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Unsteady shearing flows and plane shear waves in simple fluids 

S. ZAHORSKI (WARSZAWA) 

IT IS SHOWN that certain unsteady shearing flows belong to the class of motions with super­
posed proportional stretch histories discussed elsewhere [3, 9]. These flows include two-di­
mensional harmonic oscillations, plane circular shearing as well as other homothermal motions 
discussed by CARROLL [4]. The corresponding representations of the constitutive equation of 
a simple fluid are also considered. Certain solutions of the governing equations in the case of 
plane harmonic oscillations are obtained either for fluids with linear shear response or for 
flows with small amounts of shear. Various properties of two mutually perpendicular · plane 
shear waves are discussed in greater detail for very low and very high (ultrasonic) angular 
frequencies. 

Pokazano, :le pewne nieustalone przeplywy scinaj~ce nale~ do klasy ruch6w z nalozonymi 
proporcjonalnymi historiami deformacji, wprowadzonej poprzednio [3, 9]. Przeplywy te obej­
muj~ zar6wno dwuwymiarowe harmoniczne oscylacje, plaskie kolowe scinania, jak i inne 
ruchy homotermiczne dyskutowane przez CARROLLA [4]. Rozwai:ono r6wniez odpowiednie 
reprezentacje r6wnania konstytutywnego cieczy prostej. Pewne rozwi~ia r6wnan ruchu 
w przypadku plaskich harmonicznych oscylacji uzyskano dla cieczy z liniow~ reakcj~ na 8ci­
nanie lub dla przeplyw6w z malymi gradientami 8cinania. R6ine wlasnosci dw6ch wzajemnie 
prostopadlych plaskich fal 8cinania przedyskutowano bardziej szczeg61owo przy bardzo nis­
kich i bardzo wysokich (naddi.wi~kowych) ~sto8ciach kolowych. 

IloKaaaHo, '!To HeKoTopbie HeycTaHOBRBLI.Il{ecH c~IU'OBbie Te'lleHWI IIPHHll.lVIe>KaT K KJiaccy 
~H>Kemdi C Ha.JIO>KeHHbiMil nponopi.U{OHa.JlbHbiMH HCTOPWIMil ,!l;e<l>opMa.IUlH, KOTOpbiH BBe,!l;eH 
paHbme [3, 9). 3TH Te'lleHWI OXBaTbiBalOT TaK ~yMepHble rapMOHil'lleCKI{e OC~, llJIOC­
}(I{e KpyroBLie ~IU'Il, KaK H ,!l;pyrne roMOTepMI{lleC}(I{e ~ll>KeHHH, o6cy>K,!l;aeMLie KapponoM 
[4]. PaccMoTpeHbi To>Ke COOTBeTCTByroll.Uie npe,!l;CTaBJieHWI onpe,!l;emn<>IJ.{ero ypaBHeHWI npo­
croii >Kil,!l;KOCTH. HeKoTopbie pemeHHH ypaBHeHilii ~H>KeHWI, B c.nyqae nJIOCKilX rapMOHil­
'llecKHX oc~, nonyqeHbi ,!l;JIH >Kil,!l;KOCTH c JlllHeiiHoii peaKIU~eii Ha c~Hr HJII{ ,!l;JIH Te­
qeHI{ii C MaJibiMH rpa,!l;HeHTaMil C~Hra. PaaHbie CBOHCTBa ~yx B3ai{MHO nepneH,lUiKj'JIHPHbiX 
llJIOCKHX BOJlll C~IU'a o6cy>K,!l;eHbi 6onee llO,!l;p06HO npH O'lleHb Hll3KHX I{ O'lleHb BbiCOI<llX 
(cBepx3ByKOBbiX) KpyroBbiX qacroTax. 

1. Introduction 

IT IS WELL known that numerous unsteady shearing flows belong to such particular classes 
of motions in which much can be learned without making essential simplifications con­
cerned with a form of the constitutive equations (cf. e.g. [1, 2]). Apart from unsteady 
viscometric flows and motions with constant or proportional stretch history [3], there 
exist many other shearing flows, especially those of oscillatory character, which exhibit 
interesting kinematic or dynamic properties when applied to compressible or incom­
pressible elastic and dissipative media. These are, for example, unsteady homothermal 
motions [4], various oscillatory plane motions [5, 6, 7], certain structural orientation 
patterns [4] as well as motions leading to progressive or standing shear waves with linear, 
circular or even elliptical polarization [8, 9, 10]. 
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In the present paper two types of unsteady plane shearings are considered as belong­
ing to the class of motions with superposed proportional stretch histories [3]. For com­
pressible as well as for incompressible simple fluids (cf. [1]), the corresponding constitutive 
equations are derived and the Rivlin-Ericksen type of representations developed. The 
resulting governing differential equations can be solved in a closed form in the case of 
harmonic dependence on time and linear shear response (generalized viscosity independent 
of shear rate or small amounts of shear). Certain spatially periodic solutions, leading 
to linearly polarized two shear waves, are considered in greater detail. Various properties 
of waves such as damping effects, phase shifts, maximum amounts of shear etc. are dis­
cussed for very low as well as for very high (ultrasonic) frequencies. 

