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Dusty hydrodynamics oscillation
between two perturbed parallel plates

E. F. ELSHEHAWEY (CAIRO)

THE PROPAGATION of coupled modes in a viscous incompressible dusty fluid confined petween
two perturbed parallel plates is considered. The treatment is confined to the first-order perturba-
tion theory in order to simplify the algebra. The multiple scales approach yields information
on the transition curve separating passbands from stopbands as well as the interaction equations
which govern the amplitudes and phases of the coupled modes.

Rozwazono propagacje sprzezonych postaci drgan cieczy niescisliwej zawierajacej zawiesing
pytlowa pod wplywem zaklécen wprowadzonych przez rownolegle $cianki przewodu. Dla up-
roszczenia obliczen analiz¢ ograniczono do uwzglednienia teorii perturbacji pierwszego rzedu.
Podejscie wieloskalowe pozwala uzyska¢ informacje dotyczace krzywej przejscia oddzielajacej
pasma przepustowe od pasm thumieniowych, jak rowniez okreslajace wspolzaleznosé amplitud
1 faz sprzgzonych postaci drgan.

PaccmoTpeHO pacnpoCTpaHeHMe CONpPSKEHHBIX THIIOB KoOJICOEHHIT HECHKHMAaeMoil MKHIKOCTH,
coleprKaBUIeil IBIJIEBYIO B3BECD, II0Jl BJIMAHHEM BO3MYILUCHHII BBEHEHHBIX MapasliefbHBIMH
cTenKamu npoBopa. Jjia yNpoLeHHs: PacueToB aHAM3 OTPaHHUKMBACTCS YUCTOM TEOPHH Iep-
TypOauii nepsoro nopsaxa. MuoromacimrabHbIi IOAXOM HO3BOJISAET IIOJIYUUTh HHMOPMALMH,
KacaroMecs KpHBoil epexo/ia, oTAeIAIOIeH IIPOIyCKHBIE [IOJIOCHI OT IOJIOC 336D KHBaHHA,
KaK TOME ONpeeNaioNnne B3aUMO 3aBHCHMOCTh aMIUIMTYA M a3 CONPSDKEHHBIX THIIOB KO-
neGaHmii.

1. Introduction

RECENTLY, there has been considerable interest in periodic boundary perturbation problems,
and a review of much of the literature is presented in ASFAR and NAvreH [l].

The study of solid particles-fluid flow systems has been the object of scientific and
engineering research for a long time. The problem has appeared in various forms such as
sediment transport by water and by air, the centrifugal separation of particulate matter
from fluids, fluid-droplet sprays, fluidized beds and other two—phase phenomena of in-
terest in chemical processing. A number of studies of fluid embedded with particles have
appeared in the literature [2-8].

The problem of stability of a fluid layer has recently attracted investigators in various
fields as a result of its important physical applications in chemical engineering, medicine,
etc. Much work has been done on the hydrodynamic stability of a fluid layer without
periodic boundaries [9-13].

The aim of the present study is to examine the application of the method of multiple
scales [14] to the problem of propagation of coupled modes in a dusty viscous incompres-
sible fluid confined between two periodic plates.
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2. The system in equilibrium state

The equations of motion of a dusty, unsteady, viscous incompressible fluid based on
SAFFMAN’S [3] model of a dusty gas are

2.1) @(—g+v- gradv) = pg—gradp+uViv+ KN(u—v),
2.2 divy = 0,
| Bu —
(2.3) M(W—ku-gradu) = K(v—u),
(2.4) %J:I—-{—div(Nu) =0,

where v is the velocity of the fluid, u is the dusty velocity, p, M, K, N, and o are the fluid
pressure, the mass concentration of the dust particles, the Stokes resistance coefficient
which, for spherical particles, is 6ztud (1 being the coefficient of viscosity and d the radius
of dust particles; assumed to be spherical), the number density of the dust particles and
the fluid density, respectively. g = (0,0, —g) is the gravitational accelaration.

It is clear that there exist the following steady state solutions, when the number den-
sity N of the dust particles is taken as a constant N,

(2.5) 9=0, u=0 and pg = gradp.

