
F = FJUF2U(YnF,), Fi=FnY, o=1,2
Hence by using the properties (i) and (iii) we obtain
Q2¥—vllirr < C‘Z”Y(Qz""")”o.r?, < C'Z(”Y(Qz")”o.ya‘*‘HY(V)Ho.m)
[ a

< e(lly(QaVllox HIYWlo,vr) < ceillYWlo,vr+ cllYWlo,yr = cler +DIy(Wllo.yr-

Thus the lemma is proved. [ ]
We observe that the property (iv) implies

.7 [1Qzv—Vllo,y < clly(Mllo,vr

and

(2.8) [IV(Q. v—V)|lo,yr < C“Y("’)”o,n,
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where
Vz = (Z «, ﬁ) .

Having defined and examined the operator Q, we pass to the extension operator Q}
acting on functions determined on £°. From the formula (I.3.1) we know that F® =

= |J F,; where F,; c Y, for every i€ I(¢) and Y, is the &Y cell corresponding to i or
iel(e)

Ye.! - 6Y+Ei,ss gi.s eR?,

Next operators Qf* are constructed, see the scheme below. The global operator Q5 is
derived from Q%‘ by the method of stitching the operators Q%. The global operator Qj
is obtained in the following way

z € [H1(£29))?

[ restriction

20 € [HH (You \EuV = [H(eYF+E, )P
translation and change of scale

z, € [H'(YF)]? or z,(y) = z'(ey+E,.,) (i not summed !)
restriction and extension

z, = Q,z, e [H'(Y)]?

translation and change of scale

zv3_Q£2225[HI(YH)]2 or Z3(X)_Zz - g”)()

stitching with respect to i € I(¢)
:4 = Q%z
According to our earlier assumptions the operator Q5 may be set equal to the identity
near the boundary I" of £, see the property (2.9) below. Then
z e [Hi(2) = Qiz € [Hy(Q).

The basic properties of the operator Q% are given by

LemMA 2.4. For each ¢ > 0 the operator Q3:[H'(£29]* —» [H'(£)]? is linear and
continuous. Moreover we have

(2.9) 52=12 on 2 \F, FI=uUFl,
(2.10)  [|Q3zllo,0 < cllzllo,0;

2.11)  [I¥(Q32)llo.0 < clly@)llo,as»

(2.12)  ||Q5sz—2o,0 < celY(@)o.qe,

(2.13)  [IV(Q2z—2)lo,0¢ < cll¥(@)ll0,qe-

Proof. The scheme preceding the lemma shows that Q% is a composition of linear
and continuous operators,

) x=ep+Eis=>y = (x—Eio)fe
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The properties (2.9), (2.10) and (2.11) result immediately from the properties (i), (ii)
and (iii) specified by the Lemma 2.3.
To prove (2.12) we first consider the cell ¥, ;. We have

(2.14) [ 1Qyi2(x0) —2(x)2dx = [ 1Quz(ep +E,.)~2(ey +E, )12 e2dy
Y

Ye,i
since y = (x—§;,)/e. Further, the properties (2.7) and (2.14) yield
[1Qs 2 —2)P2dx < ¢ [ Y@ (ey+E, )22y < ¢ [ 1y @) (ey+E,)2e%dy.
Ye.i YF YF
Now we set x = gy+E;,. Hence
[1Qs"2() ~2()%dx < ¢ [ 1y (a(x)%dx.
Ye.i Ye. i\ Fe,i
Adding over all cells Y,; we arrive at
f}Q‘zz—z|2dx < ce? ffy(z(x))ﬂdx.
2 ¢

From the last inequality follows the required result or (2.12).
Finally, since the change of scale equally affects both sides of (2.8), the inequality
(2.13) results immediately. Thus the proof is complete.
]
By noting that (2.12) and (2.13) yield
(2.15) [1Q2z—2l]1 00 < (¢1 6+ )Y (@)l |0, 00

we can formulate
THEOREM 2.1. (Korn’s inequality for £2°). For each z € [H}(£2°))* Korn’s inequality

