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Instability of the motion of a spherical drop 
in a vertical temperature gradient 

J. SKIEPKO and J. PANAS (WARSZAWA)(*) 

THE STABILITY of the motion of a spherical drop is analyzed in the presence of Marangoni effect 
generated by heterogeneity of a temperature field. The solution of the linearised Navier-Stokes 
equations, describing the motion of a drop is found. Using the classical approach of the linear 
theory of stability, the equation determining the values of frequences of disturbances is obtained. 
The given numerical example indicates the existence of disturbances growing in time, what 
means the instability of the investigated motion. 

Badana jest stabilnosc ruchu sferycznej kropli przy udziale efektu Marangoniego, wywolanego 
niejednorodnosci~ pola temperatury. Wyprowadzono rozwi~zanie zlinearyzowanego ukladu 
r6wnan Naviera-Stokesa opisuj~ce ruch sferycznej kropli. Stosuj~c klasyczne podejscie liniowej 
teorii stabilno§ci, wyprowadzono r6wnanie okre§laj~ce cz~stosci zaburzen. Podano przyklad 
liczbowy swiadc~cy o istnieniu rosn~cych wraz z czasem zaburzen i w konsekwencji o nie­
stabilnosci ruchu kropli. 

B pa6oTe paccMaTpllBaeTca ycToWmBOCTh ~Bim<emm >lillro<o:ii c¢epH"t!eci<oi1 I<amur, ,[(BH­
»<yi.Qeiica H3-3a ,[(eHCTBI{H: CllJI TH::>KeCTll H CHJI B03Hlll<aiOIQHX 3a cqeT H3MeHeHJfH: nosepXHOCT­
HOrO HanpameHAA B IIoJie TeMIIeparyphi. Haii.[(eHbi perneHI{H: JillHeapwaosaHHhiX ypasHeHilH 
Hasbe-CToi<ca, onllChiBaiOIQHX ,[(BroJ<eHile RarrJill. TipllMeHH:H: RJiacclftlecRHii arrrrapaT JIHHeii­
HOH ycroiil.ffiBoCTll, BbiBe,[(eHbi ypaBHemm, orrpe,[(emiJOI.Qlle qacroThi B03Myi.QeHI!ii. Ilpw­
Be,[(eH "t!I!CJieHIIbxH IIpHMep yRa3biBaiOIQHH Ha cyi.QeCTBOBaHI!e B03paCTaiOIQHX CO BpeMeJ-JeM 
B03Myi.QeHJfH H BCJie,[(CTBI!e 3TOrO Ha HeyCTOH"t!KBOCTb TeqeHH.H. 

1. Introduction 

A FLUID DROP immersed in another fluid immiscible with it is driven by buoyancy and by 
the force resulting from the variation of surface tension. The last effect is called the Maran­
goni effect. Buoyancy is proportional to the difference of densities of the fluids and to 
gravitation; it vanishes in the case of equal densities or in the absence of gravity. 

In some technological processes migration of droplets is desirable (processing of 
high quality glasses); in other cases it hinders the achievement of an intentional aim (pre­
paration of composites, foamy materials). In the absence of gravitation in the Spacelab, 
only the Marangoni effect can be used to eliminate unnecessary bubbles forming in glass 
processing. 

Also, according to current views, the Marangoni effect plays an important role in 
biological processes but, in that case, surface tension variation is due to chemical reactions 
on the surfaces of cells. The first attempt at constructing a mathematical model of the 
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main aspects of such processes was made by Sorensen in the paper [1]. In that paper the 
stability of a spherical interface, with chemical reactions on the surface, is investigated. 
As a result it is shown that for the instability of an interface, the instability of chemical 
reactions is necessary. 

In technical problems, the role of chemical reactions generating the variation of surface 
tension is played by the temperature gradient. It is interesting to note that for the insta­
bility of motion of a drop, in the absence of chemical reactions, the temperature must be 
unstable. Apart from that, the problem of stability of the motion of a drop is in itself 
a problem of physical interest. 

In the present paper, the stability of the motion of a spherical drop is investigated. 
As the basic solution, the one describing the motion of a drop and given in [2, 3] has been 
assumed. Modal expansion of disturbances of the velocity field and pressure is used in the 
form of spherical functions. A secular equation is obtained. The numerical solution of 
this equation for the chosen example shows instability. It seems that instability occurs in 
the majority of cases. 