3. Perturbation equations

Let the initial steady state be slightly perturbed. Following the classical lines of the
linear stability theory as presented by CHANDRASEKHAR [9], the equations governing two-
dimensional small perturbations may be written as

(3.1) o ,‘;L;? = — ‘;’)’c’ +uV20, + KN, (1, — v%),
(32) 6 = O e+ RN (),
(34) M 2 Ko,

3.5) M ‘;;’:; = K(v,—u}),

(3.6) e, O g,
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where the bar and the prime indicate steady-state and perturbed quantities, respectively,
and
&2 a2
2 — o - e
Vet
Equations (3.1)-(3.6) are simplified in the usual manner by decomposing the solution
in terms of normal modes, so that the space and the time dependence of the perturbed
quantities are of the type

A

3.7 F(x,z;t) = f(x, z)e"",
where o is the time constant which is complex in general. Thus we arrive at
(3.8) vig,—| 4 M-O)KNO-]%X(x, By o P
u u(Mw+ K) u ox
(3.9) va,—[ 60y M l%,(x,z) _ 1o,
" (Mo + k) u az
By &
3.1 4y P =0,
IS ox = 9z 0,
(3.11) b= B
Mw+K
(3.12) .
Mo+K

4. A periodic wall distortion function

We consider an infinite layer of dusty viscous fluid of depth 1. The lower surface at
z = 0 and the upper surface at z = 1.

The boundary condition to be satisfied at a hard wall is the vanishing of the normal
component of fluid and dust velocity. Let the two infinite plates be perturbed according
to the wall distortion functions

(4.1) z = esinK,x lower plate,
“4.2) z = 1+ esin(K, x+ 7) upper plate,

where ¢ is the dimensionless amplitude of the wall undulations and is assumed to be much
smaller than unity, K, is the spatial wavenumber of the perturbed plate and 7 is phase
shift.

The boundary condition can be written as

0,(x, 2) = eK,0.(x, 2)Cos K, x,

4.3) S
u(x,z) = & 2 _d.(x,z)CosK,x at z= esinky,x,
Mw+ K
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and
0,(x, 2) = eK,0.(x, z)Cos(Kux+ 1),
4.4 ( 7,
u,(x,z) = —8— ® _0.(x,2)Cos(K,x+1) at z= l4esin(K,x+71).
Mw+K
We now introduce the stream function ¥ such that
- ' A ¥
(45) v.\‘ = Wv v, = —’axj 3
R 2 s . W
(4.6) u, = E,f,a" iy = __k _ ._a_._,
Mo+ K 9z Mo+ K ox

and the vorticity 0 such that

% o 0, M, 7 “x i 2y 2ys
L = &_c';)zi_ a;.)x - wag_K ( aﬁli i?x ) - %362 aa:v- '
From Egs. (3.8)-(3.12) and (4.5)-(4.7) we get the equation of conservation of vorticity
(4.8) V20 +120 = 0,
where
(4.9) w80 MoKN,

© y(Mw-l—K)
The corresponding boundary conditions will be

(4.10) —?g{(a;;iz—) = ¢k, (gj(x"') CosK,x, at z= esinK,x,
- i
(.11) _‘?Ei();, D _ ek, Y(a"z 2} ol i, B 2= 1l e

5. The method of multiple scales

We seek a first-order uniform asymptotic expansion of Q and ¥ from
(5.1) Q(x, z) = f)o(xo, X3 Z)+8!}1(xo,xl§z)+ Vi 8
(5.2) Y(x,z) = Yolxo, x1; 2)+ ¥ (x0, x15 2+ ...,

where x, = x is a length scale characterizing distances that are the order of a wawelength
and x; = ex is a long length scale characterizing the spatial amplitude and phase modu-
lations. Substituting Eqgs. (5.1) and (5.2) into Egs. (4.8)-(4.11), we transfer the boundary
conditions (4.10) and (4.11) to the uniform boundaries z = 0 and z = 1 by developing ¥
and its derivatives in Taylor series around z = 0 and z = 1. Then we equate the coeffi-
cients of equal powers of ¢ on both sides of every equation and obtain
2
(5.3) 3629_+ aa'of 20, =0,

Ao, &,
e Y=g e
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(5.5) aci) =0 at z=0 and =z=1,

(5.6) a;g)‘ ¥ 59;5‘-+/‘.f,.(.31 —_—— a;;@dxl ]

