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Instability of the motion of a spherical drop
in a vertical temperature gradient

J. SKIEPKO and J. PANAS (WARSZAWA)(*)

THE STABILITY of the motion of a spherical drop is analyzed in the presence of Marangoni effect
generated by heterogeneity of a temperature field. The solution of the linearised Navier-Stokes
equations, describing the motion of a drop is found. Using the classical approach of the linear
theory of stability, the equation determining the values of frequences of disturbances is obtained.
The given numerical example indicates the existence of disturbances growing in time, what
means the instability of the investigated motion.

Badana jest stabilnos¢ ruchu sferycznej kropli przy udziale efektu Marangoniego, wywolanego
niejednorodnoscia pola temperatury. Wyprowadzono rozwigzanie zlinearyzowanego ukladu
rownan Naviera-Stokesa opisujace ruch sferycznej kropli. Stosujac klasyczne podejécie liniowej
teorii stabilnosci, wyprowadzono réwnanie okreslajace czestosci zaburzen. Podano przyktad
liczbowy $wiadczacy o istnieniu rosnacych wraz z czasem zaburzen i w konsekwencji o nie-
stabilnosci ruchu kropli.

B pabore paccmaTpHBaeTcsi yCTOMYHBOCTD OBMIKEHHA YKUOKOH Chepuuecioii KaIy, OIBH-
YKYLUEHCA U3-3a TefCTBHA CHII TSDKECTH H CHJI BOHMKAIONIUX 34 CUET H3MEHEeHHs IOBEPXHOCT-
HOTO HANPSXKEHUST B IIoJIe Temneparypbl. HalileHb! pellleHns JIHHEeapPH30BAHHDLIX YPaBHECHHI
Hasbe-Crokca, onmchIBalONuX qBHKeHHe KarutH. IIpUMeHAs KilaccHJecKuit anmapar JiMHeH-
HOH YCTOHUMBOCTH, BBIBENEHLI YPABHEHMsI, ONPEICIAIONIHE YaCTOTHI Bosmymenuit. ITpu-
BeJICH YHCJICHHBIH MPHUMEp YKa3bIBAIONIMH Ha CYyIIECTBOBAHHE BO3PACTAIOLIMX CO BpeMerem
BO3MYIUIEHHI H BCJIEACTBHE 3TOTO Ha HEYCTOHUMBOCTH TEUEHHS.

1. Introduction

A FLUID DROP immersed in another fluid immiscible with it is driven by buoyancy and by
the force resulting from the variation of surface tension. The last effect is called the Maran-
goni effect. Buoyancy is proportional to the difference of densities of the fluids and to
gravitation; it vanishes in the case of equal densities or in the absence of gravity.

In some technological processes migration of droplets is desirable (processing of
high quality glasses); in other cases it hinders the achievement of an intentional aim (pre-
paration of composites, foamy materials). In the absence of gravitation in the Spacelab,
only the Marangoni effect can be used to eliminate unnecessary bubbles forming in glass
processing.

Also, according to current views, the Marangoni effect plays an important role in
biological processes but, in that case, surface tension variation is due to chemical reactions
on the surfaces of cells. The first attempt at constructing a mathematical model of the

(*) The first of the authors was given partial support by the Polish government under the contract
CPBP 01.22.
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main aspects of such processes was made by Sorensen in the paper [1]. In that paper the
stability of a spherical interface, with chemical reactions on the surface, is investigated.
As a result it is shown that for the instability of an interface, the instability of chemical
reactions is necessary.

In technical problems, the role of chemical reactions generating the variation of surface
tension is played by the temperature gradient. It is interesting to note that for the insta-
bility of motion of a drop, in the absence of chemical reactions, the temperature must be
unstable. Apart from that, the problem of stability of the motion of a drop is in itself
a problem of physical interest.

In the present paper, the stability of the motion of a spherical drop is investigated.
As the basic solution, the one describing the motion of a drop and given in [2, 3] has been
assumed. Modal expansion of disturbances of the velocity field and pressure is used in the
form of spherical functions. A secular equation is obtained. The numerical solution of
this equation for the chosen example shows instability. It seems that instability occurs in
the majority of cases.

