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Elastic eigenstates of a medium with transverse isotropy
P.S. THEOCARIS and T.P. PHILIPPIDIS (ATHENS)

THE SPECTRAL decomposition of the fourth-rank compliance tensor of an elastic solid with an
axis of symmetry of infinite order was given, and the characteristic values (eigenvalues) of the
same tensor were calculated in terms of its Cartesian components. Energy-orthogonal stress
states for the transversely isotropic solid were explicitly calculated and the elastic energy associa-
ted with these stress tensors was given a special identification with dilatational or distortional
strain energy density, Bounds on the values of Poisson’s ratios of the transversely isotropic
solid were established by imposing the eigenvalues of the compliance tensor to be strictly po-
sitive.

Podano rozktad widmowy tensora podatnosci czwartego rzedu dla ciala sprgzystego z osig
symetrii nieskonczonego rzedu, a wartosci wiasne tego tensora przedstawiono we wspolrzednych
kartezjanskich. Energetycznie ortogonalne stany naprezen ciala sprezystego o izotropii poprzecz-
nej wyznaczono w sposob jawny i podano wyrazenie na energie sprezysta stowarzyszona z tymi
tensorami naprezen identyfikujac czlony energii odpowiadajace odksztalceniom dylatacyjnym
i dystorsyinym. Ustalono ograniczenia dla stalej Poissona ciala poprzecznie izotropowego
zakladajac, ze wartosci whasne tensora podatnosci sa dodatnio okreslone.

IIDHBCHCHO CHCKTpaI[bHOE Pa3JI0IKEHHE Tensopa INOOATJIMBOCTH UYETBEPTOro nop#HAKa JLIA
YIPYroro Tejla ¢ oChi0 CHMMeTpHM GeCKOHEYHOro MOPAMKA, a coOCTBEHHbIE 3HAUECHHA ITOrO
TEH30DPa MPE/ICTABJIEHbI B IeKAPTOBBIX KOODAMHATAX. DHEPreTHUECKH OPTOrOHAJIBHbIE COCTO-
JHUA HaNpAMKEHWH yIpyroro Tena C IONEPEYHOH M30TPOMMei OoMpeflelieHbl ABHBIM 00pazom
H IIPHBEECHO BBIP@YKEHHE JUIA yIpyloil 9HEPIHH aCCOLMMpOBaHHON C OTMMHM TEH30pPaMH Ha-
NPSUKEHNIT, MAeHTUDHIHPYS unenbl S9HEPTHH OTBEYAIOIIHe JHIATALMOHHBIM M JIHCTOPCHOH-
HbIM JehopManuaM. YcTaHoBJIeHbl OTPaHHYEHMA [UIA mocToAHHoM IlyaccoHa IIoOnepevHo
U30TPOITHOI'O TeJa, NMPEeANosarasi, yTo coOCTBEHHbIE 3HAUEHMsI TEH30PA IOJATIHBOCTH I0JIO-
JKHUTENILHO OIPeHesIeHbI.

1. Introduction

THE SPECTRAL decomposition of a fourth-rank symmetric tensor in elementary ones (idem-
potent tensors) was used for the energy orthogonal decomposition of the second order
symmetric tensor space [1-2]. For the compliance tensor S of a generic elastic solid, when
spectrally decomposed, the following relation holds:

(1.1) S=AE+ ... +4,E,, m<6,

where the roots of the minimum polynomial of S were denoted by 4, [3]. The tensors E,
decompose the unit element, I, of the fourth rank symmetric tensor space and the following
is valid

l = El+ - +Em,
(1.2) E; E, = for K #N,
EK.EK = EK'
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If ¢ is a symmetric second order tensor, by means of the relation (1.2) one has

I'co=E,'0+ .. +E, o
(1.3)

Il

°1+ - —I—O‘,,, =0,
and the following properties of ox are derived [1-2]:

OK'ONZO, K%N,

S oy = Agok.

(1.4)

Moreover, if ox represents a stress tensor, the corresponding strain tensor (elastic cigen-
strain) is given by the simple expression

(1.5) €x = g0y

The tensors 6, which are eigenstates of the compliance tensor S were called by Ry-
CHLEWSKI [1] energy orthogonal stress states and they were shown to possess a remarkable
property. Namely, they decompose the elastic potential function, T, into discrete compo-
nents which correspond to the respective eigendeformation tensors, thus having a specified
meaning depending on the material symmetry properties. Then the following relation is
satisfied by the stress eigenstates o:

(1.6) T, + ... +o,) = T(e)+ ... +T(s,).

