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On some recent crack tip stress calculations in nonlocal elasticity 

C. ATKINSON (PITTSBURGH) 

A RECENT approximation scheme used by Eringen and eo-workers [1] and [2] is shown to 
have a non-uniform character. Moreover, arguments are given to suggest that the problem 
posed (with finite displacements assumed) and solved numericaJJy may not actuaJJy possess 
a solution. 

Stwierdzono, i:e nowy schemat aproksymacyjny zastosowany przez Eringena i jego wsp6l­
pracownik6w [1, 2] ma charakter niejednostajny. Przytoczono ponadto argumenty pozwala­
jllce przypuszczac, i:e postawiony przez tych autor6w problem (w kt6rym przyj~to odksztal­
cenia skonczone) wraz z numerycznym rozwillzaniem moie w istocie nie posiadac wcaJe roz­
Willzania. 

Koucranq>oBaHo, 'tiTO HOBaH annpoKcaMaQn:oHHaH cxeMa, npaMeHeHHaH 3pmrreHoM u: ere 
coTpyrooo<aMn: [1, 2], aMeeT ueMOHOToHHblli xapaKTep. KpoMe 3Toro npHBeAeHbi apryMeHble 
U03BO.IDIIOIIUle npe.l\IIOJiaraTb, 'tlTO UOCT8BJieHHaH 3TH:Ml{ aBTOpaMH: 38A8lla (B KOTOpOH DpiUUITbl 

KOHe'I.IHbie Aecl>opMaiUlH), COBMeCTHO C tmCJieHHbiM pemeHH:eM, MO>KeT B cyiQHOCTH: COBCeM 
ue aMeTb pemeHIVI. 

1. Introduction 

RECENTLY ERINGEN and eo-workers [1, 2] have discussed certain crack problems in the 
framework of a nonlocal elasticity theory. These authors used, as nonlocal elastic moduli, 
expressions for which the dispersion relations of plane waves coincided within the entire 
Brillouin zone with curves obtained in the Born-V on Karm{m theory of lattice dynamics. 
The method of analysis used in [1] and [2] consisted in reducing the problem to an in­
tegral equation which was then solved numerically in an approximate inverse manner. 
The following conclusion was reached: "for cracks of length 2/ > 50a we can safely 
utilize the classical displacement field to calculate the nonlocal stress field", 2/ is the 
crack length and a the "atomic distance" between two neighbouring atoms of a perfect 
lattice. This approximation was used in [1] and [2] to calculate the stress at the crack 
tip for the plane strain problems of a crack under uniform shear and under uniform 
tension. Various deductions were then made about the stress concentration at the crack 
tip and comparisons were carried out with such classical results as those of Griffith. 

The object of the present paper is to show by exact analysis that the approximation 
used in [1] and [2] is not a uniformly valid one and can thus give misleading results. To 
illustrate this we consider the inverse problem where the crack opening displacement is 
specified and calculate the resulting stress-field. Even this simplified calculation requires 
some care in order to determine accurate near crack-tip fields, so we first solve completely 
a model semi-infinite crack problem and then analyze the finite length crack problem in 
the limit aj/ ~ 1 by using the method of matched asymptotic expansions. 
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For simplicity we restrict our attention to the model one-dimensional problem dis­
cussed in [1]. The cases of anti-plane shear, plane-strain shear and plane strain tension 
will be discussed in a future paper. Similar results are anticipated for these later cases. 

Having established the non-uniformity of the approximation scheme, a natural ques­
tion to ask is, what are the precise characteristics that the solution to the original problem 
must have? This question is addressed in Sect. 3 where we give arguments to suggest 
that there may be no solution (with finite displacement field) to the model problem treated 
numerically in [1]. We hope to develop these results to the plane-strain situation in 
a future paper. 

