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Spectral problems for semidiscrete and discrete models

of the Boltzmann equation
Part 11

K. PIECHOR (WARSZAWA)

WE sTUDY spectral problems for the semidiscrete and the regular 2r velocities discrete models of
the Boltzmann equation which result in the course of analyzing forced sound waves. It is shown
that eigenvalues of the operator corresponding to the continuous distribution of velocities can
be approximated by eigenvalues of the operator generated by the discrete case. The eigenfunc-
tions of the continuous velocity distribution operator can be approximated by a sequence of
step functions built of suitable eigenvectors of the discrete velocity distribution operator. On
the other hand, the essential spectrum of the continuous velocity distribution operator, being
unbounded, cannot be approximated by the spectrum of any discrete velocity distribution
operator, however large r can be.

Badane s3 zagadnienia spektralne dla poétdyskretnych i regularnych dyskretnych o 2r predkos-
ciach modeli rownania Boltzmanna, wynikajace z analizy propagacji wymuszonych fal dzwig-
kowych. Pokazuje si¢, ze wartosci wlasne operatora odpowiadajacego cigglemu rozkladowi
predkosci moga by¢ przyblizane przez wartosci wlasne operatora generowanego przez przypadek
dyskretny. Funkcje wiasne operatora o cigglym rozkladzie predkosci moga by¢ przyblizane
przez ciag funkcji schodkowych zbudowanych z odpowiednich wektoréw wlasnych operatora
o dyskretnym rozkladzie predkosci. Z drugiej strony, widmo istotne operatora o ciaglym roz-
kladzie predkosci, bedac nieograniczonym, nie moze by¢ przyblizane przez widmo zadnego
operatora o dyskretnym rozkladzie predkosci, bez wzgledu na to jak duze bedzie r.

Hccnemyem creKTpasnbHble 33jauMt JI71a MOJYAMCKPETHBIX M DErYJIAPHBIX JHCKPETHBIX, C 2r
CKOpDOCTAMHM, Mojerneil ypaBHeHHMA bosibliMaHa, BBITEKAIOUIHE M3 2HAJIH33 PaCIpPOCTPAHEHHA
BBIHYK[IEHHbIX 3BYKOBbIX BOJH. IlokasblBaercsl, uTo COOCTBEHHBIE 3HAUCHHs OIEPAaTOpa,
OTBEUAIOLIETO HENpepbIBHOMY PACHpENENeHHIO CKOPOCTH, MOTYT NPHOIIKAThCA CcoOCTBEH-
HbIMH 3HAUECHHSMH OIlepaTopa, FeHepHPOBAHHOIO AUCKPeTHbIM ciayuaem. CobcrBeHHbIe QyHK-
IIHH ONEpPaTopa, C HEeNpPEePLIBHBLIM paclpelelleHHeM CKOPOCTH, MOTYT MpHOIIIKAThCA Iocire-
FOBATeJILHOCTBIO CTYNEHUYATIX (YHKIHIA, IIOCTPOEHHBIX H3 COOTBETCTBYIOUIMX COOCTBEHHBLIX
BEKTOPOB OIEpaTopa, C MHCKPETHbIM pacnpepenenuem ckopoctt. C apyroif CTopoHmI, Cy-
LIECTBEHHbIH CIEKTD OIepaTopa ¢ HeNpepbIBHBIM pacnpejeleHHeM CKOPOCTH, 6yayun Heorpa-
HHYEHHBbIM, HE MOQ)KeT NPHOIMKAThCA CIIEKTPOM HHKAKOIo olepaTopa C JHCKPETHBIM pac-
[pe/leJIeHH M CKOPOCTH, HECMOTPS Ha To, Kak OoJsiblium OymerT.