2. Hydrodynamical equations and the solution describing the motion of a drop in unlimited
media

Assuming that the velocity of a drop is low, we can use the linearised form of Navier—
Stokes equations which, in the spherical coordinate system, with the origin in the centre
of a drop, can be written in the form

du, 1 dy, 1 dv,  2v,  wectgh
@D T Tt Eme g T F T 0
B oy T e, A om 1w, 2 de,
0 T TR T e T rsint 9 T o
ogh o, 2wy 2 v, Jv, 20188 |
2 90 2 060  r’sinf dg re R
dvy 1 P 8%, 1 &% 1 3%, 2 &y
98 gl . o, 1 9% oy | A
@3 eFr+rm "[w YT e T risng epr T r &
ctgh dv, 20080 v, 2 v, U __]
TP 90 T risin20 dp 0 r? 90 risin®0 |
v 1 @P %y 1 2% 1 0%
4 : NP P p L L 9 0
@8 et 1sine dg ‘“[ a T e T Psinto o
2 & ctgf v 2 9o, 2cosf v, Vg
W M1 "% -t o - — aaaTg |
r or rr o r2sinf dp = r?sin?6 dp  r?sin’f

Buoyancy forces are included in P, P = p+pgz, p — static pressure. The polar axis z is
vertically directed, v,, vy, v, — components of velocity, o — density, the temperature
gradient is parallel to the axis z.
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We denote all parameters describing flow inside the drop with the subscript i, and
outside with the subscript 0.

In accordance with our assumptions concerning the directions of the temperature
gradient, we have an axisymmetrical problem. In consequence, the velocity components
and pressure v, = V,(r,0), vy = Vy(r,0), P = P(r, ), are the functions of r and 6, and
v, = 0. We have the following boundary conditions:

(2.5) V,o = Ucos for r— oo,

V,; = finite value, for r = 0, U — the axial velocity of the drop.
From Egs. (2.1), (2.2) and (2.3) follows the equation

1 & ([ ,éP 1 & f x BPY
26) 7 (’ “aT) * P 5mb o0 (*‘"‘(’W) =0,
the solution of which can be described by the Legendre s polynomial p,
P = Anr—upn—l +Bn'J’pns

n=1
and we have to take

A
2.7 P, = r—zcos(), P, = Brcos0,
since otherwise there are no solutions of the system (2.1), (2.2), (2.3) satisfying the condi-
tions (2.5). Continuity equation at r = R (R is the radius of the drop) gives

A
2.8) B = ek
Substituting Eq. (2.7) in Egs. (2.1), (2.2), (2.3), we get the solution for the velocity
components in the form

2.9)

where A, B, C, D are constants which are determined by the boundary conditions of the
flow. The boundary conditions of velocity at the surface of the drop of the radius R is
given as follows:

Vr0=Vri=0 at r=R:

(2'10) Vgo = Vo‘ = 0 at = R.
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Also on the surface of the drop the normal and the shearing stresses should be equal:

v, v, 2
Oro = —Po+2io 3r07 = —P+2u 3ri + -% =g, at r=R,
.11
— 1 aI/rO 3V60 VEO _ 1 aﬂ” an VB! ‘i
S ""(r @t o )M\ tm Y o
y — surface tension,
(2.12) fy=9 ‘;[T = »'T’sinf

the force due to the thermal variation of the surface tension.
For the calculation of f’, the temperature field is needed. The energy equation has
the form

% +V(gradT) = V2T,

x — the coeflicient of the thermal diffusivity of the fluid.
If ¥ < 1 and » > 1, the energy equation can be approximated by the Laplacian equa-
tion
V2T = 0,
which gives the solution

E
T, = TC+T’(r+ rz-)cosﬂ,

To = T,+ Frcos0,
satisfying the boundary conditions suitable to our problem,
T=T/(t)+Trcos for r— oo,
T<ow for r=0,

T. — function of ¢ connected with the motion of the centre of the drop.
Substituting Egs. (2.9) in Egs. (2.10) and (2.11) and using (2.8), the constants A4, B, C,
D and U can be determined. The following form of U,

U— 2g(0i—00) (u—po)R* +4y  2(2uo+p)yT'R
3p Qi+ 3p0) 3 gty + 3 o)

describes the velocity of the drop in a laboratory system. The first term is due to gravity
and the second to the termocapillary convection.

