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Spectral problems for semidiscrete and discrete models 
of the Boltzmann equation 
Part II 

K. PIECHOR (WARSZAWA) 

WE STUDY spectral problems for the semidiscrete and the regular 2r velocities discrete models of 
the Boltzmann equation which result in the course of analyzing forced sound waves. It is shown 
that eigenvalues of the operator corresponding to the continuous distribution of velocities can 
be approximated by eigenvalues of the operator generated by the discrete case. The eigenfunc­
tions of the continuous velocity distribution operator can be approximated by a sequence of 
step functions built of suitable eigenvectors of the discrete velocity distribution operator. On 
the other hand, the essential spectrum of the continuous velocity distribution operator, being 
unbounded, cannot be approximated by the spectrum of any discrete velocity distribution 
operator, however large r can be. 

Badane S<l zagadnienia spektralne dla p61dyskretnych i regularnych dyskretnych o 2r pre(dkos­
ciach modeli r6wnania Boltzmanna, wynikaj'lce z analizy propagacji wymuszonych fal diwie(­
kowych. Pokazuje siC(, ze wartosci wlasne operatora odpowiadaj<lcego ci'lglemu rozkladowi 
pre(dkosci mog'l bye przybli:Zane przez wartosci wlasne operatora generowanego przez przypadek 
dyskretny. Funkcje wlasne operatora o ci'lglym rozkladzie pre(dkosci mog'l bye przybli:Zane 
przez ci'lg funkcji schodkowych zbudowanych z odpowiednich wektor6w wlasnych operatora 
o dyskretnym rozkladzie pre(dkosci. Z drugiej strony, widmo istotne operatora o ci'lglym roz­
kladzie pre(dkosci, be(d<lc nieograniczonym, nie moze bye przybli:Zane przez widmo :Zadnego 
operatora o dyskretnym rozkladzie pre(dkosci, bez wzgle(du nato jak du:Ze be(dzie r. 

HccJie;zyeM cneKTpaJibHbie 3a~at.1Ji ~Jia noJiy~H:cKpeTHbiX n perymipHbiX ~H:CKpeTHbiX, c 2r 
cKopoCTHMH:, Mo~eJieii ypaBHeHIDI EoJih~MaHa, BbiTeKaro~ne H3 aHaJIH3a pacnpoc-rpaHeHH.H 
BbiHY>K~eHHbiX 3BYKOBbiX BOJIH. IloKa3biBaeTCH, 'lTO C06CTBeHHbie 3Ha'leHH:H onepaTopa, 
OTBe'lalO~ero HenpepbiBHOMY pacnpe~eJieHH:IO CKOpOCTH, MoryT npH:6JIH>KaTbCH co6CTBeH­
HbiMl{ 3Ha'leHl{HMH: onepaTopa, reHepnpoaaHHoro ~H:cKpeTHhiM cJiyqaeM. Co6craeHHbie <PYHK­
~nn onepaTopa, c HenpepbiBHbiM pacnpe~eJieHneM cKopocTH, MoryT npn6Jin>KaTbcH nocJie­
~oaaTeJihHOCThlO cryneH'laTbiX <J;>yHK~H:if, llOCTpOeHHbiX 1{3 COOTBeTCTByiD~HX C06CTBeHHbiX 
BeKTOpOB onepaTopa, C ~H:CKpeTHbiM pacnpe~eJieHlieM CKOpOCTl{. C ~pyroif CTOpOHbi, cy­
~eCTBeHHbiH cneKTp onepaTopa c HenpepbiBHbiM pacnpe~eJieHl{eM cKopocrn, 6y)zy'll{ Heorpa­
HH:'leHHbiM, He Mo>KeT npn6JIH:>KaThCH cneKTpoM HH:KaKoro onepaTopa c ~H:CKpeTHbiM pac­
npe~eJieHH: M CKOpOCTH:, HeCMOTpH Ha TO, KaK 60Jibiiil{M 6y~eT. 