2. Hydrodynamical equations and the solution describing the motion of a drop in unlimited 
media 

Assuming that the velocity of a drop is low, we can use the linearised form of Navier­
Stokes equations which, in the spherical coordinate system, with the origin in the centre 
of a drop, can be written in the form 

(2.1) 

(2.2) 

(2.3) 

OVr + __!__ Ov0 + _ _ I _ _!l!q;_ + }:_vr + VoctgO = O 
or r oO r sin 0 ocp r r ' 

Ovo 1 oP [ o2v0 1 o2v0 1 o2v0 2 Ovo 
(! Tt + r oO = !' or2 + --,:z o02 + r2 sin 20 ocp2 + r 7f1 

ctgO i}v0 2cos0 ovq; 2 ovr 
+ ---- - - +- - --

r2 oO r2 sin2 0 ocp r2 ao 

(2 4) n ovq; + 1 oP [ ()2vq; + 1 o2v'P + 1 o2vq; 
. r:7f( rsinO ocp =p, 7fi2 --;:z~ r2 sin2 0 ocp2 

2 Ovq; ctgO Ovq; 2 Ovr 2cos0 Ov0 Vq; ] +--- + - ---+ -+ - 2Ll • r or r2 oO r2 sin 0 ocp r2 sin2 0 ocp r2 sin u 

Buoyancy forces are included in P, p = p + egz, p- static pressure. The polar axis z is 
vertically directed, vr, v0, vq;- components of velocity, e- density, the temperature 
gradient is parallel to the axis z. 
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INSTABILITY OF THE MOTION OF A SPHERICAL DROP 813 

We denote all parameters describing flow inside the drop with the subscript i, and 
outside with the subscript 0. 

In accordance with our assumptions concerning the directions of the temperature 
gradient, we have an axisymmetrical problem. In consequence, the velocity components 
and pressure Vr = Vr(r, 0), v8 = V8(r, 0), P = P(r, 0), are the functions of r and 0, and 
vtp = 0. We have the foil owing boundary conditions: 

(2.5) V,0 = UcosO for r-+ oo, 

Vri = finite value, for r = 0, U- the axial velocity of the drop. 
From Eqs. (2.1 ), (2.2) and (2.3) follows the equation 

(2.6) 1 a ( 2 aP ) 1 a ( . aP) _ 
~ Tr r Tr + r 2 sin0 ao smO oO - O, 

the solution of which can be described by the Legendre s polynomial Pk 
(() 

P = .J; Anr-"Pn-1 +Bnr"Pn, 
n=l 

and we have to take 

(2.7) 
A 

P 0 =~cosO, P1 = BrcosO, 
r 

since otherwise there are no solutions of the system (2.1), (2.2), (2.3) satisfying the condi­
tions (2.5). Continuity equation at r = R (R is the radius of the drop) gives 

(2.8) 
A 

B = Ji3· 

Substituting Eq. (2.7) in Eqs. (2.1), (2.2), (2.3), we get the solution for the velocity 
components in the form 

Vro = coso(u+ ~ + ~), 
r Po' 

V,, = cosO ( D+ 1~,., r2
), 

V90 =sino(- U+ 2~ - 2:.,), 
(2.9) 

v., = sino(-D+ ~~ r2
), 

where A, B, C, D are constants which are determined by the boundary conditions of the 
flow. The boundary conditions of velocity at the surface of the drop of the radius R is 
given as follows: 

(2.10) 
Vro = Vr, = 0 at r = R, 

Vt~o = V6, = 0 at r = R. 
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Also on the surface of the drop the normal and the shearing stresses should be equal: 

2 
oV,0 oV,1 2y 

U"o = -Po+ #o--ar-= -P,+2p,i----af + R = Urri at r = R, 
(2.11) 

u 
60 

= #o (___!__ oV,o + oVao _ Veo) = #t (~- Bv,, + oVa1 _ Va1 ) +fy' = Uat 
r r ()(} or r ,. ofJ or r r ' 

y - surface tension, 

(2.12) f , , dT , T' . (} 
Y =r---;o=r sm 

the force due to the thermal variation of the surface tension. 
For the calculation of fy', the temperature field is needed. The energy equation has 

the form 

oT at + V(grad T) = V2 Tu, 

" - the coefficient of the thermal diffusivity of the fluid. 
If V ~ 1 and " ~ 1, the energy equation can be approximated by the Laplacian equa­

tion 

which gives the solution 
V 2 T = 0, 

T1 = Tc+ T'(r+ ! )cosO, 

To = Tc+FrcosfJ , 

satisfying the boundary conditions suitable to our problem, 

T = Tc(t)+ T'rcosfJ for r ~ oo, 

T < oo for r = 0, 

Tc - function of t connected with the motion of the centre of the drop. 
Substituting Eqs. (2.9) in Eqs. (2.10) and (2.11) and using (2.8), the constants A, B, C, 