2. Unsteady plane shearing flows 

Consider the following two types of plane shearing motions: 

x =X +q>(Z).ft (T), 

(2.1) Y = Y +1p(Z)/2(T), 

and 

(2.2) 

Z= Z, 

X =X +q>(Z)ft(l')+1p(Z)f2(T), 

y = Y+q>(Z)/2(T)-1p(Z).ft(t), 

z = z, 
where x, y, z, denote the Cartesian coordinates of a particle at an arbitrary time r, 
X, Y, Z- the Cartesian coordinates of the same particle in a reference configuration, 
q> and tp are certain functions of the variable Z, while / 1 and / 2 are smooth functions of 
time only. In the first case only translational motions in the material planes xy are 
possible, while in the second case some rotational motions in these planes are admissible. 
It is seen, moreover, that either for q>(z) = VJ(z) or for / 1 ( r) = / 2 ( r) the more general 
motions described by Eq. (2.2) take particular forms of the simpler motions (2.1). The 
corresponding velocity and acceleration fields can easily be calculated from the above 
equations. 

The deformation gradients at time r with respect to reference configurations can in 
both cases be expressed as 

(2.3) F(T) = 1+Mt.ft(T)+M2/2(T) = exp(Mt..ft(T)+M2/ 2(-r)), 
where 

(2.4) 
[

0 0 q>'] 
fMt.l = 0 0 0 ' 

0 0 0 f
o o o] 

[M2] = 0 0 1p' 
0 0 0 

for the motions described by Eq. (2.1 ), and 

f
o o q>'] 

[M1] = 0 0 -1p' , 
0 0 0 

(2.5) 
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for those described by Eq. (2.2). Primes denote the derivatives with respect to z. It is 
also seen from Eqs. (2.4) and (2.5) that 

(2.6) M1 M2 = M 2M1 = MfM2 = MIM1 = 0, 

where the superscript T denotes the transpose. 
Introducing the relative deformation gradients with respect to the reference configura­

tion chosen at present time t ( r ~ t), 

(2.7) F,('r) = F(r)F- 1(t), F,(t) = 1, 

we arrive at the history of the right Cauchy-Green relative deformation tensor (cf. [1]) 
in the form 

(2.8) C(s) = F[(t-s)F,(t-s) = exp(g1(s)Mf +iis)MI)exp(it(s)M1 +g2(s)M2), 

where s E [0, oo ), and 

(2.9) g1(s) = f,(t-s)-f,(t), i = 1, 2. 

Bearing in mind the definitions of the velocity gradients L(t) (cf. [1]), we also have 

L(t) = F(t) F-1(t), L,(t) = M,/,(t), i = 1, 2, 

(2.10) L(t) = L1 (t)+L2(t), 

where dots denote the material differentiation with respect to time. Thus, instead of 
Eq. (2.8) we arrive at 

(2.11) C(s) = exp(g1 (s)Lf +g2(s)LI)exp(g1 (s)Lt +g2(s)L2), 

where gi(s) = gi(s)f~(t), i = 1, 2. 
It can easily be observed that Eq. (2.8) as well as Eq. (2.11) define particular cases 

of the motions with superposed proportional stretch histories discussed elsewhere [2, 3]. 
In other words, the motions described by Eqs. (2.1) and (2.2) belong to the class of the 
above motions. 

It is worth-while to note that the above examples of flows can be considered as certain 
unsteady homothermal motions defined by CARROLL [4]. On taking functions / 1 ( r) and 
f 2 ( r:) or cp(z) and 1p(z) as cosine and sine, respectively, we obtain various examples of 
motions discussed by Carroll in a series of papers (cf. [4-8]). For sinusoidal dependence 
on time, Eqs. (2.1) and (2.2) describe plane oscillations; for sinusoidal dependence on 
z, these equations may characterize certain orientation patterns observed in liquid crystals 
at rest (cf. [4]). 