Besides the spectral decomposition of the compliance tensor S, there is the possibility
of others which also yield invariant scalars in terms of §;;, and elementary fourth-rank
tensors [3-5]. The decompositions of S obtained in these papers were mainly used in order
to simplify calculations in the formulation of clastic inclusion and related problems [6].

In this paper the authors succeeded to decompose spectrally the compliance tensor
of a medium with transverse isotropy, which describes satisfactorily the behaviour of
unidirectional fiber-reinforced composites, and to evaluate its characteristic values. Based
on the properties of this decomposition, energy orthogonal stress states were established
and both the eigenvalues as well as the stress eigenstates were expressed in terms of the
Cartesian components of the compliance tensor. It was further shown that positiveness
of the characteristic values of S establishes bounds for the values of Poisson’s ratios of the

transversely isotropic solid, which are necessary in the qualification of their experimentally
measured values.

2. Spectral decomposition of the transversely isotropic compliance tensor

Let us consider a medium with transverse isotropy, its elastic properties character-
ized by the components of the compliance tensor S. We suppose a Cartesian frame orien-
ted along the principal material directions, with axis-33 normal to the isotropic (trans-
verse) plane defined by axes-11 and -22. Using engineering constants in which the sub-
script (T') denotes elastic properties on the isotropic plane and the subscript (L) the corres-
ponding ones on the normal (longitudinal) plane, the components of the compliance ten-
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sor, associated with the adopted Cartesian frame, are given in terms of elastic moduli

and Poisson’s ratios by

Sty = S2222 = l/ET’ S3szz = 1/EL,
Si122 = S2211 = —v1/Er,

(2.1 S1133 = Y3311 = 2233 = Sa3322 = —U/EL,
S2323 = S2332 = 83223 = S3232 = 1/4G,,
Si313 = S1331 = Sa13 = S3y3; = 1/4G,,
Si212 = S1221 = Sa112 = 82121 = 1/4GT

All the remaining S;; are zero. Between the engineering constants of the transverse plane
the well-known isotropic relation holds:
112Gy = (14+v1)/Er.
The characteristic values of the associated square matrix of rank six to tensor S were

found to be given in terms of the engineering constants by the following relations:

Ay = (I+vp)/E; = 1)2G,

},2 = ]/ZGL,

3 = (1 =v) 2E++ 12E + {[(1 —vp) [2E+ — 1 2E. > + 2vg [EZ Y2,

Ay = (L=vp)2Er+12E — {[(0 =v1) [2Er = 1 2E ) + 20} [EE }112.
That is, two of its characteristic values, namely 4, amd A,, are of multiplicity two. Then
the minimum polynomial of the tensor S is a quartic and has as roots the eigenvalues

Ay, Az, A3 and A,. The associated four idempotent tensors of the sepctral decomposi-
tion of S were also found as follows

(2.2)

1 )
E, = Bl = 2'(b«‘kbﬂ‘*‘bjkbu—bubm),
1
2.3) E, = Ezzju = 2'(bikajl+bilajk+bjlalk+bjkail)v
E; = Ei'}kt = f®f =fuﬁm

E, = Efju = 2®8 = 8i8u-
Second-rank symmetric tensors a and b figuring in the above cited relations for E, and E,
are defined by
a=k®k,

2
@24 at+b =1,

with k the unit vector of R3, associated with the 33-direction of the Cartesian coordinate
system. The tensors f and g are axisymmetric too, and depend on the components of the
tensor S. They are given by

1 .
—2— coswb+sinwa,

(2.5)

1.
——sinwb—coswa

V2

g:
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with
(2.6) cos2w = [(1 =v)2E;r—12E.)/[{(1 —v1)[2Er—1/2E. > + 2v} |[EF]Y2.

It can be readily checked that in case E;, = Er, G, = Gy and v, = »r, all the above
cited relations degenerate in the respective ones of the isotropic solid, yielding the param-
cters of its spectral decomposition. In particular, the relations (2.2) yield only two dis-

tinct eigenvalues and thus two idempotent tensors E,, which decompose the unit element,
1, of the fourth-rank tensor space and the following well-known relations are valid [1, 2]:

1 | -
5= 3 Eetyg B
(2.7) |
E, =181

Let us now define the orthogonal subspaces in terms of which the space of second-
rank symmetric tensors is expressed as their direct sum, and which also constitute character-
istic states of the tensor S, that is, they satisfy the following relations:

(2‘8) S ! 6"! = ;L'mc"l

with 4,, given by the relations (2.2). These stress states are simply defined by equations of
the form

(2'9) GIN = Em ' G

with E,, given by the relations (2.3). Denoting by ¢ the contracted stress tensor, which
in the form of a 6-D vector is written as follows:

g = [Ul 502,03, 04,05, UG]T:
and carrying out the calculations implied by the relations (2.9), one finally has

l 1 T
i'(al—gz)s 5(62—0‘1)5 01 Oa O> 06] >

o, =
6, = [0,0,0, 04, 05, 0],

2.10) © ( : i cos ] cosw, sinm, 0,0 0]T
== i ——Ccos®w, ——cosw, sinw, 0,0, ;
(2.10) 95 /2 cosw(al+02)+smwd3) /2 V2

5
c, = ( llvsinw(al-i-crz)—cosw%)[]— sinw, - ‘— sinw, —cosw,(),(),O] .
V2 V2 V2

As it may be derived from the relations (2.10), the characteristic states of stress, which
correspond to the spectral decomposition of the compliance tensor S of a transtropic
material, decompose any stress tensor in a prescribed manner. That is, the states ¢, and o,
are shears, with 6, simple shear and 6, a superposition of pure and simple shear. The sum
of 65 and o, is the orthogonal supplement to the shear subspace of 6, and a,. These two
states, i.e., 63 and 6,, constitute equilateral stressing in the plane of isotropy and prescri-
bed tension or compression along the material axis of symmetry.
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The stress eigenstates (2.10) decompose the elastic potential of the transversely iso-
tropic solid in four distinct components and by means of the relation (1.6) the decompo-
sition is expressed by

(2.11) T(o) = T(a,)+ T(o,)+ T(c3)+ T(o,).

As it is known from isotropic elasticity, the strain energy density can be separated into
two parts, voluminal and distortional, accounting for recoverable elastic energy stored
by dilation and distortion of the solid respectively.

By considering the relations (2.10) and (2.11) it can be deduced that for a medium
with transverse isotropy, such a decomposition is not in general conceivable. Although
the components of the elastic potential associated with the eigentensors ¢, and o, are of
pure distortional type, the remaining parts of the decomposition are not associated solely
with distortional or dilatational elastic energy. However, for some loading configurations
or material properties, the work produced by the stresses ¢; and ¢, could be identified
with dilatational strain energy or a distortional one.

Consider as an example transversely isotropic materials which satisfy the following
equation:
(2.12) (I=vp)/Er = (1=v)/E,,
where v, vy, E;, and Er can take any value, but of course the moduli £, E; must be posi-
tive and »,, vy assume values for which all A, are positive in order to maintain the posi-
tive definite character of the elastic potential function 7.

Then it can be readily proved that the work of stresses o,

4464 G,

is dilatational strain energy, whereas the work of o5 is a distortional one.

An interesting geometric interpretation arises for the energy-orthogonal stress states
if we consider the “projections” of ax in the principal 3-D stress-space. Then the character-
istic state o, vanishes, whereas the stress states ¢,, 5 and ¢, are represented by three
mutually orthogonal vectors oriented along the directions with the following associated
unit vectors:

1 1
: ._-'." - 74'—5 0 :]
% '(1/2 % )

1 1
(2.13) e :(v-—“cosw, . cosw,sinw),
W2 V2
| I | )
€q|-—=8sMw, —=5smw, —Cosw|.
( V2 V2

The argument w figuring in the relations (2.13) was defined in terms of the engineering
constants in the relation (2.6). If we denote by (0— o7 03 03) the Cartesian frame of prin-
cipal stresses (see Fig. 1), then, as it can be seen by the relations (2.13), the vectors ey
and e, are equally inclined with respect to the axes Oo; and Oc; and thus they lie on the
main diagonal plane o; = o;. The vector e, subtends with axis Ocj an angle equal to
(w—m/2), whereas the vector e, subtends with the same axis an angle (z=—w). The vector e,
is perpendicular to the axis Oc; and to the plane ¢; = o, lying on the deviatoric n-plane.
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o b

€ e,

{

F1G. 1. Projections of stress eigenstates in principal stress coordinate frame.

For any transversely isotropic material, the direction of the vector e,, and thus the
eigentensor ¢,, remains constant, whereas the vectors e; and e, rotate with respect to the
origin of the coordinate frame lying always on the plane o; = o;.

