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BRIEF NOTES 

Two-phase flow with condensation in cylindrical tube (*) 

J. J. BERNARD and F. FERRANI (PARIS) 

A TYPICAL industrial process is analyzed: slow, laminar flow of a fluid in a tube of circular 
cross-section, account being taken of phase changes. An approximate method of solution .js 
proposed and illustrated by the example of flow with steam condensation and freezing at the 
wall. 

1. Introduction 

IN MANY THERMAL plants chemical reactions or changes of phase occur in a fluid flowing 
in a cylindrical tube, for instance during cracking operations in petroleum chemistry or the 
fouling of heat exchangers. 

Generally, the rate of flow is low and the lengths are great so that the flow is laminar 
and established. In these conditions, the equations of the problem are reduced to the 
stationary convective equations of the temperature T: 

V · gradT-aL1T = 0, 

where a is the thermal diffusivity and V the flow speed reduced to the axial component 
u with parabolic distribution against the radial coordinate r 

u = (2QfnR2
) [l-(r/R)2

], 

Q is the rate of flow, R the radius of the tube. 
This equation is known as Graetz equation but the presence of chemical reactions or 

changes of phase introduces a right-hand member to the equation: the present paper is 
limited to the case of change of phase. 

2. Two-phase equations 

It is assumed that the fluid is a mixture of an uncondensable gas and a vapor which 
is capable of getting solid at the wall temperature. In thes~ conditions three phases are 
present in the flow: gas (index g), vapor (index v), liquid (index /); it is supposed that the 
solid phase is immediately attached to the wall. 

(*) Paper presented to XVIII Biennial Fluid Dynamics Symposium, Mr~gowo, Poland, 6-11 Septem­
ber 1987. 
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In order to simplify the problem, several hypotheses will be made [I]: 
the axial components (along the x axis) u9 , Uv, u1 have the same value; 
the radial components (along they axis) v9 , Vv, v1 are null; 
diffusion affects only gas and vapor; 
it introduces only a radial component L1 (along they axis) of velocity 

L1g = -D (!g+ev a (!g 
(!g ar (!g+ev' 

Dis a constant diffusion coefficient, it appears that e,L1,+evL1v = 0; thus, for the mixture, 
ev = 0. 

But when a change of phase occurs, it is convenient to use the molecular fractions 
Xi = ndn (ni is the number density of molecules, n = 1: ni) instead of the densities ei 

L1 = -D XgMg+XvMv _!_ XgMg 
" XgMg or XgMg+XvMr; ' 

where M 9 and Mv are the molecular mass of gas and vapor. 

2.1. Mass-transfer equations 

According to the above hypothesis, the mass-transfer equations of each component are: 
for the gas 

a 1 a 
u- - (nX)+ ------- (rnX L1) = 0, ox g r or g g 

for the vapor 

for the liquid 

a 
u ox (nX,) = (]; 

by summing these equations multipled, respectively, by M 9, Mv, M 1 = Mv, the equation 

:x [n(X9 M9 + XvMv + X1M 1)] = 0 is obtained. 

2.2. Equation of equilibrium 

In equilibrium state the partial pressure of vapor is given by various formulae, the 
simplest of which is (for perfect gases): 

PvfP = (Pc/P)exp[-A(Tc-T)fT] =f(T) = Xvf(Xv+X9). 

Thus n and the molecular fractions Xi are determined by four equations 

Xg+Xv+X, = 1, Xvf(Xv+Xg) = f(TJ, 
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a ax [n(X"M11 +XvMv+X1M 1)] = 0, 

the solution of the last equation is obvious: 

n(X11 M"+XvMv+X1M1) = e = n(X9 M"+XvM11) = nM 
( ~ indicates inlet values, X9 + X11 = I). 

2.3. Energy-transfer equation 

939 

Let 0 = (T- Ta)/(Te- Ta) where Ta is the wall temperature and Te the inlet tempera­
ture. The equation of energy is 

-:x [<x.u.c.+X,M,C,+X,M,C,)nu(o+ ;~)- ~; x,u,] 

+ + :, [r(x.u.c.LI,+X.,M,C,LI,)n( 8+{~ )]- J.LIO = 0 

with the boundary conditions: 0(0, r) = I; O(x, R) = 0 and the symmetry condition 
0' (x, 0) = 0. 

3. Proposed method of resolution 

The mass-transfer system is obviously coupled with the energy-transfer equation by 
the temperature T in the function f(T). The proposed method introduces alternatively in 
the X-system a previous approximation of T and in the T-equation a previous approxi­
mation of {X}. The starting approximation 0° for 0 is, of course, the solution of the 
0-equation without diffusion or condensation (X1 = 0, X9 and X11 constant, L1 9 = 0, 
L1v = 0) 

with 

Ce = n(CgXgMg+ CvivMv). 