D and U can be determined. The following form of U, 

(2.13) 
U = 2g(e,-eo) (p,,-p,o)R 2 +4y _ 2(2p,0 +p,,)yT'R 

3p,1 (2p,1 + 3p,0) 3p,1 (2p,1 + 3p,0) 

describes the velocity of the drop in a laboratory system. The first term is due to gravity 
and the second to the termocapillary convection. 

3. The formulation and the discussion of the stability- problem 

According to the linear stability approach, for the discussion of th~ .stability .of the 
solution of the system (2.1), (2.2), (2.3), (2.4) obtained in Sect. 2, we introduce the distur­
bances of the velocity components u,, u6, ulp and a' disturbance of the static pressure in 
the gravity field p. The disturbed velocity components V,+·u,, V6 +u6 , ulp and the distur~ 
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INSTABILITY OF THE MOTION OF A SPHERICAL DROP 815 

bed pressure P + p must satisfy the equation (2.I )-(2.4). Since the system V,., V1h Vlp = 0, 
P satisfies these equations, the same must apply to the disturbances u,., u0, ulp, p. Using 
the continuity equation (2.I ), the terms with u0 and ufl' can be eliminated from the momen­
tum equation for the radial component of velocity u,.. As a result the momentum equation 
takes the form 

(3.1) au,. I a-p y 2 ( ) -=---+-V ru ot (! or r ,. ' 

Similarly as P, alsop satisfies the Laplacian equation: 

y = .!!:__, 
(! 

) 
2 - o2p 2 a-p I a ( . 0 a-p ) I o2p 

(3·2 Vp= ar2-+r or +r2 sin0 oO sm oO + r2 sin2 0 afP2 =O. 

We look for the solution in the form of the modal expansion 

(3.3) p = pewt, u,. = u,.ew', Uo = Uoew', ulp = Urpew', (J) = w,.+iw,. 

The disturbances with w,. > 0 grow in time, so if they exist, the basic solution is unstable. 
The general solution of Eq. (3.2) has the form 

(3.4) 

Y1 - spherical functions, a 11 , a21 - constants, I = 0, I, 2, . . . . Since p must be finite, in 
the inner solution a21 = 0, and in the outer a11 = 0 

(3.5) 

(3.6) 

Pu = aur' Y,ewt = Pu Y,ew', Pu = aur', 

Pw = a2,r-<l+Oy,ewt = PtoY,ew', Pw = a2,,-<l+t>. 

Substituting instead ofp,pli given by Eq. (3.5) and ii,. = u,.iY1ew' in Eq. (3.I), the following 
equation is obtained: 

(3.7) 

where uu = ru,.~, and similarly for the outer region 

(3.8) [ 
d2 + 2__!!_ _ l(i+l) _.!!!_]uw = la21 r-<'+O 
dr2 r r r2 Yo (!o Yo 

where u10 = ru,.0 • It is easy to verify that 

(3.9) 

satisfies Eq. (3.7) and 

(3.10) 

is the solution of (3.8). 

ufo = 
(/+ l)a21 r-<l+t> 

(!oW 

Now, in order to find the general solution of Eq. (3.7) or Eq. (3.8), we look for the 
solution of the homogeneous equation corresponding to Eq. (3.7) or Eq. (3.8) 

[__!E_ + _}:_ __!!__- 1(1 + 1) - !:!...] v, = 0. 
(3-11) dr2 r dr r2 Y 
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Introducing the new variable 

(3.12) 

Eq. (3.11) takes the form of the spherical Bessel equation: 

(3.13) 

the solution of which are modified Bessel functions having the following series expansions: 

(3.14) 

I 

(3.15) * ( ) - ( Jl ) -z ~ (/+k)! (2 )-k KI+! z - 2Z e .L.,; k!(l-k)! z . 
k=O 

Since for z = 0 which corresponds to r = 0, Kt+t (z) is infinite, it cannot be used for the 

construction of the inner solution, and for a similar reason (at infinity /
1
:! (z) is not finite) 

I* ~ (z) cannot be used for the construction of the outer solution. As a result the most 
1+-z 

general solution of Eq. (3.7) has the form 

(3.16) 

and of Eq. (3.8) 

(3.17) -A -<l+t>+B K* ( Uw - wX 10 I+! qox" 

where x ~ rfR, q1 = {;,) 
112 

R, q0 ~ ( ~} 
112 

R, R ~the radius of the drop. 