2. A model one-dimensional problem 

In [1] the following one-dimensional problem is proposed, defined by the equations 

00 

(2.1) t77 = (,i+2p) f a(lx1 -xl) oo(~; y) dx1 

-oo 

with 

(2.2) 

(p and ). are constants), together with the boundary condition: 

t,,(x, 0) = -t0 (x), given for lxl <I, 

v(x, 0) = 0, lxl ~ I 
{2.3) 

and 

fJ-+0 as y-+oo. 

In Eq. (2.2) the subscripts denote partial differention. In [1] it is shown that the problem 
specified by Eq. (2.1) to (2.3) has similar characteristics to the more complicated plane 
strain crack situation. 

Taking the Fourier transform of Eq. (2.2) and using Eq. (2.3)3 gives the transform 
of the displacement in the half-space y ~ 0 as 

(2.4) v(k,y) = A(k)exp( -ylkly), 

where 

00 

(2.5) v(k,y) = f v(x,y)e'kxdx 
-oo 

and lkl is defined so as to have positive real part in the complex k plane. Also, taking 
the Fourier transform of Eq. (2.1) and using Eq. (2.4) gives 

00 

(2.6) i, = -ylkl(A+2p)A(k) J a(lx11)e- 1kx 1dx1 • 

-00 
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In [I] the problem is reduced to a Fredholm integral equation for the unknown func­
tion A(k) and arguments are given, together with some numerical work, to support 
"strongly" the approximation of replacing A(k) in Eq. (2.6) by the corresponding result 
for the classical elastic problem. i.e. the problem with a(lx1 1) = £5(1x1 1). This approxima­
tion amounts to using the displacement from the classical elastic problem, vc(x1 , y) say, 
in Eq. (2.1) to compute the stress field. 

We first investigate the consequences of this approximation in a fairly straightforward 
example. 

2.1. The semi-Infinite problem 

This problem which mimics a semi-infinite crack problem has such boundary condi­
tions: 

(2.7) 

ty,(x, 0) = -eh for x < 0, 

v(x, 0) = 0, x > 0, 

v --. 0 as v --. + oo . 

In Eq. (2. 7), 1/).. plays the role of a characteristic length. Writing 

ty,(x, 0) = t+(x) for x > 0, 

v(x, 0) = v_(x) for x < 0 
(2.8) 

with both t+(x) and v_(x) as yet unknown functions of x, the transforms of Eqs. (2.7) 
and (2.8) together with Eqs. (2.4) and (2.6) lead to the functional equation 

- -1 - A -

(2.9) t,,(k, 0) = (A+ik) +t+(k) = -rolkl a.(k)v_(k), 

where 

(2.10) and 00 

a(k) = f (t(lxl l)e-ikxtdxl. 
-oo 

If a(k) = I, (the classical elastic case), the functional equation (2.9), which holds on 

the line I~ k = 0, can be solved by writing lkl = k!f 2k!..1 2 where k~12 has a branch cut 

from -iO to -ioo and k!.J2 a cut from +iO to +ioo. These branches are chosen so that 
lkl has a positive real part when viewed as a function of kin the complex k plane. Using 
this factorisation Eq. (2.9) can be rearranged as 

_ t+(k) _i_ (--I __ I __ ) __ k 112 - (k _ i 
(2.1l) J- k!J2 + (k -iA) k~/2 (iA)!/2 - /'o - Vc- ) (i)..)~/ 2 (k -iA)' 

Using analytic continuation, a generalized form of Liouville's theorem and edge condi- . 
tions on the crack tip, it can be shown that J defined by Eq. (2.11) is in fact zero. Thus 
the solution of Eq. (2.9) with a(k) = I is 

(2.12) 

http://rcin.org.pl



320 C. ATKINSON 

We use the notation vc to indicate that Eq. (2.12) is derived from the approximation 
a(k) = I. In the spirit of the approximations used in [I] we substitute from Eq. (2.I2) 
into Eq. (2.9) and take this as the result for the stress f,Y in the model nonlocal problem 
defined in Eq. (2.1). The result is 

-
(2.I3) lyy = 

ia(k)k~'2 

(il)~'2(k-il) 

Clearly, if a(k) =/: I, then Eq. (2.9) is not satisfied exactly, what is required is a measure 
of how the accuracy of the approximation (2.13) varies with the parameters defining 
a(k). To investigate this we consider three forms for a(lxl). 