1. Introduction 

IN 1980 CABANNES [1] proposed the so-called semidiscrete model of the Boltzmann equa­
tion. It is the following integro-differential equation for the distribution function N(t, x, 0): 

271 

(1.1) a a cS J TtN(t, x, O)+c · axN(t, x, 0) =---;;-- N(t, x, cp)N(t, x, cp+n)dcp 
0 

- 2cSN(t, x, O)N(t, x, 0 + n), 
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where t ~ 0 is the time, x = (x, y) E 312 is the position, () E (0, 2n) and c = c(cos(), sin()) 
is the velocity vector with constant modulus c, 8/ ox stands for the gradient operator with 
respect to x and the dot in c · (8/o'f.) denotes the standard scalar products in 312

• Finally, 
the positive constant S is proportional to the collisional cross-section. The distribution 
function N(t, x, ()) is assumed to be 2n-periodic with respect to (). The above model was 
introduced as a formal limit to the discrete regular 2r velocity model as r -+ oo. The latter 
model of the Boltzmann equation proposed by GATIGNOL [2] is a system od 2r semilinear 
partical differential equations of the hyperbolic type: 

2r 

(1.2) 
a a cS ) 

7fjNm+cm · 7JX.Nm = r ~ NiNH,.-2cSNmNm+" m = 1, 2, ... , 2r, 
j=l 

where Nm = Nm(t, x) (m = 1, 2, ... , 2r) is a density of particles moving at the velocity Cm 

(1.3) ( 
(m-1)n . (m-1)n) 

em = c cos , sm , m = 1, 2, ... , 2r. 
r r 

The densities N m are assumed to satisfy 

(1.4) Nm+2r = Nm, m = 1, 2, ... , 2r. 

The aim of the paper is to analyse the forced sound wave propagation described by the 
two types of models (1.1) and (1.2). LoNGO, MoNACO and PLATKOWSKI [3] were the first 
who investigated sound waves for the semidiscrete model. 

This paper is a continuation of the previous one [4], and its objective is forced sound 
waves. Here we do not give full proofs and omit some calculations since they are similar 
to those given in [4]. 

2. Forced sound waves by tbe semidiscrete model 

We linearize Eq. (1.1) around a uniform state of rest by setting 

N(t, x, ()) = N0 (1 + P(t, x, ()) ), 

where Pis a small perturbation. The function P(t, x, ()) is 2n-periodic in (), We introduce 

1 
A(t, x, ()) = 2 [P(t, x, ())+P(t, x, ()+n)], 

1 
B(t, x, ()) = 2 [P(t, x, ())-P(t, x, ()+n)]. 

The linearized Cabannes equation can be reduced to an equation for A only (see [4]): 

a2 
( a )2 a 4cSNo In a 

at 2 A- c·Tx A+4cSn0 atA = n 7fiAdlp, 
0 

(2.1) (0 ~ () ~ n). 

In what follows, a one-dimensional flow in the x-direction, periodic in time, is considered. 
Therefore we look for solutions of Eq. (2.1) in the form 

(2.2) A(t, x, ()) = a(())exp(i(kx-wt)), 
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where the complex wave number k is treated as an unknown function of the real and posi­
tive frequency w. 

From Eqs. (2.1) and (2.2) we obtain the following equation for the amplitude a(O): 

(2.3) 

where 

(2.4) 

(2.5) 

n 

(1 +iR-2A2cos20)a(O)-iR ! J a(cp)dcp = 0, 

kc 
A= yiw' 

R = 4cSN0 , 

w ~· 

0 

The parameter R can be interpreted as the inverse of the Knudsen number. We treat it 
as fixed but arbitrary and usually it is not indicated as an argument. 

Calling T(A) the operator generated by the left-hand side of Eq. (2.3), we write this 
equation as follows: 

(2.6) T(A) [a] = 0. 

Similarly to [4] we take the set C ( (0, n)) of continuous functions defined on (0, n) as the 
domain of T(A). The eigenproblem (2.6) is not of the classical form (Al-A), for some 
A and I being the identity operator, hence, as usual, we call it generalized, and the spectrum 
of T(A) is called generalized. 

As it is seen from Eq. (2.3), the essential generalized spectrum of T(A) consists of such 
A that the coefficient of a(O) can vanish for some() E (0, n). Thus 

{ 
2(1 +iR) 

a e = A E C: 0 ~ Re A 2 ~ 1, I 2(1 +iR) = o} 
m A2 , 

where Re and Im stand for the real and imaginary parts of a complex number. 
The generalized essential spectrum of T(A) is shown in Fig. I. In this figure the dashed 

line represents the boundary of the union over R ;;;::: 0 of the generalized essential spectra 
of T( A, R), hence it is the boundary of the set 

U ae(R). 
R .. o 

This boundary is a part of the following hyperbola: 

2(ReA)2 - 2(ImA)2 = 1. 

For every fixed R, the essential spectrum of T(A; R) consists of two infinite rays belong­
ing to the same straight line: one ray is contained in the first quadrant and the second 
in the third one. In Fig. 1 the rays for R = 0 to 3 every 0.5 are shown. 