(2.16) l12l]1,0: < (ce+e)lY@)]o,ae
is satisfied. Here 0 < ¢ < &y and &, is held fixed.
Proof. The assumption implies that Q%z € [H}(£2)]?>. Korn’s inequality applied to
Q5 z yields
[1Q%zl]1,0 < clly(Q22)[lo.5-
Hence by using the property (2.11) we obtain
2.17) [1Q5zll1,0 < ||Y(Q22)|l0.a < c1llY@)|]o,qe-
The triangle inequality furnishes
(2.18) [12lly,0¢ < ||12— Q521,00+ [|Q52l 1,05

since the Lebesgue measure of £2° is equal to that of Q or £ = || and [|Q5%z||s,0c =

= [1Q%2l[1,0-
Substituting (2.15) and (2.17) into (2.18) we get

12l]1,06 < (c2€+¢3)l¥(@)]o,0e+ 1 |1 Y (@)l0,0e = (€2 8+ (Z)]|0,0e-

Hence we infer that for 0 < ¢ < ¢, (eo-fixed) Korn’s inequality is satisfied.
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REMARK 2.2. For the scalar case a similar role is played by the Poincaré inequality in
which the parameter ¢ also enters explicitly [1]. For perforated domains the proof of the
Korn inequality is straightforward (see Conca [L.13]).
[ |
Now we can formulate the vector counterpart of Lemma 2.1.
THEOREM 2.2. For any sequence iV}, o satisfying sup||v’||; o < co there exists a

e>0

sequence {Q%V¢},, o bounded in [H'(£))* and such that
5V —¥lg0 =0 as &—0.
Proof. The assumption gives |[y(¥*)|lo.e < c©. Hence by using the inequality
(2.12) we deduce
Qv =¥l >0 as &-0.

The theorem is proved.

2.3. Boundedness
In the sequel we shall restrict ourselves to the constraint set K4 defined by
K, = KPx KP x K?,
The index A is dropped.
We observe that the remaining cases can be studied by similar techniques and are
usually simpler.
For 0 < ¢ < ¢, the variational problem 2; is equivalent to, see (I.3.6)

(2.19)  min {—; &z, u, .z, u, P)—f.(z, u, P)(z, u, P) KE}

or
1
(2.20) 5 as(ve, we, @ v wt, @f) —fL(V¢, W, )

< %af,(z, u, iz, u, Y)—f(z,u, ), (z,u,P) e k..

From the definition of the set considered K, we deduce that (z, #,{) = (0,0, 0) € K,.
Then (1.2.50) and (2.20) in conjunction with the Cauchy-Schwarz inequality result in

(2.21) f (e Y (¥)1? + ¢ lp(9)|2 + ¢5)grad we + ¢f|2)dx < ] (pW* + P Vs + My @) dx
gf

2
2

= ,.pde [ (w9)2dx ”2+ Dy PxdX o ’ vEvEdx "
J
Q Q Q 0 ‘
+Um¢mad¥)m”¢;¢§dx)l ’
Q 0

The Poincaré inequality implies

(2.22) [1wl8.0 < eall grad w3, e
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Note that the constants ¢, and c; in (2.21) can be chosen such that —c—c_:—a -—c3 >0,
€ 1

where ¢ and c, are constants entering (2.16). Taking account of (2.16), (2.22) and (1.2.12)
we arrive at

(2.23) [1Ve[13, 0+ 11@%113 0e + [1W*]13,06 < c(11¥¥]0,0+ 1% 0,0+ [1W]lo,0)s
where ¢ is a new constant.
Hence

1v113.0+11@el15,0+ W30 < c(IVllo.a+11@%l0.a+ [Wllo.0)-

Thus

(2.24) 11Vl1o,0-+ 1pllo.a+1W¥llo,0 < const < co.