(58 -— C;Q = sin(K.,,xo) 82’{; + é;f +K, EU CosK,x, at =z=0,

(5.9) —aail = sin(K,,xo+ T) 5 2¥;° +%—Y +K, &;{?’ Cos(K,x,+7) at =z =1

The solution of the reduced problem (5.3)-(5.5), for the case of resonance, with the
two dominant resonant modes with wave numbers K, and K, can be expressed as

(510) Dy = A (x,)sin(aan) e Ay(x,)sin(maz)es,
A (.X‘l) 3 iK X A |(xl) 3 X o \,
(5.11) Y, = — nl?ffﬁkf sin(nmz) Ko — 171727;24-17(,,2, sin(mmz)eXu
where
K = IZ—w'n® > 0,
(5.12)

K. = i2—m*n* > 0 for a propagating mode,

n and m are integers, and A,(x;) and 4,(x,) are to be determined at the next level of
approximation.
Substituting Eqs. (5.10) and (5.11) into Egs. (5.6)-(5.9) yields

H20) 0 0A, . - o OA e
(5.13) !” +‘d Lo e Ql = —2iK, i sin(nzwz) oo — 2iK,, " sin(mmz)efno,
O a'Yl 8,\]
~ Ve lll C}—!‘U sz,, aAn . -
(5.14) 0y = axo =i iz I’l—zfm 3\1 sin(nzz)e
T om? :I:,-"KZ o " sin(mnz)e®n,
o¥, nn(K,+ K,) o o ma(K,+K,) .
5 emie SRS i i Ml ¢,) Kt Ko - L2 4, o/ Koy + Ky)¥o
(5.15) axo 2(n*n + K2) Anlxi)e 2(m*n® + K2)
nav(K, + Ku) i, ~ K ma(Ky, K(,) (K Kun) _
e 2 i )X Ap(x,) e K= K)o at 7z =1
+ a4 k2) DEDC * St 1 K2) A
(516) == (rjl-[jl = _nn(_ I)”(K"_FK“) A e’[(Kw+Kn)‘n+T]
8,Y0 2(" +Kli
_ ma(=1)"(K, +Kw) ,_[(KU)+KM)XU_H]+mz£:!) (K, —K.) A eltKn—Ku)¥o-1]
2m*nt + K2) " 2(n*n* + K32) "
1%2):2(:{1(2)](”)/4". iKp=Kepo-tl at z=1,

8 Arch. Mech. Stos. 5/89
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The appearance of resonant terms in the right-hand sides of Eqgs. (5.13) is undesirable

because they make f)l unbounded. However, these secular producing terms can be elimi-
nated by a proper choice of the arbitrary functions A,(x;) and An(x,).

This particular choice is furnished by the solvability (integrability) condition of the
system (5.13)-(5.16). Since the homogeneous parts of Egs. (5.3) and (5.13) are identical,
the right-hand sides (or inhomogeneous parts) of Eqs. (5.13) must be orthogonal to the
solutions of the homogeneous problem. This is the solvability condition we are seeking.
To achieve this, we seek a particular solution of Egs. (5.13)-(5.16) in the form

(517) Ql = id)n(x] ’ Z)eiK"xn + Kpm(xl ] z)efx"'x“s
(5.18) Y, = i*(x,, z)eKi*o + iDX(x,, z)eKn*o,

We also consider the case of near resonance; that is, the two modes are coupled in
a frequency range close to the perfectly tuned case. To describe quantitatively the nearness
of K, to K,+K,,, we introduce a detuning parameter defined by

(5.19) K, =K, tK,+¢e0, o= 0().

This equation could be used with either the plus or minus sign and in each case the
condition could imply either one of two types of interaction: the interaction of two co-
directional modes or the interaction of two contradirectional modes. However, if we choose
coupled modes such that |K,| > |Kn|, then the plus sign corresponds to two opposite
modes whereas the minus sign corresponds to two codirectional modes. We use Eg.
(5.19) with the minus sign and express e/Ka—Kw)Xo gnd eKat+Kw)¥o as

(520) el Kn= Ko )Xo — piKyXo—icoXo — eiKmx.r-iaA‘.,
(521) eI K+ Koo — oiK,xo+iox;

Substituting Eqgs. (5.17), (5.18), (5.20) and (5.21) into Egs. (5.13)-(5.16) and equating
the coefficients of ¢&»*0 and e’X»*o on both sides, we obtain