The dots in Fig. 1 represent the point spectra of T(A, R) for R = 0 to 3 with step 0.5. 
If A.¢ ae, then the solution of Eq. (2.3) must be of the form 

(2.7) 
c 

a(O) = I +iR-2A2cos2 0 ' 

where Cis a constant. 
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FIG. 1. The generalized spectrum of T(.A.). 
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Substituting Eq. (2. 7) into Eq. (2.3), we check easily that C # 0 if and only if 

(2.8) A 2 = _!_±_2iR 
2(1 +iR)' 

Thus the generalized point spectrum of T(A) consists of two eigenvalues. The corresponding 
eigenfunctions are given by Eq. (2.7). The eigenvalues of T(A) have a direct physical inter­
pretation. Namely the real part of the eigenvalue A is the sound dispersion, i.e., it is the 
inverse of the dimensionless sound speed, and the imaginary part of A is the sound atte­
nuation. They are shown in Figs. 2 and 3 versus the rarefaction parameter R. 

1 2 3 4 

FIG. 2. Sound dispersion. ----- PEKERIS eta/. (5] -- present theory, .. . ... SIROVICH, THURBER(8]. 
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FIG. 3. Sound attenuation. - - - -- PEKF.RIS eta/. [5) --present theory, . ... .. SIROVICH, THURBER (8). 

The present results show some qualitative similarity to those obtained by PEKERIS, 
ALTERMAN, FINKELSTEIN and FRANKOWSKI (5] from the true linearized Boltzmann equa­
tion. In particular, we see from Fig. 3 that the attenuation coefficient vanishes as the 
sound frequency w tends to infinity. This is, however, an unrealistic result since both the 
experiments [6, 7] at the theoretical results by SIROVICH and THURBER [8], predict finite 
positive attenuation for large values of w. To explain the agreement between the present 
results and those of PEKERIS et a/. [5], we remind first the essence of their method. The 
authors looked for solutions of the linearized Boltzmann equation by expanding the per­
turbation to the distribution function in a series of Sonine polynomials, and next they 
truncated the series at a finite number of terms. Since such a truncation gives an asymptotic 
expansion which is not uniform as the molecular velocity tends to infinity, they ignored, 
as a matter of fact, high molecular velocities. Similarly, in the Cabannes model the high 
molecular velocities are ignored since they all have the same absolute value. Thus in both 
theories the high molecular velocities are missing, and, in our opinion, it is this feature 
which makes the results similar. 

3. Forced sound waves by discrete models 

We linearize Eqs. (1.2) around a uniform state of equilibrium by setting 

Nm(t, x) = N0 (1 +Pm(t, x)), m = 1, 2, ... , 2r, 

where P m is a small perturbation. 
We define 
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In [4] the quantities Am are shown to satisfy the following system of equations: 
r 

a2 ( . a )2 a _ 4cSN0 '\"1 a 
(3.1) at2 Am- Cm ax- Am+4cSNo-atAm- - r- .L...J atAk, m = 1, 2, ... , r 

k=l 

and 

(3.2) 

Knowing Am, we can find Bm and, consequently, Pm (see [4]). We look for solutions of 

Eqs. (3.1) in the form 

(3.3) Am(t, x) = ll,neXp (i(kx-rot) ), 

where k, x, t and ro have the same meaning as in the previous chapter. 
Substituting Eq. (3.3) into Eqs. (3.1 ), we obtain for am the following set of linear alge­

braic equation: 

( 
(m-1)n) iR ~ 

1 +iR-2.Fcos2 r am-,- L.J ak = 0, 
k=l 

(3.4) 

where A. and R are the same as in Eqs. (2.4) and (2.5). Let T,(A.) stand for an operator 

given by the left hand side of Eqs. (3.4). It is an operator mapping the complex r-dimensio­

nal space C' into itself. 
Let us notice that the last term on the left hand side of Eqs. (3.4) is constant, i.e., it 

does not depend on m. Therefore the general solution of these equations is of the form 

(3.5) 
c 

-----------· ' 
1 +iR-2A.2cos2 .(m- 1)Ut 

r 

m = 1, 2, .. . , r, 

where C is a constant, unless the denominator vanishes. This happens if 

(3.6) A.;i = + ~ l+iR , m = 1, 2, ... , r. 
-

2 2 
(m-1)n 

cos 
r 

All complex numbers of the form (3.6) are denoted by ~1>. We have obviously 

(3. 7) ~l) c a, c ae, 

where a, is the generalized spectrum of T,(A.), ae is the generalized essential spectrum of 
T(A.). We add the word "generalized" to mark that Eq. (3.4) is not of the classical eigen­
problem of the form 

det(A./- A) = 0, 

where I is a unit matrix, and A is a quadratic matrix. Substituting Eq. (3.5) into Eq. (3.4), 

we obtain an equation for C, which has a nonzero solution if and only if A. is such that 