Now taking account of (2.24) in (2.21) and (2.22) we obtain

(2.25) sup(|Iy(¥)3,ael 1+ llp(@)ll5,0c + Il grad wi 5.0¢) < const < 0,
and

(2.26) fljlg(flv"llf,gﬁH‘P"ll?.rﬁHWellf,m) < const < o0,
respectively.

The estimate (2.25) implies that the sequences {Ngg}.,0, {M&s}..o and {Qg}.o are
bounded in the space L?(£2).

Here
(2.27) Nap(¥, @) = Aupra¥3u (V) + Eupre 02 (P
(2.28) Mep(ve, 9°) = Eupnse¥2,(V) + Guapr 0,,(9°),
(2.29) Qa(w*, @) = Haup(wWip+ ¢f).
To proceed further we recall two basic properties of the extension operator Qj [I]
(2.30) 1Qiwllo,e < cllwllo,e,  weH (1),
(2.3 |lgrad Qi wilo,o < cllgradwllo,ge, W€ H'(£X).

The estimates (2.25), (2.26) and the inequalities (2.30), (2.31) imply that {Q}w*}.o I8
bounded in H'(Q). Similarly, using the estimates (2.25), (2.26), the inequalities (2.11),
(2.12) and the Korn inequality applied to the domain 2 we deduce that the sequences
{Q5v*}..o and {Q5¢°},. are bounded in the norm |- ||;,o. Thus we have

(2.32) iw® — w  strongly in L*(Q),
(2.33) 5V > v, 5¢° — ¢  strongly in [L*(£2)],

for subsequences, still indexed with &.
Using Lemma 2.1, the inequality (2.13) and (2.32), (2.33) we deduce

(234) w'ow, oo, @.-o @, stronglyin L*(2)
(235) M — My, Nig— Ny, 02—0, weaklyin L*(2)
since, for instance
HQ%"S—VSHO,Q = [[(QeV* = V)= (V"= V)|lo,0 = il]QEVe—Vﬁjo,!z*—ch_"'Ho.nis



HOMOGENIZATION OF FISSURED REISSNER-LIKE PLATES. PART II 127

and
Qv —~V¥lo,eo >0 as &-0.

2.4. Localization

Before proving the convergence we shall first localize the variational inequality (L.3.6),
which now can be written in the form

find (v, w, @)€K, such that

(236) J {Néﬁ(ves (PB) ?aﬁ(z = M;ﬁ(vss (Ps) @aﬂ(q" - “Pe) + Q;(‘Psa wa) ((u - WE) K

Qe

=g }dx = [ {pu— W)+ pulza—vd) + mo(ya— ) Ydx, ¥z, u, ) € K,.

Q
For this purpose we take z = v'+0, ¢ = @°+m, u = w1 §, where & 0,, 1,€2(02).
Here 2(£2) denotes the space of infinitely differentiable functions with compact support
in £. Noting that (z, u,$) € K, and applying the Green formula one readily obtains

& 1 2
@37) [ (~Nig.bu— Meppna—Qhnb +Qinddx+ [ {(Nep—Nep)nsh,
QF F¢
1 2 1 2
+ (M — Mg+ (Q°— Q%) & }ds = f (PE+Ppubet+mumy)dx V&, 04, 1, € 2(02),
2
where
Nuﬂ = Naﬁjos etc.
Hence
(2.38) 25— +my =0,
(2.39) Négg+pP. =0, Q%fot+p=0.

Obviously, the equilibrium equations (2.38) and (2.39) are to be understood in the sense
of distributions or 2’(£2). From (2.37) we also have

1 2 1 2 1 2
(2.40) Nggng = Nogng,  Mggng = Migng, Q°=0Q° on F".

In the last relations we recognize the principle of action and reaction on F*.
Let us return to the variational inequality (2.36). Performing the integration by parts
and taking account of (2.38), (2.39) and (2.40) we arrive at

@241) [ {—Negnplza—vi]— Mipnlypa—gil— Q°lu—wi}ds > 0V (z, u, ) € K,,
Fe

where
1 2
N;p = N:pnﬁ = N;ﬁng, etc.