The constitutive equation of a simple fluid (cf. [1, 2]) 

CO 

(2.12) T(t) = F {C(s) ), 
s=O 

where T(t) is the stress tensor at time t, and F denotes an isotropic constitutive functional, 
after substituting from Eqs. (2.8) or (2.11), can be written in the following forms (cf. [3]): 

CO CO 

(2.13) T(t) = G (g1 (s), g2(s); M 1 , M2) = H (gt (s), gis); Lt, L2). 
s=O s=O 
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Here, G as well as H denote functionals of the first scalar arguments, and are simulta-: 
neously isotropic functions of Mt and M~ or Lt and L2, respectively. 

Taking into account the relations (2.6) and either 

(2.14) 

for Mt and M2 given in the form of Eq. (2.4) or 

(2.15) 

for M 1 and M2 expressed by Eq. (2.5), we arrive at the following representations: 

(2.16) T(t) = s0 (g1 (s), g2(s); x 2 )1 
+ t (Kt (s), K2(s); x2)(MI +Mt)+t(gis), Kt (s); x2)(MI +M2) 

+ st (g1 (s), g2(s); x2)Mt MI +si (g2(s), Kt (s); x2)M2MI 

+s2 (K1 (s), g2(s); x 2)MIMt +s2 (g2(s), Kt (s); x 2)MIM2 

+s12 (g1 (s), gls); x 2 )(M1 MI +M2 Mf), 

where x2 stands for the arguments q;'2 , tp'2 or cp' 2 + tp' 2 , respectively. The material func­
tionals s0 , t, s1, s2 and s12 , five in number, are scalar functionals of gi(s), i = I, 2, and 
can be expressed as certain functions of t and x 2

• Only s0 and s12 are symmetric with 
respect to interchange of functions g1 andg2 or indices I and 2. In the case of incompres­
sible simple fluids the term s0 1 should be replaced by a hydrostatic pressure pl. 
, It is easy to notice that the last term involving functional s12 is responsible for mutual 
coupling of two component motions; when only one-dimensional flow is considered 
this term vanishes altogether (cf. [4]). 

On the basis of Eqs. (2.16) the corresponding stress components can be written as 

T13 = t(g1 (s), g2(s); x2 )cp', 

T23 = t(g2(s), g~.(s); x2}tp', 

(2.17) T 12 = 2s12(g1 (s),g2(s); x 2 )cp'vl, 

T 11 = So (Kt (s), iis); x2 )+s1 (g1 (s), gis); x2 )q;' 2
, 

T 22 = So {g~.(s), g2(s); x2)+s1 (K2(s), K1 (s); x2)1J1' 2 , 

T33 = so(i1 (s),g2(s); x2)+s2(g1(s),g2(s); x2)cp'2 +s2(g2(s),K1 (s); x2 )1J1'2 

for the flow described by Eqs. (2.I ), and 

T13 = t(g1 (s),g2(s); x2 )cp'+t(gis),g1 (s); x2)tp', 

T23 = -t{K1 (s), g2(s), x2)1J1' + t {g2(s), K1 (s); x 2 )cp', 

T 12 :;::: 2s12 (g1 (s), K2(s), x 2 )(cp'2 -tp'2), 

(2.18) T 11 = so(i1(s), g2 (s); x2 )+s1 (g1(s), g2 (s); x2 )cp'2 

+si (g2(s), Kt (s); " 2 )tp' 2 + 2st2 {it (s), K2(s); x2)q;'1p', 

T 22 = so(it(s),g2(s); x2 )+st (g1 (s),g2(s); " 2 )1J1' 2 

+st (g2(s), Kt (s); x2)cp'2 -2s12 (g1 (s), K2(s); x2)cp'tp', 

T33 = so (K1 (s), gis); x2 )+s2 {it (s), gis); " 2 )(cp'2+tp'2
) 

+s2 (g2(s), Kt (s); x2 )(cp'2+tp'2
) 

for the more general flow (2.2). 
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UNSTEADY SHEARING FLOWS AND PLANE SHEAR WAVES IN SIMPLE FLUIDS 289 

When either cp{z) = 1p(z) or / 1 ( r) = / 2 ( r), the above formulae simplify considerably. 
Similar simplifications can also be achieved for a particular choice of time dependence 
(cf. Sect. 5). 

3. Representations of the Rivlin-Ericksen type 

Although the constitutive equations (2.16) contain a relatively small number of material 
functionals, it is sometimes more useful to operate with other explicit forms of representa­
tions involving kinematic tensors of the Rivlin-Ericksen type (cf. [1]). 