(3.8) 

where 

(3.9) 

r iR2 1 Fr(A) = 1-- ( 1) • r m- n 
i=t 1 +iR-2A.2cos2

--­
r 
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With the symbol 0'~2 > we denote the set of the eigenvalues of T,(J.) which are solutions 
of Eq. (3.8). We have obviously 

(3.IO) 

LEMMA 1. Let R > 0, and let).± be the eigenvalues of T(J.). For every real s such that 
0 < s < dist(J. ±, a e) where dist(z, A) is the distance between a point z E C and a set 
A c C, there exists an integer r4 such that for every r ~ rs the operator T,(J.) has exactly 
one eigenvalue in an s-neighbourhood of ). + and exactly one eigenvalue in an s-neighbour­
hood of;.-. 

SKETCH OF THE PROOF. We define 

(3.1I) 

(3.I2) 

where 

(3.13) 

i,(}J) = F, ( ~), 

i(}J) = F( ~), 
rr. 

F().) = 1 - i~ f 1 d 
"" I +iR-2J.2cos2 rp cp. 

0 

The zeros of F(p) are 

± - 1 
fl --_v· 

Now, proceeding as in the proof of Lemma 2 of [4], we obtain easily the assertion. We 
proceed to determine the eigenvectors of T,(J.). 

We introduce the function 

a(O, ).) = . 
1 +iR-2J.2cos2 0 

This is well defined if).¢ O'e where O'e is the generalized essential spectrum of T(J.). 
LEMMA 2. Let R > 0 
i) The components am(m = 1, 2, ... , r) of the eigenvector a(J.) corresponding to 

). E a~2 > are given by 

(3.I4) = ((m-l)n 1 ) am a , A, 
r 

m = I, 2, ... , r, 

ii) If ). E a~1 >, then the components am of the eigenvector a(J.) are given by 

am(J.j) = ~m.J+l- ~m.2s-J+l' m = 1, 2, ... , r, j = 1, 2, ... , s-1 

in the case of r = 2s where ~kt is the Kronecker's delta, and J.f are given by Eq. (3.11); 
any by 

am(J.f) = ~m.J+t- ~m.2s-J+2' m = 1, 2, ... , r, i = 1, 2, ... , s 

where J.j are given by Eq. (3.6). 
The proof of the above Lemma is similar to that of Lemma 6 of [4]. 
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4. Approximation of the spectrum problem of T(A) with that of T,.(A) 

We put 

and 

We define 

00 

a oo = U a, 
r=2 

if00 ~ {/L E C: ~ E <700}, 

iTT~ {/L E C: ~ EuT}u{O). 

Following [4] it can be shown that for every fixed R ~ 0, the set &00 is bounded. Using 
that we can prove 

THEOREM 1. 0! = aT where a;? is the derivative of (]00 i.e., 0! is the set of points of 
accumulation of a 00 • 

From this theorem it follows immediately 
COROLLARY 

Given a A EaT and a positive E, then there is ~ E a 00 such that !A- ~ I < e. 

Of course, there is r such that W,.(~) = 0. The number r depends generally on E, what 
is natural, but also it depends on A what is undesirable. Unfortunately, this last dependence 
cannot be removed. This is due to the fact that for every fixed r (and R) the generalized 
spectrum of T,(A) is contained in a bounded subset of the complex plane C, whereas the 
generalized essential spectrum of T{A) is unbounded. In other words, with the generalized 
spectrum of one fixed T,(A), however large r can be, it is impossible to approximate the 
generalized spectrum of T(A). Consequently, in this aspect the Cabannes semidiscrete 
model can be hardly treated as a limit of the regular 2r velocity modeL 

. ( (m-l)n 
Let A~±> be one of these eigenvalues of T,.(A) Lemma 1 says about, and let a r , 

' 
A~") (m ~ I, 2, ... , r) be the components of the corresponding eigenvector. We form the 

following step function: 

r 

o~~(O) ~ 2>( (m~ 0" , ;t~±>)x!,';'(O), 
m=l 

where x~>(O) is the characteristic function (indicator) of the interval 
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Following [4] it can be proved: 
THEOREM 2. Let R > 0, then 

lim a;(()) = a±(()), 

uniformly in () E (0, n). 
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