(2.14) (i) 1X(/xl) = ~ e-Pixi then a(k) = ({J2~
2

k2), 
and a(k) is analytic in -{J < Imk < {J. The dimensionless constant {Jfl is assumed to 
be much greater than unity. For this example f,JI given by Eq. (2.13) can be split into 
the sum of plus and minus functions by inspection. The result is 

(2.15) 

where 

(2.16) 

and 

- i{J2 {(il)~2 -k~2 } 
t+(k, 0) = (il)~2(k-il)(A,2 -fJ2) 

i{J { {i{J) ~2 - k ~/2} 
+ 2(il)~2({J-A.)(k-i{J) 

- -ifJ2 i{J ( {J )1/2 1 
t_(k,O) = (k-il)(A.2-{J2) -2 T + ({J-A.)(k-i{J). 

Inverting the expression for t_ (k, 0) gives for the stress on y = 0, x < 0 the result 

elx[J2 {J ( {J )112 ePx 
tyy{X, 0) = - (fJ2-,l2) +2 T ({J-A.) 0 

Rearranging this as 

-,l2eU {J (P)1/2 ePx 
(2.17) Pc(x) = lyy{x,O)+eJ.x = ({J2-A.2) +2 T ({J-A.)' 

it is easy to see that for {J /A. ~ 1 the boundary condition (2. 7) seems to be more nearly 
satisfied as {J increases since x < 0. For fixed x < 0, the right hand side of Eq. (2.17) 
tends to zero as {J -+ oo. However, if we write {Jx = X, then Eq. (2.17) becomes 

(2.18) 

and clearly Pc(x) does not tend to zero, as {J-+ oo, for x < 0 uniformly in x. In fact 

{2.19) 
1 ( {J )1/2 

Pc(x) -+ 2 T eX 

as {J -+ oo, X~ 0. 
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In [1] and [2] various plots are given of Pc(x). Superficially, it looks as if the bound­
ary condition (2. 7), which is P c(x) = 0, x < 0, were satisfied more accurately as a para­
meter, analogous to {3, increases. However, we contend that the same non-uniform be­
haviour described above is present in their numerical results. 

(2.20) (ii) 1 ( lxl) (X(IxD = a 1 -a , lxl ~a, 

= 0, lxl ~a. 
This expression is used in [1], a is a lattice parameter and is given the value 2.48 A 

in the case of steel. Thus with a of order Io-s ems, the ratio of any macroscopic crack 
length to a will be much greater than unity. In this case 

(2.21) A (k) = sin
2
ka 

ex k2a2 

which is analytic everywhere. The expression for t,,(k, 0) given in Eq. (2.13) is thus 
analytic in 0 < Imk < A. The Fourier inversion theorem then gives 

(2.22) 

with 0 < d < A. From Eq. (2.13) 

- ik~12 sin2ka 
1
n = (iA.)~I2 (k-iA.) k 2a2 

and sin2ka = ~ -! e 2ika_! e-lika, hence substituting into the above integral gives 

(2.23) 
sinh2 (A. 2a2

) 

t, = -- (A 2a2 ) fi-X, for x ~ -2a. 

This result is obtained by closing the contour in the upper half-plane and picking 
up the pole at k = iA. The condition x ~ - 2a is necessary in order that the exponential 
terms decay on a large semi-circular contour in this upper half-plane. 