It can be readily checked from the relation (2.6) that for the isotropic material the
argument o takes the value @ = 125.26°. Then, the vector e, has the direction of the
hydrostatic axis (o, = o5 = 03), i.e., the eigenstate o, becomes the spherical tensor,
whereas the vector e; lies on the deviatoric plane.

In general the angle w takes values in the interval (0, zz), and it is valid that the materials
characterized by high anisotropy yield values of @ near to m.

Then, since the isotropic solid has its argument o equal to 125.26°, it is reasonable to
accept finally that the angle @ varies between the values of 125.26° and 180°. Indeed, it
can be checked that the engineering materials with transverse isotropy, including also
unidirectional fiber reinforced composites, behave in this manner, yielding values of
belonging to the above cited interval.

Let now the principal stress coordinate system (0— oy o503) transform and have the
directions of e,, e; and e,, with the axis ¢; having the direction of e; and the axis o,
this of e, . If by (0—o 75 03) we denote the new coordinate system, then it is obvious that
the expression for the elastic energy function becomes

(2.14) 2T = A, 03+ A0t + 4303,

By giving the value 27 = 1, Eq. (2.14) represents an ellipsoid centered at the origin 0 of
the coordinate system and having axes of symmetry along the directions, e, e; and e,.
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The lengths of the semi-axes of the ellipsoid along the axes of the coordinate system are,
respectively, 1/)/4,, 1 /y/ 4e and 1/} 4.

Moreover, if the fourth-rank tensor S describes the isotropic solid, then the relation
(2.14) represents an ellipsoid of revolution with its major semi-axis along e, having the
direction of the hydrostatic axis, i.e., 6; = 03 = o3, and the equal two semi-axes lying
on the deviatoric m-plane. In this case, A, = i3 = 1/2G and i, = 1/3K. The representa-
tion of the elastic energy for the isotropic solid by the ellipsoid of revolution is due to
BeLTrRAMI [7].

3. Restrictions upon the values of the compliance tensor components

As it is implied by thermodynamics, the elastic potential must be positive. This is
guaranteed by the positive definite nature of the compliance or stiffness tensor which in
turn implies that

(3.1) A >0, m=1,..:%.

In the initial Cartesian coordinate frame with respect to which the compliance tensor
components were defined in the relations (2.1), all elastic moduli appear as diagonal ele-
ments of the associated square matrix of the contracted tensor and thus they must be
positive. Then, by imposing the eigenvalues of the transversely isotropic medium expres-
sed by the relations (2.2) to the conditions (3.1), it is seen that the values of Poisson’s
ratios v, and v, are bounded by the validity of these inequalities. The set of the following
two inequalities must be satisfied by the values of Poisson’s ratios:

vel < 1,

3.2)
-2 vl < (1 —vs) E2Ex)""™.

In these relations, it is interesting to notice the bounds for the “isotropic” » which
differ from the bounds of Poisson’s ratio for the isotropic solid, i.e.,

1
-1 <r< 5
Similar expressions with the relations (3.2) were found by other authors also [8, 9], by
following different, but mathematically equivalent, procedures satisfying positiveness of
the elastic potential.

The relations (3.2) can be used as well in the qualification of experimental results
concerning the values of Poisson’s ratios, especially for unidirectional fiber-composites
which usually possess the symmetry of the transversely isotropic configuration. It has
to be pointed out, however, that both inequalities (3.2) should be satisfied in order to have
positive elastic potential and not only one of them.

CHRISTENSEN [10], following a procedure based on physical considerations, deduced
for the “longitudinal” Poisson’s ratio, »r, the following bounding inequality

172
(3.3) [y ] < (%‘—) .
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Comparing with the second inequality of the set (3.2), it can be seen that the relation (3.3)
overestimates the bounding interval of », and is only exact for the limiting value of y; = — 1.

A similar procedure to that of Christensen was also followed in [11] where bounds only
for the transverse Poisson’s ratio were given and, erroneously, the interval [0, 1] was indi-
cated as appropriate for »;.

4. Conclusions

The energy-orthogonal decomposition of the second-rank symmetric tensor space
consisting of subspaces of eigentensors of the compliance tensor, S, of a transversely iso-
tropic medium was obtained by means of the spectral decomposition of S.

The decomposition of the stress tensor ¢ gave four energy-orthogonal eigenstates
which decompose appropriately the elastic energy function. Two of them were shown to
be solely associated with distortional elastic energy, whereas the remaining two denote,
in general, both voluminal and distortional elastic energies.

Imposing the calculated eigenvalues of the compliance tensor S to be strictly positive,
bounds were deduced for the values of Poisson’s ratios, », and ;..
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