The starting approximation of {X} without condensation is not obvious because of the 
boundary conditions: instead of writing X1 = 0 on the wall, Xv = 0 will be written, what 
is a rather crude approximation; thus the starting value n° of n is given by the equation 

u ono - D !_ [r ono ] = 0. 
OX r or or 

Introducing dimensionless variables and the parameters ~ = xjR, 'YJ = rjR; Gz = nRJ..f 
/2QC'f! (Graetz Number); Di = nRD/2Q (Diffusion Number) leads to the equations 
below: 

10* 
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aeo ( a2()0 a2()0 1 aeo ) 
(l _172) a; - Gz a;2 + a1J2 +---;;-~ = o, 

2 ano . ( a2n0 a2n0 1 ano) 
(1-1J) a; -D• a;2 + a1J2 +1}~ = o, 

[n°(;, 1)={!/Mg; n°(0, 17) = n = {!/(XgMg+XvMv)]; 

they are identical (by changing Gz into Di) and can be solved by the exponential and 
hypergeometric functions [2], (hi = (/3i- 2)/4) 

0° = .E1A11F1 (bb 1; {311J2)exp(- {311]2 /2)exp(- f3JGz;) 
when 

3.1. First approximation for concentrations 

For X1 =f. 0, the three algebraic equations of mass-transfer give 

nXg = Cf! -Mvn)/(Mg-Mv); MgXg+MvXv = [Mg+Mvf/(1-f)]Xg = FXg, 

whereas the differential equation can be written as 

(I _ '12l :; - ~i :'1 ('I :~) ~ H (~. 'll = M•;t· ~i ~ ['In X, :'1 log ( ~ X,F)] 
the left-hand side is the same as for n° (save the term o2n° 1 ae generally omitted), in the 
right-hand side the starting solution n° X~ and 0° will be introduced. The method of resolu­
tion by matching finite pieces for such an equation with the right-hand side will be explained 
in a later section. In this approximation, the boundary condition on the wall is X/(;, 1) = 0 ; 
this means Xtf(;, 1) = 1-fa, XJ(;, 1) =fa, n1

(;, 1) = e/[Mg(1-fa)+ Mvf0
] , with fa = 

f(Ta). From the approximation n1 the corresponding molecular fractions are easily deduced : 

x: = ({!-n 1Mv)/[n1(Mg-Mv)], 

Xv1 = [f/(1-f)]Xi, Xl = 1-Xi/(1-f). 

The following approximation needs also the approximation 01 deduced from the first 
approximation of the energy-transfer equation. 

3.2. First approximation for energy-transfer equation 

In the energy-transfer equation, the enthalpy coefficient will be written as 

n(MgCgXg+MvCvXv+M,CtX,)/Cp = 

= 1 + [MgCg{nXg-nXg)+MvCv(nXv-nXv)+M1 C,nX,]/Cp 

so that an approximation for the energy-transfer equation is 

ael 
(1 _172) a; - GzLI()l = e(;, 1J) 

= _ (1- 2) _i_ [ MgCg(nXg-nXg)+MvCv(nXv-nXv)+M1 C,nX1 (e Ta) 
1J a; Cp +LIT 

LM1 ] Di a [ Cg-Cv ( , a, XgMg (e Ta )] 
CeLIT nX, +---r} 7Jr} 1J C{! n XgMg+XvMv)ar) XgMg+XvMv +LIT . 
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As for mass equation, the left-hand side is identical to the starting equation. 
In the right-hand side the previous approximations of n and () will be introduced; the 

last line can be reduced to 

Cg-Cv Di a ·r XM'[(o Ta) a I aO]] - Ce r; TrJ r;n {I {1, + L1T ar} ogF-Tr} . 

4. A method of matched finite pieces 

It has been observed that the evolution of temperatures and molecular fractions along 
the x-axis is very slow. Thus it is convenient to divide the tube into finite pieces where 
the radial distributions of() and n are taken independent of ~. In each finite piece the 
solutions Z (this means() or n) will be the sum of two terms [3]: 

one term is a two-dimensional solution Z 1 (~, r;) of the equation without the right-hand 
side (without RHS); 

the other term is a one-dimensional solution Z 2 (r;) of the equation with the right-hand 
side (with RHS); 

the boundary condition on the wall is satisfied by the second one but the total solutions 
are matched at each junction of two consecutive finite pieces (Fig. 1 ). 

Flo. 1. 
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4.1. Solutions of the differential equations without RHS 

The solution Z1 (~, 'YJ) =Of of the equation without RSH is identical to 0° 

0° = 1:1A11F1(b1, I; {31'Y}2)exp(-{31'Y}2/2)exp( -fJJGz~) 

the eigenvalues {31 are determined by the boundary condition on the wall 

1F1(b1, I; {31) = 0 with b1 = ({31 -2)/4. 

The coefficients A 1 will be determined either by the inlet condition or by matching two 
consecutive finite pieces. The mass transfer solution Z 1 (~, 'YJ) = n~ has practically the 
same form. 