To this end we can introduce the following definitions of the partial Rivlin-Ericksen 
(R-E) tensors (cf. [ 11]) : 

(3.1) 
i = 1' 2 
n=l,2,3, ... , 

where superposed dots denote the material time-derivatives, and where the l?artial velocity 
gradients Li have been defined in Eq. (2.10). It can be checked that the R-E tensors A,. 
and partial R-E tensors An<i> are related as below: 

(3.2) A = ( -l)n dnC(s) I 
n ... ds: s=o' 

An= Anco+An(2)7 n = 1, 2, 3, .... 

It can be proved in a way similar to that used for the motions with proportional 
stretch histories (cf. [11, 2, 3]) that the first and second partial R-E tensors A1c0 , A1c2 > 

and A2u>' A2c2> determine L 1 and L 2 uniquely, if the tensors AHo and AH2> have three 
eigen-values distinct. This is the case for the flows considered. 

The above result enables to express Eq. (2.13)2 in the following form: 

00 

(3.3) T(t) = K (g1 (s), g2(s); x2; Atu>(t), AH2>(t), A2c0 (t), A2c2>(t) ), 
s=O 

where as previously gi(s) = gi(s)//;(t), i = 1, 2. 
In the case of the motion described by Eq. (2.1), an expanded form of the constitutive 

Eq. (3.3) is 

(3.4) T = CXo 1 + iit AHo+ ~~ Atc2>+ ii2 A2c 0 + ~2A2c2> + ii3 Afo> + ~3 AfC2> + Ci4A~o> 
+ &"4 A~c2>+ iis(Ato> A2 0 >+ A2 0 >At et>) +as(Au2>A2<2> + A2c2> At <2>) 

+ cx6(Atco A1c2>+ Atc2>AHo) + cx7(A2<1>A2c2>+ A2c2>A2o>) 

+ iis(At<2> A2c1 > + A2<t>At<2>)+ as(At<t> A2c2>+ A2c2> At<t>) 

+ iig(A!coAi(l>+ AicuAfcl))+ ~9(Afc2>A~<2>+ Aic2> Aic-2,), 

where, for simplicity, we have denoted 

(3.5) ii, = ex, (g1 (s), g2(s); x2
), a1 = a1 (g2(s), g1 (s); x2

), i = 0, I, ... , 9. 

Only the material functionals cx0 , cx6 and cx7 are symmetric with respect to the interchange 
~the functions g 1 and g2 ; the remaining functionals may essentially depend on their 
sequence. For incompressible simple fluids the number of ten · functionals reduces by one 
since the term cx0 1 can be replaced by pl. 
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Taking into account Eqs. (2.4), (2.10), and (3.1), we arrive at the following stress 
components:e) 

(3.6) 

T13 - ; I - r I = «ut fP + «2Jt (/)' 

T 23 = a.1i2'P1 +a2i;'fJJ~, 
T12 = <~dtt;+cx,ftj;)fP1'f/J1 +(asith.+asiJ;)fP1'P1' 
T11 = ~o+a3iifP12 +a4/iqy'2 +2ishi~qy'2 +2a9ir/iqy'\ 
T 22 = cxo+a3ii'fJJ' 2 +a4l~"P12 +2ashi;"P'2 +2a9/il~'fJJ'4, 
T33 = «o+2asf~j;qy' 2 +iasi2h'f/J'2, 

where IX1 are the new functionals of the arguments indicated in Eq. (3.5), and, moreover, 
we have denoted j; = t(t), /; = j;(t) etc. It is quite clear that all the stress components 
are independent of X and Y. 

In a similar way, an expanded constitutive equation can be written for the motion 
described by Eq. (2.2). Then, the number of material functionals IX1 amounts to twelve. 
By way of illustration we quote only those stress components which enter into the dynamic 
equations of motion (cf. Sect. 4). We have, for example, 

(3.7) T23 = -alit"P1 +a.J;qy~-a.2ft'f/J1 +a2i;qy', 

T33 = «o+ (a.3if+a2iD<fP12 +VJ12)+ (a4i}+a4fi>(fP12 +VJ' 2
) 

+ 2(asi~it· + asi2i;) (qy'2 +VJ'2)+ 2(a9iflf + agi1lD (qy'2 +VJ'2) 

+ 2(a.Ioif/~ + «uifj~) ( qy' 2 +VJ' 2
), 

where the new functionals IX1 are again of the forms (3.5). 

Further simplifications in Eqs. (3.6) and (3.7) can be achieved either for / 1 ('r) = / 2 (-r:) 
or for a particular dependence on time. 