From Eq. (2.23) it is easily seen that as a A --. 0, t,, --. - ei.x uniformly in x provided 
x ~ - 2a. The boundary condition is thus satisfied uniformly in the region x ~ - 2a, it 
remains to investigate what happens in - 2a < x < 0. To do this we take the complex 
integral (2.22) along the real axis (d = 0) and obtain 

1 
= _!_fro(!~ sin2ra) lrSin (~ +rx) -ACos( ~+rx )} dr 

n n ,1,112 r2a2 (r2+ ,1,2) 
0 

(2.24) 

This integral is valid for all x and is a continuous function of x with a constant value 
at x = 0. As a --. 0 the contribution to the integral from the integrand with the factor 

A Cos ( : + rx) will be finite. This is easily seen, since ·~~a "' I, the contribution to this 
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00 

1 J Atf2rlf2 
part of the integral is of magnitude < --;; (r2 + A2) dr which is finite for A > 0. The 

0 

rest of the integrand is, however, much more sensitive to the limit a-+ 0. To see this, 
write 

to give 

(2.25) 

R 
r=a' x = aX 

We use the ~ sign to indicate that we are neglecting the contribution from the second 
term of the integrand of Eq. (2.24) since this is finite as a -+ 0 as shown above. 

When X= 0, the expression (2.25) shows that when (aA)-+ 0 the stress at the origin 
behaves like 

(2.26) 1 foo (Sin 2 R,. dR 
t, ~ n(aA)tf2 ~- (2R)112 • 

0 

Further, this result is irrespective of whether X-+ 0 with X > 0 or with X < 0. Thus 
the same characteristics as shown in example (i) are present in this case, i.e. that as the 
region of the discrepancy in the boundary condition gets smaller the magnitude gets 
larger tending to infinity as a-+ 0. In [1] it is asserted that the increase in magnitude 
of ly1 at x = 0 over the boundary value is the stress concentration. Our contention is 
that the stress is in fact continuous in this approximation and the value (2.26) is merely 
a property of the approximation, not of the original boundary value problem. 

(2.27) . (iii) {1 
IXo = ayn. 

Typical values of constants in this expression are given in (2) as a = 2.48 A and {1 = 1.65 
for steel. Now a(k) = exp{-k2a2 /(4{12)} and is an entire function of k. Hence t~y(k, 0) 
with this expression for rx(k) is analytic in 0 < Imk < A so Eq. (2.22) applies. Evaluat­
ing this integral along the real axis leads to 

(2.28) 

The second term in the integrand gives a finite contribution to t, as a -+ 0. To investigate 
the contribution from the first term write 

r = 2{1Rfa and x = aX/2{1 
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to get 

1 
~ _!_ j { 2P )'', R1

1
2
exp( -R

2
)Cos {T-Rx)dR. 

n n o aA. R2 ( aA. )2 
+Tjf 

(2.29) 

Hence, this integral shows that t11 goes to infinity like (2PfaA.) 112 as (aA.fP) -4 0 with 
X -4 +0 or -0. 

Thus in each of the examples we have considered, the approximation of using the 
displacement of the classical elastic problem in order to calculate the stress for the non­
local problem has been shown to be non-uniform and hence unsatisfactory. In the next 
section we show that the same kind of behaviour is present in the finite crack problem. 

2.2. The finite crack, model problem (Specified displacement) 

To demonstrate the effect of the approximation suggested in [1] and [2), we consider 
the problem specified by Eqs. (2.1) and (2.2) together with the boundary conditions 

v(x, 0) = 0, lxl ~ I, 

v(x, 0) = (P -x2)112 , lxl ~ I 
(2.30) 

and 

v -4 0 as y -4 + oo . 

For reasonable crack lengths we expect a small parameter e to appear in the problem 
because of the magnitude of the nonlocal moduli, for example a (the lattice parameter) 
is given in Angstroms (IO- 8 ems) in examples (ii) and (iii). Hence we define 

1 a a 
(2.31) e1 =/if' E2 = T' e3 = {ii' 

where ei ~ 1 and i = 1 , 2 or 3 refers to examples (i), (ii) and (iii) of Sect. 2.1. 
To investigate the behaviour near the crack tip x = I we write 

x = l+elX, y = e/Y, 

(2.32) x' = I+ e/X', y' = e/Y', 

v = (e/)112 V, t, = (ei)- 112T, 

where e without a subscript refers to either of Eqs. (2.31) whichever is appropriate. In 
these new coordinates Eqs. (2.1) and (2.2) become 