1. Introduction

IN 1980 CABANNES [1] proposed the so-called semidiscrete model of the Boltzmann equa-
tion. It is the following integro-differential equation for the distribution function N(¢, x, 0):

2n
(1.1) iN(r, X, e)+c-faf N(, x, 0) = &?.f N(1, x, PIN(1, X, p +7)dp
dt 0x o
—2¢SN(t, x, ON(t, x, 0+ 7),
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where ¢ > 0 is the time, x = (x, y) € #? is the position, 0 € {0, 27> and ¢ = c(cosf, sinf)
is the velocity vector with constant modulus ¢, d/ox stands for the gradient operator with
respect to x and the dot in c¢-(&/0x) denotes the standard scalar products in #2. Finally,
the positive constant S is proportional to the collisional cross-section. The distribution
function N(t, x, 0) is assumed to be 2m-periodic with respect to 6. The above model was
introduced as a formal limit to the discrete regular 2r velocity model as r — 0. The latter
model of the Boltzmann equation proposed by GATIGNOL [2] is a system od 2r semilinear
partical differential equations of the hyperbolic type:

2r
d a S \”
(1.2) ’3?Nm+cm "a—x—Nm = TAT NNJ_H. 2¢SN, Nm+n m=1,2,..,2r,
o=
where N, = Np(t, x) (m = 1,2, ..., 2r) is a density of particles moving at the velocity c,,
(1.3) Cpm = c(cos (m—;])n’ sin (m—rl):n)’ m=12, .., 2r

The densities N, are assumed to satisfy

(1.4) Nowoi =Nas m=1,2; s 28

The aim of the paper is to analyse the forced sound wave propagation described by the
two types of models (1.1) and (1.2). LonGo, MoNAcO and PLATKOWSKI [3] were the first
who investigated sound waves for the semidiscrete model.

This paper is a continuation of the previous one [4], and its objective is forced sound
waves. Here we do not give full proofs and omit some calculations since they are similar

to those given in [4].

2. Forced sound waves by the semidiscrete model

We linearize Eq. (1.1) around a uniform state of rest by setting
N(t, x, 0) = No(1+P(1, x, 0)),

where P is a small perturbation. The function P(z, x, 6) is 2n-periodic in . We introduce

A, x, 0) = % [P(t, x, )+ P(t, x, 0+ 7)),

B(t,x,0) = % [P, x, 0)— P(t, x, 0+7)).

The linearized Cabannes equation can be reduced to an equation for 4 only (see [4]):
2
@2.1) %2- A—( ; ) A+ 4cSn, j 4CSN° f-_Ad ©0<0< ).

In what follows, a one-dimensional flow in the x-direction, periodic in time, is considered.
Therefore we look for solutions of Eq. (2.1) in the form

2.2) A(r, x, 0) = a(6)exp (i(kx—wt)),
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where the complex wave number k is treated as an unknown function of the real and posi-
tive frequency w.
From Egs. (2.1) and (2.2) we obtain the following equation for the amplitude a(f):

2.3) (1+iR—22%cos20)a(0)—iR —71; f a(p)de = 0,
where '
ke
2.4 A T
(2.5) R= 4“5N ag

The parameter R can be interpreted as the inverse of the Knudsen number. We treat it
as fixed but arbitrary and usually it is not indicated as an argument.

Calling T(2) the operator generated by the left-hand side of Eq. (2.3), we write this
equation as follows:

(2.6) T(A)[a] = 0.
Similarly to [4] we take the set C (0, =) of continuous functions defined on <0, x) as the
domain of T(4). The eigenproblem (2.6) is not of the classical form (AI— A), for some
A and I being the identity operator, hence, as usual, we call it generalized, and the spectrum
of T(A) is called generalized.

As it is seen from Eq. (2.3), the essential generalized spectrum of T(2) consists of such
A that the coefficient of a(f) can vanish for some 0 € €0, n). Thus

2(1+iR) 2(1+iR)
Tg m-—--A—2— =0 s

where Re and Im stand for the real and imaginary parts of a complex number.

The generalized essential spectrum of 7'(4) is shown in Fig. 1. In this figure the dashed
line represents the boundary of the union over R > 0 of the generalized essential spectra
of T(2, R), hence it is the boundary of the set

U 0e(R).
R<0

a,={leC:0<Re 1, I

This boundary is a part of the following hyperbola:
2(Red)?*—2(ImA)? = 1.

For every fixed R, the essential spectrum of T(4; R) consists of two infinite rays belong-
ing to the same straight line: one ray is contained in the first quadrant and the second
in the third one. In Fig. 1 the rays for R = 0 to 3 every 0.5 are shown.