(2.13)

3. The formulation and the discussion of the stability problem

According to the linear stability approach, for the discussion of the stability of the
solution of the system (2.1), (2.2), (2.3), (2.4) obtained in Sect. 2, we introduce the distur-
bances of the velocity components u,, up, 4, and a disturbance of the static pressure in
the gravity field p. The disturbed velocity components V,+u,, ¥+ up, u, and the distur-
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bed pressure P+p must satisfy the equation (2.1)-(2.4). Since the system V,, V5, V,, = 0,
P satisfies these equations, the same must apply to the disturbances u,, uy, u,, p. Using
the continuity equation (2.1), the terms with 4, and %, can be eliminated from the momen-
tum equation for the radial component of velocity #,. As a result the momentum equation

takes the form
ou, 1 dp v, o u
(31) —E?t__ F797+TV (ru,), V—?.
Similarly as P, also p satisfies the Laplacian equation:
. ¥p 2 dp 1 o (. . 1 &
2 i — R, L P Sl
G ¥Vi= ar* " r dr ' r’sinf a0 (smﬂ 20 ) T T7snze dp? 9

We look for the solution in the form of the modal expansion
(3.3) p = pe®, U, =ue”, Uy =ue™, u,=ue” o=ow+tio.

The disturbances with w, > 0 grow in time, so if they exist, the basic solution is unstable.
The general solution of Eq. (3.2) has the form

(3.4) ﬁ = (a“rl+azgr"'+”)Y,e‘”',

Y, — spherical functions, a,;, a,; — constants, / =0, 1, 2,.... Since p must be finite, in
the inner solution a,; = 0, and in the outer a; = 0

(3.5 Pu=aurYe” =p,Ye” p,;= “u"',
(3.6) Pio = aur MY, = p Y™,  pyo = ayr- 40,
Substituting instead of p, p;; given by Eq. (3.5) and &, = u,;Y;e*" in Eq. (3.1), the following

equation is obtained:

dr? rr r? ¥,

d? 2 d I1+1 lag,r*
3.7 [ a+1) w]u“ = oL

where u;; = ru,;, and similarly for the outer region

ldz 2.d  Ii+1) w] lag,r-¢+v
— | — — . —————— A N— ulo —_—

(3.8)

a* " r r r? Vo Oo%o
where u;, = ru,. It is easy to verify that
lag,rt
uj; = —
(39) 13 0.0

satisfies Eq. (3.7) and
.,  (+ Day r~¢+D
(310) Ulp = gow

is the solution of (3.8).
Now, in order to find the general solution of Eq. (3.7) or Eq. (3.8), we look for the
solution of the homogeneous equation corresponding to Eq. (3.7) or Eq. (3.8)
[ > 2.d I(+D) co]
K4

B:11) drr " r odr r? v
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Introducing the new variable

5 172
(3.12) Zie= r(——)

v
Eq. (3.11) takes the form of the spherical Bessel equation:

2
(3.13) [z —;—2— +22; ——zz—i-l(l-l-l)]v, =0,
the solution of which are modified Bessel functions having the following series expansions:
1 [
g 77 (7 z’)
* I - I L

G TGO = g |V n@ey T @@ty T

4 I I+k &
(3.15) K2 4@ = ('2})‘3_' k(' (J; 36)‘ Q2)~*.

Since for z = 0 which corresponds to r = 0, K,*+ *(z) is infinite, it cannot be used for the
construction of the inner solution, and for a similar reason (at infinity I;: J.f(z) is not finite)
1:*+ i(z) cannot be used for the construction of the outer solution. As a result the most

general solution of Eq. (3.7) has the form

(3.16) ty = A,.x'+B“I,*+%(q.x),
and of Eq. (3.8)
(3.17) Uy = A:ox”(H”'FBmK;:%(%xh