(5.22) %2-2(1:" n*m*d, K, rgA -sin(nzz),

(5.23) d;f B SAI zCos(naz) + f’i"Kz ;Al sin(nnz),
(5.24) ‘9;(2 + i@, = 2K, ~g~/:~:—'f~sin(pnnz),

(5.25) 8;?* —K2QF = ;f; %’i— zCos(mnz) + aeriKz %—Im sin(mnz),
(5.26) D (x,,0) = z%;? J;”f;f“

(5.27) B2(x,, 0) = AN Kn—ed i,

2m2n*+K2) K2
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(5.28) D (x, ) = —TEARC) ()" Kyt eo
5 n 1,1) — 2(m2“2+K:) K,,Z,

nad (x)(= 1) Kn—e0
2(n2a? + K?) K
Hence the particular solution of Egs. (5.13)—(5.16) is given by

ez(crxl + r),

e-i(ax; +1) .

(5.29) Dr(xy,1) =

A lK ad, m OAp )
— iK,xo iK X0
(5.30) £, = % " zCos(nzz) e o T, zCos(mmz)eXmo,
(5.31)
e . N ik, 04 zCos(nmz) e'Kn¥o— —— " .. 0An zCos(mmz) eKn*o,

na(K? +n’n?) ox,

and the solvability condition gives

mn(K2+m?a?) dx,

(532) (;j = p;;:r: (K + 50—) Am(xl)[_ 1+(— l)m+neu] efoxs
1
2
(533) 3Am o JEHE (Km_ SO')A,,()C,)[I 5 (_ 1)m+ne—i=]e-iax;_

ax, 2K

Equations (5.32) and (5.33) govern the amplitudes and phases of the coupled modes.
We seek the solutions of Egs. (5.32) and (5.33) in the form

(5.34) Ay = Opes,

(5.35) A, = 0, ¢S+,

where O,, and O, are constants. Substituting Eqs. (5.34) and (5.35) into Egs. (5.32) and
(5.33), and eliminating the O, we obtain

(5.36) S2+icS—o =0,
where

~ [ nmm® \*|K, K. mn
(5.37) w = (VE?(_',,—K;) (E+ 1)( K. - l)[l —(=Dm+nCos1].

The characteristic exponent S is thus given by

(5.38) Si,2 = % [—61(02—4(:))”2].

6. The transition curve

The relevant first order approximation for the stream function ¥ and vorticity £ for
the given system are
0, iS)

(6.1) V= 2_2+K2 [Sln()mz)+ "(:::m - zCosnnz]e"K R 5%

— . I'ESKm i X
+ "};ﬁnT_:—Kwr{ {Sm (mmz)+ e zCosmnz} elKm)*eSx  O(e?),

g*
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A . K ) . }
(6.2) 2= 0,,[ Sin(nmz) + 2 %% L zCosrmz] /Kyt e0)X+e8x

: ieSK - ‘
+0’"[S|n(nlnz)+—lfs - zCosmmz (’Jl\rrl'\"'"\s-"+0(£2)1
mrm
where
(6.3) R B2 MOENy e
B w(Mo+K)
(6.4) Koo o0 _ MoKNo .o

n /;(}\Zw +IE)
For codirectional modes & < 0 and S is purely imaginary. Consequently, the amplitude
functions A4,(x,) and A,(x;) are bounded. This is so-called passband interaction, i.c.,

VN 28 1/2
(6.5) Kﬂ<{_@“__%@m% _fn* .

If one of the modes is reversed, then @ > 0 and S is complex (0> < 4m), indicating
that the modes are evanescent. This occurs for a frequency range different from that of the
passband interaction. Since the modes are attenuated as they propagate down the guide,
this range of frequencies is known as a stopband or attenuation band, i.e., ¢ < 4¢» and

(6.6) wit O [K(0 + MNo) +uM(n*n? + K2)] + K,u (n*n*+K2) > 0.
oM oM

The transition curve which defines the frequency at which the behaviour of the solu-

tions changes from one type of interaction to the other (transition frequency) is a solu-

tion of

M . K
6.7) ? = 4T Y2 g Y2 gV i — Tymenionn
( . ( l/z Kn I(m K"' K" [ ( ) ]

It is clear from the given problem that if the masses of the dust particles are small,

their influence on fluid flow is reduced and in the limit as M — 0, the fluid becomes ordi-
nary viscous.
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