The dots in Fig. 1 represent the point spectra of T(4, R) for R =0 to 3 with step 0.5.
If A ¢ 0., then the solution of Eq. (2.3) must be of the form

C

&5 40) = TR —27c0s0 ’

where C is a constant.

5%
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Fic. 1. The generalized spectrum of T(A).

Substituting Eq. (2.7) into Eq. (2.3), we check easily that C # 0 if and only if

(2.8)

10

05

F1G. 2. Sound dispersion.

. 1+2iR

2(1+iR)’
Thus the generalized point spectrum of 7T(4) consists of two eigenvalues. The corresponding
eigenfunctions are given by Eq. (2.7). The eigenvalues of T(4) have a direct physical inter-
pretation. Namely the real part of the eigenvalue 4 is the sound dispersion, i.e., it is the
inverse of the dimensionless sound speed, and the imaginary part of A is the sound atte-
nuation. They are shown in Figs. 2 and 3 versus the rarefaction parameter R.

i

PEKERIS et al. [5]

present theory, ......

SiroviCH, THURBER[8].
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FiG. 3. Sound attenuation. - — - — - PEKERIS ef al. [S] —— present theory, ...... SiroVICH, THURBER [8].

The present results show some qualitative similarity to those obtained by PEKERIS,
ALTERMAN, FINKELSTEIN and FRANKOWSKI [5] from the true linearized Boltzmann equa-
tion. In particular, we see from Fig. 3 that the attenuation coefficient vanishes as the
sound frequency w tends to infinity. This is, however, an unrealistic result since both the
experiments [6, 7] at the theoretical results by SirovicH and THURBER [8], predict finite
positive attenuation for large values of w. To explain the agreement between the present
results and those of PEKERIS et al. [5], we remind first the essence of their method. The
authors looked for solutions of the linearized Boltzmann equation by expanding the per-
turbation to the distribution function in a series of Sonine polynomials, and next they
truncated the series at a finite number of terms. Since such a truncation gives an asymptotic
expansion which is not uniform as the molecular velocity tends to infinity, they ignored,
as a matter of fact, high molecular velocities. Similarly, in the Cabannes model the high
molecular velocities are ignored since they all have the same absolute value. Thus in both
theories the high molecular velocities are missing, and, in our opinion, it is this feature
which makes the results similar.

3. Forced sound waves by discrete models

We linearize Eqs. (1.2) around a uniform state of equilibrium by setting
Na(t,x) = No(1+P,(t,x)), m=1,2,..,2r,

where P,, is a small perturbation.
We define

1

A,y = 7 (Pm+Pm+r)r

1
B~ Y (Pp—Ppyy), m=1,2,..,2r
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In [4] the quantities 4,, are shown to satisfy the following system of equations:

2 r

G.1) :—;Am— (c,,, 8‘9__) A +4cSNO—;A 4“fN° ,2—;-,4,‘, m=1,2..,r
and
3.2 Apyr = Ay
Knowing 4,, we can find B, and, consequently, P, (see [4]). We look for solutions of
Egs. (3.1) in the form
(3.3) An(t, x) = anexp (ikx—wt)),
where k, x, t and » have the same meaning as in the previous chapter.

Substituting Eq. (3.3) into Egs. (3.1), we obtain for a,, the following set of linear alge-
braic equation:

(3.9 (l +iR—21%cos® ~— (e~ l)az) i Za,, =0,

where A and R are the same as in Eqgs. (2.4) and (2.5). Let 7,(4) stand for an operator
given by the left hand side of Egs. (3.4). It is an operator mapping the complex r-dimensio-

nal space C" into itself.
Let us notice that the last term on the left hand side of Eqs. (3.4) is constant, i.e., it
does not depend on m. Therefore the general solution of these equations is of the form

3.5 a, = - ———-C———— m=12,..,r,

1
1+iR—2A%cos? -(m—;—)ﬁ

where C is a constant, unless the denominator vanishes. This happens if

(.6) gy fee dTR e 1,8,k
2cos? ——(m_ i

All complex numbers of the form (3.6) are denoted by o¢". We have obviously
3.7 o = g, < g,
where o, is the generalized spectrum of 7,(1), o, is the generalized essential spectrum of