The first terms in Eqs. (3.16) and (3.17) represent the special solutions of Eqs. (3.7) 
and (3.8), so Au and A 10 are determined constants: 

(3.18) Au = - Rlau' A - (I+ 1)a2, 
(!fW lO - (!oRl+l • 

On the surface of the drop, all components of the velocity vector have to be equal. For 
the normal components we have 

(3.19) u11 = u10 for x = 1, 

or from (3.16) and (3.17) 

(3.20) A11 x'+Bult+!(q,) = A,ox-<'+ 1~+BwK1:t(qo)· 
The second condition, following from the equality of tangential components, after using 
the continuity equation, can be written as 

(3.21) for x = 1. 
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It is easy to verify that for the functions /* .1 (z), K* .1 (z), the following identities are 
l+z l+z 

true: 

(3.22) 

(3.23) 

z ~ft(z) =ft- 1 (z)-(/+1)j~(z), 
z[ft_t (z)-h+ 1 (z)] = (21 + 1)fz (z). 

Using Eqs. (3.16), (3.17) and (3.22), the condition (3.21) can be written in the form 

!Au+ [qJt_t (q,)- (/+ 1)/:+! (q1)]Bu = - (l-1)A 10 - [q0 K1~!(q0)- (l+ 1)K7+t(qo)]Bw. 

Solving the last equation and Eq. (3.20) with respect to Au and A 10 , we obtain 

(3.24) Au = - [q1 11~!(qJBu+qoK1~!(qo)BIO] 21~ 1 , 

(3.25) 

Besides the continuity conditions for the velocity vector, expressed by the equalities 
(3.24) and (3.25), also the continuity of the components a,, a,(h a,rp of the tensor stresses, 
on the surface of the drop, has to be guaranteed. The condition for normal stresses after 
using the continuity equation, can be written as follows: 

( ) 
_ au,, y [ 1 a . 0 a 1 a2 

] ~ 
1 3.26 Pt + 2fl1 ar + f2 2 + sin() aB sm aB - sin2 () a(/)2 uR r=R 

2 au,o I =Po+ flt_a_ · 
r r=R 

c5R is a disturbance of the radius of the drop, it can be expressed in the form c5R = ( u,) 
W r=R 

oc5R [ what follows from u,IR = -
0
- = wc5Rir=R· 
1 ,r=R 

The continuity conditions for a,0, a,rp can be written in the form 

[ 
1 au,i au(Ji 1 ] [ 1 au,o auoo 1 ] 

(3.27) flt R ----arJ +----a;:-+ RUot r=R =flo R ----arJ +a,-+ RUoo r=R' 

[ 
1 au,, aurpt 1 ] [ 1 au,o aurpo 1 ] 

(3·28) l't Rsin() alp +----a;:--}iurpt r=R =flo Rsin() ---a;p+a,--}iu'P r=R· 

. 1 a . 1 a 
Applymg the operator--. -

0 
~() smO to Eq. (3.27), the operator -R . () ~to Eq. (3.28), 

Rstn u stn uqJ 

adding the results and using continuity equation (2.1 ), the velocity components u0 and 
u, can be eliminated, and after some calculation the following equation can be obtained: 

[ 
I(l+ 1) a 1 a 2 ] 

(3.29) p,, R 2 u,+ -a 2 -a (r uu) 
r r r r=R 

[ 
/(1 + 1) a 1 a 2 ] 

= /Jo R 2 u,o+!l2-a (r u,o) . 
ur r r r•R 
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Substituting 

- Uu y wr 
uri = ·- - l • e ' 

r 
- Uzo y tw 
Uro = - r- l • e ' 

into Eq. (3.26), we obtain the equation 

(3.30) d ( Uu ) y Uu I d Uw I Pli+2p,t - - - + - 2 [2-/(/+ 1)]- = Pw+2t-to--
dr r r wr r=R dr r r=R 

which, together with Eq. (3.29), gives the system of homogeneous equations joining four 

functions uu, u10 , Pu, p 10 • The functions Pu, p 10 depend on two undefined constants all 

and a21 , the functions uli, u10 additionally depend on the constants Bu, B10 • Substituting 
Eqs. (3.5), (3.6), (3.16) and (3.17) in Eqs. (3.29) and (3.30) and eliminating all, a 21 , Ali, 
A10 , using Eqs. (3.18), (3.24) and (3.25), we come to the system of two equations: 