1/2 1/2
where x = r/R, q; = (?2) R, qo = (%) R, R — the radius of the drop.
i 0

The first terms in Egs. (3.16) and (3.17) represent the special solutions of Eqgs. (3.7)
and (3.8), so 4;; and A4, are determined constants:

Rla I+ 1a
(3.18) Ay = __g:_a;l-lﬂ’ Ap = %RT)I%!— g

On the surface of the drop, all components of the velocity vector have to be equal. For
the normal components we have

(3.19) u, =u, for x=1,
or from (3.16) and (3.17)
(3.20) Auxl'*'BuI::i(QI) = Ajox~ (l+n+B K+}(‘Io)

The second condition, following from the equality of tangential components, after using
the continuity equation, can be written as

(3.21) duy _ duy

ax Ix for x=1.
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It is easy to verify that for the functions I;‘; %(z), K;"+ %(z), the following identities are

true:
d .
(3.22) Z*&;fr (2) = fi-1@) -+ 1)fi(2),
(3.23) zZ[fi-1@—fir1(@] = QI+ 1 f(2).
Using Eqgs. (3.16), (3.17) and (3.22), the condition (3.21) can be written in the form
1A11+[Qi1* %(q,) (H‘l)l %(qi)]-Bli = —(-1DAp—[9 K %(QO) (/+ I)K %(QO)]Bm
Solving the last equation and Eq. (3.20) with respect to A;; and A4;,, we obtain
1
(3.24) Ay = — [CIJ,*_‘_%(%)BH+‘10Kﬁ_%(‘]o)3m]21—+1-
(3.25) Ao = —[q.If i %(‘]l)Bu“i‘QO il %(qO)BIO] 21_+_1

Besides the continuity conditions for the velocity vector, expressed by the equalities
(3.24) and (3.25), also the continuity of the components o,,, 0,4, o,, Of the tensor stresses,
on the surface of the drop, has to be guaranteed. The condition for normal stresses after
using the continuity equation, can be written as follows:

u,, y 1 a ., 0 1 d*
G209 ¥l tom [“ b 70 5" ~ sinzg g7 |ORir=n

r=R

AR is a disturbance of the radius of the drop, it can be expressed in the form R = (ﬁ)
r=R

déR
ot lr=R
The continuity conditions for o4, o,, can be written in the form

1 Qu, | Qw1 _ o[ 1 fuo | Bue | 1 ]

(320 ”‘[‘R‘ a0 +_aT"+f”“LR “""[‘K 0 T o TR o

1 au,, Oy 1 _ 1 upo | Oupo 1
(32) "‘[Rsine 2o T ar TR™|x " H| Rsin6 ¢ T ar ~ RY|r’
! ? 0 to Eq. (3.27), the o erator 1 ¢ to Eq. (3.28),

Rsind o9 *n0 10 Ea- (3.27), the operator i 7, to Ba.
adding the results and using continuity equation (2.1), the velocnty components u, and
u,, can be eliminated, and after some calculation the following equation can be obtained:

i+1
(3.29) ,“[ ( ;Z ) e D 3r r2 = PR u,,)]

what follows from u,|z = = wiR|,_r.

Applying the operator ———

I(l + l) 1
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Substituting
P =puYe”, po=ppoYe”,
_ u " — u ° u
ur1="¥‘Yl'e'! u'_O:—%-Yl-g" 6R=(C()!é)
into Eq. (3.26), we obtain the equation
d U uh | d U0 I
(30  put2my (ﬁ) SR = ot 20

which, together with Eq. (3.29), gives the system of homogeneous equations joining four
functions wuy;, 40, pui, Pio- The functions py;, pio depend on two undefined constants a,;
and a,;, the functions u;;, u;, additionally depend on the constants Bj;, B;,. Substituting
Egs. (3.5), (3.6), (3.16) and (3.17) in Eqgs. (3.29) and (3.30) and eliminating a,;, a.;, Ay,
Ajp, using Eqgs. (3.18), (3.24) and (3.25), we come to the system of two equations:

C11-B:1+Cltho =0,

3.31
( ) CZI-BH+C22B10 =0,
where
21(1+2)
Cy =~ [W(ﬂo—#:)*l‘i]qillt%(%)—l«‘tq}],ti(%),
(3.32) S
+1D(1—-
Ciy = [%(f“o_ﬂi)—#o]%lai(‘lo)‘*‘(‘h 20— K 15 %(4'0)’
__ 1 (e, eo 224N I0+1)-2 .
(32) Cu = 5 [( 1 +1)w+ (o= )+ = 4% 4 @)
w
+ 2RI @),
Gy, = 2‘Iﬁ[(1 + I+1 w+ ""*Ri'**(ﬂo—.”t)-i‘ W oK %(40)
+ w@o %(40)
The system (3.31) has the nontrivial solution if
Ci G2
(3.33) det[ ] =0
CZ[ C22

The matrix elements C;; are, as we can see from the system (3.31), complicated functions
of the frequency parameter (through the parameters ¢;, go). The solution of the secular
equation (3.33) gives values of the frequency wy,. The existence of wy with positive real
part means that there are growing disturbances and, in consequence, that flow is unstable.
In view of the complexity of the secular equation, the general discussion of the properties
of its roots cannot be effective. Only numerical calculation for every interesting case can
give the required results.
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4. Numerical example

To calculate the roots of the secular equation (3.32), the values of the functions [l’: %(q),
Kl’: _}(q) are necessary. These functions depend on the frequency parameter, through the
parameters q;, 4o, and are defined by Eqgs. (3.14) and (3.15). The function 1 ;“+ 1(g) is given

2

in the form of an infinite power series. For calculation, only finite number of the first
terms can be used, what gives approximate values. The accuracy of the approximation
depends on the number of terms taken to calculate / 1*+ %(q). We design the order of approxi-

mation by the number of terms used in the calculation of I;“+ %(q). Due to the complexity
of the equation solved, it is difficult to estimate the condition of calculation of I!*+ 1 (9) ensur-
z

ing the required accuracy of calculation of w. But, if for several consecutive orders of
approximation the calculated values of o differ in a sufficiently small manner, we can
recognize the result to be satisfactory.

For the construction of a numerical example we selected the problem of air drop,
or rather bubble, immersed in water, and moving according to the variation of surface

Table 1. Properties of fluids.

| K ] |
medium } e 5 | #- 10 5 4 1013
} [kg m™?] | [Ns m=?%] [Nm~"]
water 1000 17 20
b 0.2 20

Table 2. The values of a real part of the frequency parameter w.

B

R / First Second Third Fourth
[mm] approximation approximation approximation approximation
1 0.01496 0.01421 0.01432 0.01431
2 0.00448 0.00451 0.00452 0.00453
10 3 0.00783 0.00752 0.00751 0.00745
5 1.01478 0.01473 0.01473 0.01473
1 1.49553 1.42583 1.42763 1.42751
2 0.44899 0.45114 0.45115 0.45115
1 3 0.78595 0.78353 0.78364 0.78359
5 1.47874 1.47393 1.47411 1.47425
1 149.553 142.587 137.453 137.211

0.1 2 44,9229 46.2385 45.5643 45.4536

3 78.5193 76.4372 78.3776 78.4154

f 5 145.342 142.215 143.328 143.368
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tension in the temperature field and to the gravity forces. Since this example serves only
to illustrate the existence of growing modes, the fact that the chosen media do not fully
satisfy some previously made assumptions, such as incompressibility, the small difference
of densities of fluids is immaterial. After all, the last chosen media are the most common
ones.

The properties of water and air necessary for calculation are given in Table 1.

Table 2 illustrates the results of calculation of the real part of frequency. The calcula-
tions have been performed up to fourth-order approximation, and for the first five
spherical harmonics / = 1, 2, 3, 4, 5.

For I = 4 and all chosen values of R, there are no w with a positive real part. The
result of lower order approximations are shown in Table 2 to demonstrate the influence
of the subsequent term of the series expansion of 7* .(g) on the value of frequency. The

i+1
small differences suggest that the order of approximation is high enough to make the
results correct.
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