T(4). We add the word “generalized” to mark that Eq. (3.4) is not of the classical eigen-

problem of the form
det(AI—A4) =0,

where 7 is a unit matrix, and 4 is a quadratic matrix. Substituting Eq. (3.5) into Eq. (3.4),
we obtain an equation for C, which has a nonzero solution if and only if 4 is such that

(3.8) F(4) =0,
where
IR 0 1 o
(39) Fi(3) = 1—72 T

i=1 14+iR—22%cos
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With the symbol ¢¢® we denote the set of the eigenvalues of T,(A) which are solutions
of Eq. (3.8). We have obviously

(3.10) o, = oVuo®, oVnd? =0,

LeMMA 1. Let R > 0, and let A* be the eigenvalues of 7(2). For every real ¢ such that
0 < & < dist(A*, o.) where dist(z, 4) is the distance between a point ze C and a set
A < C, there exists an integer r, such that for every r > r, the operator T,(2) has exactly
one eigenvalue in an e-neighbourhood of A* and exactly one eigenvalue in an g-neighbour-
hood of A-.

SKETCH OF THE PROOF. We define

(3.11) F.(u) = F, (L)
u
(3.12) Fi) = F(_l.),
IIl.é
where
iR [ 1
3.1 Fy=1--=\\_---
e @ nof [ +iR—24%c0s%p 17"
The zeros of b:(,u) are
1
ur = qE

Now, proceeding as in the proof of Lemma 2 of [4], we obtain easily the assertion. We
proceed to determine the eigenvectors of T,(4).
We introduce the function

1
14iR—242%cos%)
This is well defined if A ¢ o, where o, is the generalized essential spectrum of T(A4).
LEMMA 2. Let R >0

i) The components a,(m = 1,2, ...,r) of the eigenvector a(i) corresponding to
4 € o'® are given by

a(, 1) =

(3.14) a, =a (_(m—rl)n’ ﬁ,), m=12% it Aol

i) If 1 € ot?, then the components a,, of the eigenvector a(2) are given by
() = 0y jio1—Oms—jrr, m=1,2,..,r, j=12..5-1
in the case of r = 2s where dy, is the Kronecker’s delta, and A are given by Eq. (3.11);
any by
n(AF) = O jy1—Om.2s—js2r m=1,2,..,r, j=12 .5

where A} are given by Eq. (3.6).
The proof of the above Lemma is similar to that of Lemma 6 of [4].
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4. Approximation of the spectrum problem of 7(2) with that of T,(4)

We put
00 = o,
r=2
and
or = g, U {AT, A"}
We define

1
G, = eC:—eaw},
{,u "

or = {,u € C:Tall eaT}u {0}.

Following [4] it can be shown that for every fixed R > 0, the set ¢, is bounded. Using
that we can prove

THEOREM 1. &% = G, where GJ is the derivative of o, i.e., & is the set of points of
accumulation of 0.

From this theorem it follows immediately

COROLLARY ~

Given a 1 € o and a positive ¢, then there is A € o, such that |1 — i| < &

Of course, there is r such that W,(4) = 0. The number r depends generally on &, what
is natural, but also it depends on A what is undesirable. Unfortunately, this last dependence
cannot be removed. This is due to the fact that for every fixed r (and R) the generalized
spectrum of 7,(4) is contained in a bounded subset of the complex plane C, whereas the
generalized essential spectrum of T'(4) is unbounded. In other words, with the generalized
spectrum of one fixed 7,(A), however large r can be, it is impossible to approximate the
generalized spectrum of T(1). Consequently, in this aspect the Cabannes semidiscrete
model can be hardly treated as a limit of the regular 2r velocity model.

Let A(*) be one of these eigenvalues of 7,(4) Lemma 1 says about, and let a(-@‘:l)—ﬂt ,

2,‘.*’) (m = 1,2, ...,r) be the components of the corresponding eigenvector. We form the

following step function:
a20= Y o[ T o)),
m=1

where y%(0) is the characteristic function (indicator) of the interval

<(m—l)n nm)
=)

r
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Following [4] it can be proved:
THEOREM 2. Let R > 0, then

lim a# (0) = a*(0),

r— oo

uniformly in 0 € {0, x).
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