(3.31) 

where 

(3.32) 

(3.32) 

C11 Bu+C12 B10 = 0, 

1 [( (!1 (!o ) 2(2 + /) /(/ + 1)- 2 ] * c21 = 2/+1 T + /+1 w+ -~(}to-P,t)+ R3 'Y qtll+t(qt) 

we, I* ( ) + -~- l+t qt ' 

C22 ~ 21~1 [( ~~ + ~~·! )w+ 2(~~1) <Po-l'<)+ 1(1;!~-2 y ]qoK;_!(qo) 

W(!o K* ( + I+ 1 1-f qo)· 

The system (3.31) has the nontrivial solution if 

(3.33) [
ell C12] 

det c21 c22 = 0. 

The. matrix elements Cii are, as we can see from the system (3.31 ), complicated functions 
of the frequency parameter (through the parameters qi, q0 ). The solution of the secular 
equation (3.33) gives values of the frequency Wzk· The existence of w1k with positive real 
part means that there are growing disturbances and, in consequence, that flow is unstable. 
In view of the complexity of the secular equation, the general discussion of the properties 
of its roots cannot be effective. Only numerical calculation for every interesting case can 
give the required results. 
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4. Numerical example 

To calculate the roots of the secular equation (3.32), the values of the functions I*~ (q), 
1+-z 

K* 1 (q) are necessary. These functions depend on the frequency parameter, through the 
1+-z 

parameters qi, q0 , and are defined by Eqs. (3.14) and (3.15). The function 1
1
* ~(q) is given 
+z 

in the form of an infinite power series. For calculation, only finite number of the first 
terms can be used, what gives approximate values. The accuracy of the approximation 
depends on the number of terms taken to calculate 1

1
* ~ (q). We design the order of approxi-
+2 

mation by the number of terms used in the calculation of 17+! (q). Due to the complexity 

of the equation solved, it is difficult to estimate the condition of calculation of I* 1 (q) ensur-
1+ 2 

ing the required accuracy of calculation of w. But, if for several consecutive orders of 
approximation the calculated values of w differ in a sufficiently small manner, we can 
recognize the result to be satisfactory. 

For the construction of a numerical example we selected the problem of air drop, 
or rather bubble, immersed in water, and moving according to the variation of surface 

Table 1. Properties of Ooids. 

medium e !-'. 104 y. 103 

[kg m- 3] [Ns m- 2 ] [Nm- 1] 

water 1000 17 20 
air 1.3 0.2 20 

Table 2. The values of a real part of the frequency parameter w. 

[+] 
R 

I 
I 

I 
First 

I 
Second 

I 
Third 

I 
Fourth 

[mm] approximation approximation approximation approximation 

1 0.01496 0.01421 0.01432 0.01431 
2 0.00448 0.00451 0.00452 0.00453 

10 3 0.00783 0.00752 0.00751 0.00745 
5 1.01478 0.01473 0.01473 0.01473 

- --- --

1 1.49553 1.42583 1.42763 1.42751 
2 0.44899 0.45114 0.45115 0.45115 

1 3 0.78595 0.78353 0.78364 0.78359 
5 1.47874 1.47393 1.47411 1.47425 

1 149.553 142.587 137.453 137.211 

0.1 2 44.9229 46.2385 45.5643 45.4536 
3 78.5193 76.4372 78.3776 78.4154 

I 5 145.342 142.215 143.328 143.368 
I 
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tension in the temperature field and to the gravity forces. Since this example serves only 
to illustrate the existence of growing modes, the fact that the chosen media do not fully 
satisfy some previously made assumptions, such as incompressibility, the small difference 
of densities of fluids is immaterial. After all, the last chosen media are the most common 
ones. 

The properties of water and air necessary for calculation are given in Table 1. 
Table 2 illustrates the results of calculation of the real part of frequency. The calcula­

tions have been performed up to fourth-order approximation, and for the first five 
spherical harmonics 1 = 1, 2, 3, 4, 5. 

For 1 = 4 and all chosen values of R, there are no w with a positive real part. The 
result of lower order approximations are shown in Table 2 to demonstrate the influence 
of the subsequent term of the series expansion of /:+t(q) on the value of frequency. The 

small differences suggest that the order of approximation is high enough to make the 
results correct. 
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