The localization of (2.41) is performed as follows. It can be written in the equivalent form
of three inequalities

(242)  — | Nepmplza—vilds = — [ (Nslz—vil+ Nilze—oids > 0 ¥z € K,
FE Fe



128 J.J. TeLeGA AND T. LEWINSKI

243) = [ Mignglp.—otlds = — [ (Milpa—gtl+ Melp.— g ds > 0, Vi & K2,
Fs Fe

@44) — [Qu-wlds>0 Vuek
Ft

Since for the case considered no constraints are imposed on z, and v, therefore, by taking
Z, = Oy, P = @4, we deduce that N; = 0, M; = 0. Then the inequalities (2.42) and(2.43)
reduce to

(245) — [ Nilz,—uflds >0 VzeK?,
Fe

@46) ~ [ Milp,—gilds >0 Ve K,
Fs

respectively. It is thus sufficient to localize one of the inequalities (2.44)-(2.46), for instance
the second one. For this purpose we take z, = (1—=0) 25+60%, where 6 e 2(£2),0< 6 < 1
and [n]r > 0. Noting that these inequalities are positively homogeneous we readily obtain

(2.47) [ oNiIn—oilds <0 VO eD*(Q) V[0l = 0,
Fe

where
P () = {6 e 2(2)0(x) = 0, xe Q2}.

Now we take 7 = 0 and next u» = 2v;. Hence

(2.48) N[l =0 on F.

By taking n = 95+, [{]F= = 1, from (2.47) we obtain

(2.49) N; <0,

since 0 € 2% (). The unilateral conditions satisfied on F*® are of the Signorini-type. Their

final form is

(2.50) [28] =

(251 @l =

(252) [w1=

0, N:<0, N.=0, N[ef]=0 on F,
0, M;<0, M;:=0, Mg}l=0 onF,
0, <0, ©O[w]=0 on F.

Having in mind a later application let us return to (2.42)-(2.44) and take z = (1 —-0)v* +
+0n, & = (1-0)°+0n, u = (1—-0)w+0%, [n,]re >0, [£]re = 0 and O as previously.
We obtain

(2.53)  — [ ONpnglza—vilds > 0, V0 € 2*(), Vz, [z]r > 0
Fe

254 — [ OMenglya—gtlds > 0, V0 € D+(2), Y, [p,]ee > 0
Fs

(255 = [ 60 [u—wds > 0, VO € 2*(2), Vu, [ulp: > 0.
Fe
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The variational inequality (I.3.17) gives
xeMR), eeM(R),

2.56) [ {Au(enat VI EagGia+ 05(01) 720z — v dy > 0 Vz € K2,
Fe

Now we take z = v +0, 6 € K}, Hence

(2.57) f {Aupr(Eau+ Y5V + Eups (30 + 03,.(0")) }¥2(8)dy = 0 VO € K¥,..
YF

Let us take 0, € 2(YF), that is 6, equals zero in a neighbourhood of d(YF) = dYUF.
Hence

(2.58) — [Aaps (e + V2 (V)) + Eapis ez + @) s = 0 in 2'(YF)
or taking account of (I.3.12)
(2.59) —Hep =0 in 9'(YF).

In a quite similar manner the variational inequality (I.3.18) leads up to

@60) [ {Bups(enet 5)+ G (3 03 @") Ny 2as) dy > 0 ¥ € K.
YF

Hence

(2.61) ~ [Eupaa (e1a+ V5V + Gopr (2u+ 0% (")].e = 0 in Z'(YF),

or from (1.3.13)

(2.62) —mup =0 in 9'(YF).
Finally, the variational inequality (I.3.19) gives

(2.63) Y}[ Haﬁ(w5+ %)%dy >0 VEe KD,

Thus

(2.64) - (.qt,,ﬁ(m,wr i )) —0 in 9'(YF)

3;Vp %
or taking account of (1.3.14)
(2.65) —Gue =0 in 2'(YF).