4.2. Solutions of differential equations with RHS 

Concerning the one-dimensional solutions Z 2 , the equations are reduced to ordinary 
differential equations: 

[ 
d202 1 d02] 

Gz d'YJ2 + --;j" d'YJ = e(~ 1" 'YJ ), 

. [d
2
n2 I dn2] 

Dt d'YJ2 + --;j" d'YJ = H(~ 1" 'YJ), 

where ~P is a reference point of the piece numbered p (the index p is omitted here for 0 
and n). 

The solution of such equations is classical: 
'I I 

Gz02('YJ) = log'YJ f e'YJd'YJ + f eiog'YJ'YJd'YJ, 
0 0 

f'J 1 

Din2('Y}) = log'Y}J H'Yjd'YJ+ J Hlog'Y}'Yjd'Y}+Dif!/[Mg(I-fa)+Mvfa], 
0 'I 

the last additive constant is introduced in order to satisfy the specific boundary condition 
of n2 on the wall. 

In the consideration of the derivative terms with respect to 'YJ in e and H, the above 
integrals are reduced to very simple forms: 

1 

. cg- c" J [(£1 Ta ) a 1 F ao ] d +Dt Ce nXgMg u+ L1T aTJ og -aT} 'YJ, 
f'J 

1 

. Mg- M, f a I ( n F)d . -Dt M, nXgaTJ og ii Xg 'YJ, 
1/ 

no simplification can be introduced in the derivative term with respect to ~. 

4.3. Computation of coefficients A.1 

The inlet conditions 
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and 
n1 (0, TJ) +n2(TJ) = n 

make it possible to determine the coefficients A1 (an B1 for n 1) for the first piece of the 
tube by means of the linear algebrical system 

with 

1 

J 01 (0, TJ)tFl (b .. , I; fJ .. TJ 2)exp(- fJ .. TJ 2 f2)dTJ = J, 
0 

1 

J" = J 1F1 (b~u 1; fJ .. TJ 2)exp(- fJ"TJ 2 /2)dTJ. 
0 

For the other pieces, the coefficients A1 and B1 are determined by the system 
1 

J [OH~,, TJ) + OHTJ)]tFt (b"' I; fJ .. TJ2)exp(- fJ .. TJ 2 /2)dTJ 
0 

1 

1 

= J [0~+ 1 (~,, TJ)+02p+ 1(TJ)hFt(b"' 1; /J~r.TJ 2)exp(- fJ,TJ 2 /2)dTJ, 
0 

J [nH~"' TJ)+nHTJ)1tFt(b .. , I; fJ~r.TJ2)exp( -fJ .. TJ 2 /2)dTJ 
0 

1 

= J [n~+ 1 (~,, TJ) +n~+ 1 (TJ)] 1 (b"' I; fJ,TJ 2)exp(- fJ,TJ 2 /2)dTJ, 
0 

that is the matching condition of two consecutive pieces at the junction point. 

5. Conclusion 

An example of this computation process is given (Fig. 2) for a flow with steam conden­
sation and freezing on the wall. The proposed method should be useful to solve any prac-
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tical problem of flow with change of phase or chemical reaction [4] in cylindrical tubes 
because it can be performed with a small personal computer. 

Appendix. A simplification for n2 and 02 when Di = Gz 

An alternative form of n2 is 

with 

but for 

so that (1) 

e - ~M~vMv [lnoXuol!+ Jt noXgo ~ logFod'Yj] 
n2 = Mg{I-P')+Mvf" ., u., 

e(l- (M9 -Mv)(Xv-fa)0° /M) 
M 9(I-f")+Mvf" 

'1 

90 - -
izA(M9 - Mv) f M(I-f")- Mv (Xv-/")0° 

+ M 9(I- fa)+ Mvfa Mg{I -f)+ Mvf 
0 

since the function to be integrated is then an explicit function of 0. In the same man­
ner, concerning the derivative term with respect to 'YJ in 02 : 

flO 

Cg- Cv f M (1-fa)- MvCXv-f")0° 
()2 = - Cp . nM(J 0 Mg(I - f") + Mvf" 

[(
()0 Ta) AMv _f_ Tc(Te- TJ _ 1] d()o 

X + L1T Mg(1-f)+Mt.f 1-f T 2 • 

As far as the derivative term with respect to ~ is concerned, it is consistent with the pro­
posed method to replace the derivation by a finite difference such as 

[G(~9+ 1 , rJ)- G(~,, rJ)]/(~9+1- ~,)Gz 

with 

'1 1 

G = log'YJ J (1-rJ 2)ErJdrJ+ J (1-r/)Elog'YJrJdrJ, 
0 '1 

where E denotes the part in brackets of 8 (p. 6). 

(1) The starting solution (p. 4) should lead to n° X~ = n(M- M,0°)M, but a better convergence is 
obtained by assigning the boundary condition on the wall corresponding to X 1 = 0 instead of X, = 0. 
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