4. Dynamical equations and governing equations 

The dynamical equation of motion can be written in the following form (cf. [1]): 

(4.1) divT -gradP = ex, 
where x is the acceleration vector, e(t) -variable density of a fluid and P denotes a po­
tential of conservative body forces. Since all the stress components may depend on the 
variable z only (through the functions fP1 and 1J'1), it is reasonable to assume that also 
P = P(z, t). . 

Substituting from Eqs. (2.17) or (2.18) into Eq. (4.1) and calculating the inertia terms, 
we obtain 

(1) The functionals ~~ and i, (i = 0, ... , 9) in Eqs. (3.6) are not exactly the same as those used in 
the general equation (3.4). To avoid further multiplication of symbols we have included certain terms 
even with respect to q/, tp' into the new functionals. 
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(4.2) 

:z [t (gt (s), g2{s); x2)p'] -eh <p = 0, 

! [t(g2(s),gt(s); x 2 )vlJ-eh'P = 0, 

-/z [so (g1(s), gis); x2)+s2 (g1(s), g2(s); x2)<p'2+ s2 (g2(s), g1 (s); x2)V''2]- ~~ = 0 

for the motion described by Eq. (2.1), or 

(4.3) 

:z [t (g1(s), g2(s); x2 )p' + t (g2(s), g1(s); x2)V''] -gh· p -gf;'P = 0, 

! [-t(gt(s),g2(s);x2)1J''+t(g2(s),gt(s);x2)p']-ej;p-e_K'P = 0, 

:z [so (Kt (s), g2(s); x2)+s2 (g1 (s), g2(s); x2)(p'2 +1p'2) 

+s2 (g2(s), g1(s); x2)(p'2+'J''2)]- ~~ = 0 

for the more general motion (2.2). Here, the symbol x2 stands for p'2 , tp'2 or p'2 +tp'z, 
respectively. • 

For compressible simple fluids, the above system of coupled differential equations 
can be satisfied only in the following cases: 

a) there are no body forces (P = 0), then p'2 , tp'2 in Eqs. (4.2) or p'2 +tp'2 in Eqs. 
(4.3) must be constant with respect to z; 

b) there are body forces (P -::/: 0) of such a form that the third equations in Eqs. (4.2) 
or ( 4.3) are satisfied. 

It is worth noting that the case a) is valid for circular shearings discussed elsewhere 
[8, 9, 10]. For these flows, the solutions of Eqs. (4.3) which are periodic with respect 
to z and satisfy appropriate initial and boundary conditions correspond to progressive 
or standing circularly polarized plane shear waves. 

For incompressible simple fluids, the above system of differential equations can always 
be satisfied for arbitrary potentials P(z, t). The first two equations (4.2) or (4.3) with 
appropriate initial and boundary conditions can, at least in a numerical way, be solved 
for p and V'· The corresponding third equations determine the hydrostatic pressure func­
tions p. 

In what follows, we shall discuss only particular solutions of the system (4.2). For 
incompressible simple fluids this system, after taking into account Eqs. (3.6), can be 
expressed in the alternative form: 

a . .. .. 
Tzra.tftP'+""&2ftP'J-eftP = o, 

(4.4) 
a - . .. .. 

az [""&.1 !2 V''+ ""&.2!2 '1''1 - e/2 V' = o, 

a . .. - . .. aP 
az [-p+2as.ft.ftp' 2 +2asf212V''2]- az = o. 
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It is seen that the terms in square brackets in Eqs. ( 4.2) and ( 4.4) determine the shear 
stresses in the flows considered. The first two equations ( 4.4) become independent of 
each other and linear with respect to fP and tp only in the following cases: 

i) the constitutive equations considered are such that the shear response of a fluid 
is linear; then either t{gl (s), g2(s); x2) or a.i and a;, i = 1' 2, do not depend on f:p

12 and 
tp'2 , i.e. on the variable z; 

ii) the amounts of shear determined by the functions f:P' and tp' are sufficiently 
small to disregard higher order terms as compared with those of the first order. 

The case i) covers all fluid models with linear shear response, e.g. Newtonian fluids, 
second order fluids, finite linear viscoelasticity models etc., and may be used without 
any further restrictions imposed on the amounts of shear. 