Let us return to the inequality (2.57) and take 8 € K2\, equal to zero in a neighbourhood
of F. By using the Green formula and taking account of (2.59) we infer

(2.66)  |n.pns takes opposite values on the opposite sides of the basic cell Y.

Here (n,) is the outward unit normal to JY.
Similarly, from (2.60) and (2.63) we get

(2.67) |mysng and g,n, take opposite values on the opposite sides of Y.
Due to (2.59), (2.62), (2.65) and (2.66), (2.67), we can write

(2.68) ~ngp =0 in  D(R? \O(F+(yp;, 123)))s

9 Arch. Mech. Stos. 1/88
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(2.69) —mp =0 in  DRNUEF+M71,1:32))),
(2.70) ~Gue =0 in DRIV (F+(Mys, 1232)))

where 11,1, € Z and (yy, y;) € F. Here Z stands for the set of integers.
Let us examine the variational inequality (2.56). Taking z such that z = v! in a neigh-
bourhood of Y and performing the integration by parts we obtain

2
.71 [ {128 NpGu— 021 — Mg Nz, — ) }ds > 0
F

for any z such that [zy] > 0 on F, since (2.59) is satisfied. Now n,sNp = nyN,+n,T,,
Ay = naﬁNaNﬁ’ Ry = naﬁ'NaTﬁ: naﬂNﬂzu. = HyZy+HrZr.
Hence

1 1 1 2 2
(2.72) f {ny(zy —oN)in Hp(zr —o1)) — Ny (2y —V3) )2 —r(zr—oD)2 }ds = 0,
F

for any z such that [zy] > O on F.
By a reasoning similar to that which resulted in (2.47) we obtain

1 2
@.73) [ ey — b —in(zy—vk)2 bs 2 0,
F

for any z such that [zy] > 0 on F.
Next, the variational inequality (I.3.18) gives

1 2
(2.74) [ o — @i — mnypw—k)a }ds = 0,
F

for any ¢ such that [py] > 0 on F.
From (I.3.19) we obtain

2.79) [ a—w—du—w),1ds > 0,
F
for any u such that [u] > 0 on F.
Let us set
(2.76) Wo(¥) = w' () +<{w, y) = W' (3) +WeVeu,
(2.77) ve(») = v' () +P'(3),
(2.78) ©.(») = @' (M +P*(»),

where Pi(y) = eu5¥p, P2(y) = #,pyp. By using the localization technique similar to that
which resulted in (2.47) and replacing z, Y, u in (2.73), (2.74) and (2.75) by z—P*, Y —P2
u—{w, -», respectively, we eventually arrive at

(2.79) f 6 {(za—Vea)i1 [Aupra V3 (Ve) + Eup, 03.(0:)] 1 Np— (2o — Vea) 2 [ A ¥ (V)
F
+ B2, 05 (@:)]12 Np s = 0,
(2.80) f 0 {(e— Prehs [Ecpin V5 (V) + Gapnge 03,(@:] 11 Np — (Wor— @) 2 [Eueps V3 (V)
F

+ Gapru €5.( P12 Np}ds 2 0,
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aw (')ww) }
O3(u—wo)i | Hyp =) Ny— (U—wo) 2 | Hyp -—=) Nyds =0
f {(u " )“( " oy )u ( )u( " ays )1

F

for any z, P, u such that [zy]r 2 0, [yalr 2 0, [u]F 2 0; 0 € 2+ (Q).
Now we shall change the scale knowing that y = x/e. Toward this end we define

(2.82)
(2.83)
(2.84)

we(x) = ew,(x/e) = {w, x>+ ewl(x/e),
ve(x) = evi(x/e) = P'(x)+ev'(x/e),
QLX) = eu(x/e) = P?(x)+ e (x/e).