00 

(2.33) T(X, Y) = (.1.+2,u) J cx1(IX1 -XI) oV(:;: Y) dX1 

-eo 

and 

(2.34) 
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where 

(i) 

(2.35) (ii) 

(iii) 

1 
cx1 (lXI) = "2 exp{ -IX/), 

cx2(1XI) = (1-IXI), lXI ~ 1, 

= 0, lXI ~ 1, 

I 
CXJ(IXI) = yn exp(-X2). 

The boundary conditions (2.30) become 

V( X, 0) = 0, X > 0, X < 
(2.36) 

V( X, 0) = ( -X)112 (2/+ e/X)112, 

As e-+ 0 these boundary conditions become 

V(X, 0) = 0, X> 0, 

2 
e 

2 
--<X< 0. 

e 

(2.37) 
V( X, 0) = + (2/)112 ( -X)112

, - oo <X< 0. 

C. ATKINSON 

This problem now has similar characteristics to the semi-infinite one discussed in Sect. 2.1 
and it is straightforward to derive the corresponding results 

(2.38) T(k, 0) = -rolkl &,(k) V_(k) 

and from Eqs. (2.37) 

(2.39) ( )
1/2 

v_(k) = -!112 ~ en't4k:3J2 

with 

and 

The calculation of T(X, 0) from Eq. (2.38) is similar to the evaluation of tn in Sect. 2.1. 
For example (i), T can be split by inspection into plus and minus functions as 

(2.40) T =~ !!__ e-inf4 __ +_+--(k-112-(i)-1/2 - fl/2 ( )1/2 J -k-112 I l 
+ 2 2 ' (k+i) (k-i) + 

and 

- - Yo 1 2 ( n)l/2 e-nif2 
T_ - T I I 2 (k -i) 

since (i)- 112 = e-inf4• Inverting T_ gives 

(2.41) T=~!!_ ex 
J1f2 ( )1/2 
2 2 

for X< 0. 
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- -------- -- - ----- -

Recalling that X = (x-1)/el and that fyy = (el)- 112 T we see that fyy tends to zero, the 
stress free crack boundary condition, except when x-1 = O(e), i.e. except within distances 
of order e from the crack tip. Within such distances the crack boundary stress goes to 
infinity like t:- 112

, as e--+ 0. 
Thus for the finite crack problem the correct boundary condition cannot be satisfied 

uniformly by the approximation of using the elastic crack displacement. Similar results 
can be obtained for examples (ii) and (iii) following the analysis of Sect. 2.1. 

3. Miscellaneous results 

The results of Sect. 2 demonstrate (in our opinion) the inadequacy of the approxima­
tion suggested in [1] and [2], however, the question remains as to what is the precise 
nature of the solution to the problem originally formulated in Sect. 2 with the boundary 
conditions (2.3). Note that the case with constant t0 (x) was treated numerically in [1] 
and in the results displayed which apparently justified the approximation scheme sub­
sequently used which we have critized in Sect. 2. 

To investigate this further, we consider solutions of Eq. (2.2) in terms of a continuous 
distribution of virtual screw dislocations within the crack y = 0, -I < x < I. Thus we 
can write 

(3.1) 
ov(x, y) 

ay = ,, 

where 

X 

(3.2) v(x' 0) = J !(e) de. 
-r 

We have presupposed here that the crack displacements will be finite by assuming /(E) 
is integrable. It is possible that there may be solutions to the nonlocal problem in which 
v(x, 0) is not finite particularly as x -+ ±I. However, assuming /(e) is integrable we can 
substitute for Eq. (3.1) into Eq. (2.1) to get 

(3.3) 

{3.4) 

the last equation following by interchanging the order of integration. 
Taking the limit y tending to zero Eq. (3.4) can be written as 