In some cases it is useful to introduce the following generalized viscosity functions: 

- ( 2)- rt3 - 1 c- <)- < )· 2)-- J.-'YJ1- 'YJ1 t, H. --,-- -.-t gl S ,g2 S, H. - ll1 +-.-ll2, 
ft f:P' ft ft 

( 2) T23 I (- ( ) - ( ) 2) = j; = 'YJ2 = 'YJ2 t' H. = -,- = -~;- t g2 S 'gt S ; X = Ill+-;- ll2' 
f2'P

1 

!2 !2 

(4.5) 

where the notation from Eqs. (2.I7) and (3.6) has been applied. 
Under the assumption of linear shear response or for small amounts of shear, 

first two equations (4.4) simplify to 

(4.6) 
'YJd~1 f:P" -ei: fP = o, 

where primes and dots. denote the derivatives with respect to z and t, respectively. 

5. Oscillatory shearings and plane shear waves 

the 

Now we shall discuss in greater detail the case in whichf1 ('r) and/2 (r) are harmonic 
functions of time, viz. 

(5.1) 

where Wt and w2 are real positive angular frequencies. Since, according to Eq. (2.9), 

(5.2) g,(s) = eiw,r(eiw,s -1), g1(s) = eiw,s -1, i = I, 2, 

the generalized viscosities defined by Eqs. (4.5) depend only on w 1 and w2 if the assump­
tion of linear shear response holds. Instead of Eqs. ( 4.6) we obtain 

. *( ) "+ 2 0 lW1 'f}1 w1 ,w2 qJ (!W 1 qJ = , 
. *( ) " 2 0 zw2'YJ 2 w2,w1 'P +ew2tp = , 

(5.3) 

where 'fJf and 'fJ; can be considered as the mechanical impedances or the generalized 
dynamic viscosities for two oscillations superposed in two mutually perpendicular planes. 
On using representations of the Rivlin-Ericksen type, it results from Eqs. (4.5) that 

(5.4) 
'YJ!( (()1' w2) = at+ iwl a!, 
'YJ!(w2, w1) = cxt+iw2a!, 

where IX* are also dynamic functions of two angular frequencies w 1 and w2 • 
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A general solution of the system (5.3) can be written in the form 

(5.5) 9?(z) or 1p(z) = A;exp(/11 + iy1)z+ B1exp( -/11-iyi)z, i = 1 or 2, 

where A i and B; are integration constants, and 

(5.6) 

where the real (primed) and imaginary (doubly primed) parts of functions 'YJf, i = I, 2, 
are defined by 

(5.7) 
* ' . " 1] 1 = 'YJ 1 -l'Yj 1 ' 

- -
'YJ~ = -~'; -w2~;. 

Periodic solutions of the form (5.5) describe plane sinusoidal waves, standing or 
propagating along the z-axis with the phase velocities C; = w;/y;. The parameters /1; 
depending on angular frequencies w; characterize growth or decay of the wave amplitude 
and may be called the coefficients of attenuation or damping. The parameters y; de­
termine a dispersion of waves and may be called the phase shifts or the wave numbers. 

Equation (5.6) leads to the following useful relations (cf. [I2, 1]): 

p?-. = ~ [ 1 : __ ;I l = (!Wt;l r 1 __ ;I ] 
<
5
·
8
) IJ 2'Yj~ yi+;~ I+;f 2'Y}~ 1 J;1 1+~ft 1+;[ ' 

<5·9l rf. = ~~:' [ y'1 ~~f. + 1 !'~t] = e~'/t~ ~ ~~h + 1 !'~r]' 
where 

'YJ~' I 
(5.10) ;, = -, = --, i = I,2. 

'YJ; tgd, 

The second forms of Eqs. (5.8) and (5.9) are valid only for ;; ¥= 0. By an analogy to 
the theory of linear viscoelasticity d; can be considered as the generalized loss angles 
(cf. [13]). 

It would be quite interesting to discuss the behaviour of phase shifts and coefficients 
of damping in the full range of angular frequencies, i.e. from zero to infinity. Such an 
analysis for one-dimensional sinusoidal waves in a second order fluid has been presented 
by TRUESDELL [I2, I]. Since in our case an explicit dependence of;; on w1 is not known, 
we shall rather analyse /11 and y; as functions of the parameters ;; . We shall omit, more­
over, the indices i = I, 2 and over bars denoting each of the component motions. Although 
the latter simplifications are formally equivalent to the assumption that w1 = w 2 = ~ 
or to the cases in which either w 1 or w2 is constant, some information can be obtained 
for motions with two distinct frequencies, since the material characteristics with index I 
(or single overbar) are such functions of w1 as those with index 2 (or double overbar) 
of w 2 • 

To begin with, we note that for numerous viscoelastic fluids like dilute and uncross­
linked polymer solutions, light oils with small amounts of polymeric additives etc., it 
is reasonable to assume that 

(5.II) lim ;(w) = 0, lim ;(w) = oo. 
W-->-0 W-->-00 
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The above assumptions mean that for very low frequencies or very long times the fluid 
considered behaves like a purely viscous fluid while for very high frequencies or very 
short times its behaviour is almost purely elastic. In other words, for ill ~ 0 the tangent 
of loss angle tends to infinity, while for ill ~ oo it is negligibly small (cf. [13]). 