We see that [Wf.,][:s = O, [Uzu]ps = 0, and [(me]_ps = 0.
The equations (2.68), (2.69) and (2.70) give, respectively,
(2'85) '_(AGBF.;tyi[J(v2)+Ea51y Qipl(wi)),ﬁ =0 in @’(Qs)’
(286) - (Eaﬂlﬂy{u(vz)'l'Guﬂly Qi’p(q’z))‘ﬁ9 =0 in 9’(98)7
(2.87) —(Hupwohpe=0 in D'8).
Further, the inequalities (2.79), (2.80) and (2.81) transform, respectively, into

(2 88) f 6 {(za i .vza)l 1 [A afip yﬁ.,u (Vi) + Eaﬁz.,u Oap (‘P;)]I 1Mp
Fe

== (za o ‘U:u)u [Amﬂi.p y.{p(vi) #F Elﬂl/t QF#(‘P:C)]W 2hp }ds 2 0 5

(2'89) f 0 {('Poz - (Pf'ﬂ!)\ 1 [Eotﬁﬂy. yl,u(vz) + Go:ﬂly Qly(cpi)h 1hp
Fe

- (Tf’a. = (Pia)lz [Etlﬁlu 7’&# (V!) + Guﬁly Q).u (:Pfc)]ll nﬁ) ds Z 0 s

(2:90) | B{(u—we)is (Hap W )1 a— (u— Wi 2 (Hap Whs p) 210 s = 0,
F€

for any z e K2, Y e K, uec K> 6 € 2+ (8).

2.5. The last step: identification of v, w and ¢

The final step consists in proving that v = v, w = w° and ¢ = ¢°, see (1.3.7)-(1.3.9)

and (2.34).

As we know, the stored energy function g given by (I.2.38) is convex and differentiable.
This implies subdifferentiability and maximal monotonicity of the subdifferential dg
[2, 1.37]. The latter property results in

Qo1 J
(2.92) Jz
(2.93) Js

Q*

= Dfs (%) {Aupre Y2, (V) + Eupru 02,(0%) ) — (Aupin ¥ 2,(¥0)
+€x.we1p(‘?i))}?ap("“—Vi) dx > 0,

= f 00%) {(Eupr¥3,(¥) + Gapn 03,(@) — (Eag )
+ Gopi 01,(P%)) } Cep(6p* — P2 dx > 0,

= fg(x) {Haﬁ(Wfﬁ+‘P§)—HaﬁWi,ﬁ} ((Wfa‘f‘fpi)—wf..,a)dx 2 0.
fold
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Here w €R?, ee M; (RY), x e M; (R!), 0 € 2% (L) and the test functions we,, v¢ and ¢,

have been defined earlier.
Let us now pass to the limit in (2.91). To this end perform the integration by parts
and next take account of (2.27), (2.39); and (2.85). Then

(294) Jf = - f {N;.B . (Aﬂﬁﬁ.u yll‘("ﬁ) + Eaﬁly 91;;(‘?5))} 0.,‘7(7); - ’ﬂﬁa) dx

Qe

* f Opo(vG—vey) dx + f 0 {(v% — Ve i1 (Aaps Y2 (V) + Eipr 02.(90°) )11
QF Fe

— (05— %) 2 (Aupe 3. (V) + Enpru 03,(9°) )12 }ds — f 0 {(v% — v&) 11 (Aapau ¥2(05) -

+ Eupi 03,(9%) )11 — (@5 — vem)\l(Aaﬂlﬂyly(vs)+Ea,51p93,u(¢9 )2 Yds =
On account of (2.53) and (2.88) the integrals over F¢ are non-positive.
Hence

(2'95) - f {N;ﬂ (Atzﬁ}i;c Vau(Vs) + Ea,BA,u Qi;;((Px))} 6 (ﬂa . 'veaz) dx o+ f GPa(‘Ua - 'vm) dx

0e
Further, we have, cf. [4], p. 268 and [I.38], p. 77
(2.96) v —ve > v—P! strongly in [L?2()]* as £¢—0,

. 1 )
297 Aspiy ?M(vi) + Expru 03,(P5) — 7l f (Aaﬁlfl Viu(Ve) + Eop, 9%#(‘9“))‘{,"
YF