I CO 

(3.5) f f a(lx0 1)dxo 
t n = Yo J(e)de , 

xo+(x-e) 
-1 -eo 
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the inner integral being a Cauchy principal value (Hilbert transform). For convenience 
rewrite Eq. (3.5) as 

I 

(3.6) 1-y-y = Yo f J(e)deK(x-e), 
-I 

where 
00 

(3.7) f cx(lxoDdxo 
xo+x-e · 

-oo 

For cx(lx0 1) given in our previous three examples we have 

(i) a(l xI) = ~ exp(- P !xi) 

then 

(3.8) K(x-e) = ~ sgn( -x+e){exp({Jie-xi)E,( -Pie-xl) 

-exp( -Pie -xi)E,(P~ -xl)} 

(see tables of the Hilbert transform, ERDELYI, MAGNUS, 0BERHEmNGER [3]. 

(ii) «(ixl) = ! ( 1- ':' ). lxl .;;; a, 

then 

(3.9) 

(iii) 

then 

(3.10) 

= 0, 

1 
K(x-E) = 2 {(a+x-E)loglx+a-el-(a-x+e)Ioglx-a-EI 

a 
-2(x -E)logjt" -El}. 

For interest we consider a fourth example 

(iv) 

then 

(3.11) x-E 
K(x-E) = (~)2-2 . x-\0 +a 
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The functions a(lxl) given above can be ordered in terms of how quickly they tend 
to zero as lxl -+ oo. Such an ordering is (ii), (iii), (i), (iv). The boundary condition t,., = 1 
for lxl ~ I, y = 0 leads to the integral equation 

I 

(3.12) I = ro j K(x-E)f(E)dE, fxf ~ I. 
-I 

We first consider the kernel (3.11) since it is perhaps the easiest to deal with. When 

a= 0, K(x-~) = ~ and Eq. (3.12) becomes the usual Cauchy integral equation 
x-5" 

associated with the classical elastic problem. However, when a#: 0, K(x-E) is finite 
for all real x and it is easily seen that the right hand side of Eq. (3.12) is an analytic 
function of x for all real x provided/(~) is integrable in -J ~ E ~ I. In fact, replacing x 
by z in the right hand side of Eq. (3.12) we can analytically continue it into the complex 
z plane as the function 

I 

f f(E)(z-E)d~ Yo (z-~)2+a2 
-I 

which is analytic everywhere except for poles on the lines z = ±ia+E for IEI ~I. How­
ever, the analytic continuation of the left hand side is unity which contradicts the equality 
sign in Eq. (3.12). This contradiction shows that Eq. (3.12) has no solution for integrable 
/(~). 

As another example consider (iii), again if a = 0 (3.10) reduces to the Cauchy kernel 
and the classical elastic case results. However, if afp =1= 0, Eq. (3.10) can be continued 
into the complex z plane and is analytic everywhere. Moreover, it can be represented 
in_the half plane. lm(z-~) > 0 as 

iP(e-z)/a 

K(z-~) = 2!; [ J exp( -Pi)] dP1 exp( -P2(~ -z)2 /a2
) 

-oo 

and then clearly, if/(~) is integrable, the right hand side of Eq. (3.12) with x replaced 
by z has the growth properties of e-PlzlJal in the upper half plane and clearly· cannot 
be equal to unity (the analytic continuation of the left hand side of Eq. (3.12)). This 
contradiction shows that Eq. (3.12) cannot have a solution for integrable/(~), for example 
(iii) either. 

The difficulties with moduli such as those of example (iii) have been discussed in 
a different context by RoouLA [4]. 

4. Concluding remarks 

We have attempted to show in Sect. 2 that the approximation used in [I] and [2] is 
a non-uniform one and hence unlikely to give correct results for the problem as formulated 
in Eqs. (2.1) to (2.3). The results of Sect. 3, although not perhaps sufficiently rigorous, 
do suggest strongly that the direct numerical calculations made in [1] are in fact attempt-
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