Thus the limits in Eqs. (5.11) and the formulae (5.8) and (5.9) imply also that 

(5.12) lim tll = 0, lim P2 = 0 or finite, 
or-..() (ll-+00 

(5.13) lim y 2 = 0, 
w-+0 

where G' = rj" /w can be considered as the real part of the generalized complex modulus. 
If the last limit is finite, the wave length is constant for ultrasonic frequencies; if y 2 tends 
to infinity the wave length tends to zero for sufficiently high frequencies. It turns out, 
moreover, that in any case y 2 increases monotonically while P2 may reach a maximum 
value for E = 1/Jif, i.e. for tgc5 = Jf3. It is also seen from Eq. (5.8) that 

(5.14) P2 (!Wer (!ill;r 

max = 8 "( ) = 8G'( ) ' 1} iller iller 

where the critical value of angular frequency results from the equation 

(5.15) '( ) .. ;-3 "( ) ,3- G' ( Wer) 
1} iller = r 1} iller = y . 

Wer 

In agreement with Truesdell's remarks [12] any critical value of angular frequency de­
termines a certain characteristic time of a fluid: () = a/iller. On the other hand, the 
existence of a critical frequency characterizing the strongest damping effects is usually 
connected with a passage from purely liquid state to highly elastic state (cf. [14]). 

It is worth-while to remind that for Newtonian fluids 

(5.16) p2 = y2 = (!ill , 
21Jo 

where the Newtonian viscosity can be identified with 1]' (0) = const. In this case, {12 as 
well as y 2 tend to infinity with the increasing frequency ill. 

A diagram illustrating the above discussed variability of P2 and y2 is shown schema­
tically in Fig. 1. The abcissae denote the values of E; the corresponding values of ill are 
indicated only for orientation. 

It may happen, however, that for other viscoelastic fluids like more condensed and 
cross-linked polymer solutions, polymeric gels etc., the function 1J"(w) does not tend to 
zero for very small angular frequencies but approaches some finite value 1J" (0). Then, 
according to Eqs. (5.7) and (5.10), we have 

(5.17) limE(w) = lim- IX~(w)+wa;(w) = lim- a~'(w) . 
ar-..o CD-+0 a~(w) -wiX~(ill) -a ~t;(w) 

The above result means that for ill = 0, E is equal to some finite, rather small quantity. 
It is also seen from Eqs. (5.8) and (5.9) that for w = 0, both {12 and y 2 vanish, while 
for e = 0 we have 

(5.18) 
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FIG. 1. 

where w0 denotes a real positive root of the equation(2): 

(5.19) 

Since, moreover, {J2 and y2 are such functions of ~ that 

(5.20) 

295 

and vice versa, and y2 may have only a maximum for ~ = -1 jy3, it is expected that 
the limit value of~ determined by Eq. (5.17) is greater than -1/y3. This fact implies 

,, 
,_,-

~ 

--~---------~-----------
' ,.,. yt 
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I /. 
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I 
J 
J 
I 
I 
J 
I 
J 
I 
I 

Wcr 

FIG. 2. 

f._.­w--
(2) For such a root to exist it is necessary that £X~(ro0) < 0. This condition is similar to that for 

second order fluids for which always £X2 = const < 0 (cf. e.g. [lD. 
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a monotonic increase of fJ2 and y2 in the interval from 0 (for w = 0) to p~ = y~ (for 
w = w0 ) and, moreover, P2 > y2

• At the point ~ = 0 (or w = w0 ) where a breakage of 
internal structure takes place, the fluid considered behaves as purely viscous. 

A diagram illustrating the above discussed situation is shown in Fig. 2. It does not 
seem that other possibilities, different from those presented in Figs. 1 and 2, may occur 
at all for the case considered. For two shear waves with distinct angular frequencies w 1 

and w2 or for one-dimensional longitudinal waves, however, the whole picture may look 
in a quite different way. For longitudinal waves, for instance, two or more maxima on 
p2 (~) and y2(;) curves are possible (cf. [15]). 