7). 4

Eaﬁ

weaklyin L2(2) as eé—0

We recall that W(e, », w), see Part 1.
For & — 0 the inequality (2.95) in conjunction with (2.96) and (2.97) gives

(2.98) - f ( ﬁ———) (va— PYdx+ f Bpa(ta— PL)dx >

Integrating by parts we obtain
(2.99) f 0N (v — PL)dx -+ f B(Nuﬁ-—;—apz-)yaﬁ(v—l“)dx-f— f Bp.(vx—PY)dx > 0.
0 Q “ Q
The relation (2.35), and Eq. (2.39), result in
(2.100) Nmﬁ,ﬁ+pa =0 in @'(Q).
Substituting (2.100) into (2.99) we get

(2.101) f B(Naﬁf:TW)yap(v—Pl)dxaOVBEQ“(Q).
Q =

Hence

(2.102) (Nag(x) - %) (Yap (v(x)) — e45) = 0, Yee M,(RY)

for almost every (= a.e.)x € 2.
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The functional J5, given by (2.92), can be studied in a similar way. Now Eq. (2.38)
and (2.35);, (2.35); give

(2.103) My s—Qutme =0 in 9'(Q).

Further, we arrive at

(2.104) f G(Maﬁ_;xw)gaﬂ(cp—lﬂ)dx >0 V0 e (Q).
Q op
Thus
oW
(2.105) (M(,ﬁ(x)—ax) (gaﬁ ((p(x))—-xuﬂ) >0 Ve M,(RY), ae. x Q.
of

From (2.35); and (2.39), we infer
(2.106) OQuutp=0 in 9'(Q).
To pass to the limit as ¢ — 0 with J§ we write it in the form
@107) [ 00— Hapweo,p) (w = we) udx + | 0(Qs— Hogwho ) gidx > .
Q8 Qe

The passage to the limit as ¢ — 0 in the second integral is straightforward since ¢§ — @4
strongly in L2(£2). Thus we obtain

(2.108) f 004 — Hogwer 5) g — f e(Q,-gz)%dx

as 2 D
since

. 1 w* ow o
(2.109) Q[Haﬁww,ﬁ 0 Yl Haﬁ(wﬂ+5yﬁ)dy = Bie weakly in L2(£2).

The passage to the limit in the first integral entering (2.107) is carried out similarly as
previously. Finally, from (2.90), (2.106), (2.107) and (2.108) we get

(2.110) fﬂ(Qu— -—jf)(wﬂ-i-(pa—wa)dx > 0, Vw eR?, VO e 27 (Q).
Q @

Hence
aw . . 2
(2.111) Qm(x)——aa— (pu)+Wwi(X)—wy) 2 0, Vw eR?,  ae. xef.

The maximal monotonicity of the subdifferential W (see Part I) and the relations (2.102),
(2.105) and (2.111) imply, cf. [2, p. 22]

(2.112) Nos(x) = W /[dyqp, ae. xef,
(2.113) M p(x) = W [g.s, ae. x€f,
(2.114) 0.(x) = OW/[o(w o +¢s), ae xel2,

where W = W(y(v(x)), p(ep(x)), gradw(x)+ep(x)).
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Taking account of (2.112)—(2.114) in Egs. (2.100), (2.103) and (2.106) we arrive at the
equilibrium equations (I.3.32)-(1.3.34) where M =M, N =N, Q=Q and v* =,
w® = w, ¢° = ¢. Thus the proof of the convergence is complete. [ ]

REMARK 2.3. The above proof of convergence is based on the energy method of the
homogenization [10, 11] originally proposed for scalar equations. The same result can be
achieved by using the method of the so called epi-convergence [l, I.7). However, in our
case, the proof would still be longer and more complicated. On the other hand, the epi-
convergence results in the convergence of the total potential energy of the fissured plate
to the total potential energy of the homogenized plate, that is

(2.115) -;—aﬁ(ve, W, @°; ¥5, wh, @°) —f(V°, W', f)

=5 [ W(Y(v), p(ep), gradw+e)dx—f.(v, w, ).
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