When the waves considered are caused by some sinusoidal disturbances applied in 
any of xy-planes, a maximum value of the amount of shear x2 = q;'2 + 1p'2 essentially 
depends on w 1 and w2 • For the sake of simplicity, we assume that angular frequencies 
of two component motions are equal, i.e. w1 = w2 = w. Bearing in mind that, in general, 
q;' and 1p' are complex functions, we obtain from Eqs. (5.5) 

(5.21) 

where C 2 = (A 1 - B 1)
2 + (A 2 - B2) 2 is composed of the integration constants involved 

in Eq. (5.5). Substituting for P2 and y 2 from Eqs. (5.8) and (5.9), we finally arrive at 

(5.22) 

Taking into account the variability of the parameter ~ defined by Eq. (5.10), it is seen 
that 

(5.23) I . 2 - t· I ·c2 ew - o 
ImXmax - tm -2- - ..,----( ) - , 

w.....{) w~ 'YJ (J) 

(5.24) 1. 2 I' 1 C2 (!W 1 C2 (! 
w~~Xmax = w~ 2 -~"(w) = -2 e<~(w) ' 

where the last limit may be finite. 
The corresponding Newtonian maximum amount of shear is 

(5.25) 2 l 2 (!CU 
XmaxN = -yC -n-;; , 

where 'Y/o = 'YJ' (0) = const. 

The result (5.23) proves that for very low angular frequencies the maximum amount 
of shear tends to zero as for Newtonian fluids. On the contrary, the result (5.24) shows 

-that for very high or ultrasonic frequencies the maximum amount of shear in vicoelastic 
fluids may tend to some finite value, while in Newtonian fluids it increases proportionally 
to the square root of the angular frequency. Thereby, we can conclude that viscoelastic 
fluids at high frequencies may be sheared less than Newtonian fluids of similar viscosities 
subjected to the same initial disturbances. On the other hand, such disturbances in visco­
elastic fluids can propagate at longer distances as compared with those in Newtonian 
fluids, since for very high frequencies the damping effects are weaker (cf. [12]). 
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6. Speed of wave propagation and ultrasonic velocity 

Acceleration and sound waves in viscoelastic fluids can also be considered as the 
propagating surfaces of second order discontinuities as shown by CoLEMAN, GURtiN, 

HERRERA and TRUESDELL [16]. For the case of one-dimensional transverse waves, the 
speed of propagation (the intrinsic velocity of propagation) is determined by the formula 

(6.1) 

where e is the density of a fluid, and the instantaneous tangent modulus G, is defined as 
follows: 

(6.2) 
a CX) 

Gt = oF(t) s:o (F~(s); F(t) ), 

where F(t) = Ft(O) is the present value of the deformation gradient, and F~(s) denotes 
the past history, i.e. the restriction of F'(s) to the open interval (0, oo). 

Assuming for simplicity that / 1 ( r) = / 2 ( r) = f( r), we see that the shear stress com­
ponents in Eqs. (2.17) and (3.6) imply that 

(6.3) G, = - 0
- [t(g(s); " 2 )lp'] = _!_t(g(s); " 2

) = j (tt1 + ~· tt2) = f'YJ(t; " 2
) 

8lp'f f f f f 

and an analogous expression with tp'. Here, lpJ denotes the shear gradient and 'fJ- the 
generalized viscosity function defined by Eqs. (4.5). 

For an acceleration wave which since time t = 0 has been propagating into a region 
having been at rest in a fixed reference configuration, the instantaneous response is de­
termined by the initial value of the stress relaxation function G(t) (cf. [16]). Therefore, 

on taking G(O) = Gt!t=o, we have from Eq. (6.3) 

(6.4) 

where Eqs. (5.7) have been used. Substituting the above result into Eq. (6.1), we finally 
arrive at 

(6.5) 

If the last limit exists, the speed of propagation is finite, otherwise it tends to infinity 

as for Newtonian fluids. 
On the other hand, it has been proved in [16] that for sinusoidal progressive waves 

U.l = C00 , where cex>: 

(6.6) 
2 . 2 • w2 

c 00 = hm c ( w) = hm -y-( ) 
CU--+00 CU--+00 y (I) 

denotes the ultrasonic velocity. Taking into account Eq. (5.9) for w --+ oo, we obtain 
exactly the result expressed by Eq. (6.5). 

9 Arch. Mech. Stos. nr 2/80 

http://rcin.org.pl



298 S. ZAHORSKI 

It is also worth-while to observe that for fluids with linear shear responses, the in­
stantaneous second order modulus defined by the second derivative of the functional 
E(F:(s); F(t)) with respect to F(t) is always equal to zero (cf. [16]). This means that the 
amplitudes of shear waves cannot grow unlimitedly in a finite time. 
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