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Incompressible boundary layer for longitudinal flow
over a cylinder with an applied magnetic field

Notations

B.J. VENKATACHALA and G. NATH (BANGALORE)

THE FLOW, heat and mass transfer problem for a steady laminar incompressible boundary
layer flow in an electrically conducting fluid over a longitudinal cylinder with an applied
magnetic field has been studied. The partial differential equations governing the flow have
been solved numerically using an implicit finite-difference scheme. The resuits are found to
be strongly dependent on the magnetic field and dissipation parameter. The effect of the mass
transfer is more pronounced on the skin friction than on the heat transfer. The results have
been compared with those of the series solution, the asymptotic solution, the Glauert and
Lighthill's solution, local similarity, local nonsimilarity and difference-differential methods.
Good agreement is found with all of them, except with the results of the local similarity
and series solution methods.

Rozwazono problem oplywu, transportu masy i ciepla w ustalonym, laminarnym przeplywie
warstwy przysciennej wzdluz walca i w polu magnetycznym. Rownania rozniczkowe czastkowe,
opisujgce to zagadnienie, rozwigzano numerycznie postlugujac si¢ metoda réznic skoficzonych.
Okazuje sig, ze wyniki zaleza w sposob istotny od pola magnetycznego i od parametru dysy-
pacji, a transport masy wplywa bardziej na tarcie powierzchniowe niz na przewodnictwo
ciepla. Wyniki porébwnano z rezultatami otrzymanymi metoda szeregdw, rozwigzan asympto-
tycznych, metoda Glauerta i Lighthilla, metoda lokalnego podobieristwa oraz braku podobien-
stwa lokalnego, a takie metodami rdZnicowo-rézniczkowymi. Stwierdzono dobra zgodnosé
wszystkich wynikow z wyjatkiem rezultatéw otrzymanych metodami szeregéw i lokalnego
podobienistwa.

PaccmarpupBaercs 3afaua obTekaHus, EPEHOCa Macchl i TEIUIa B YCTAHOBHBIUMMCH, JIAMHHAD-
HOM TeYeHHH NOTPAHHYHOTO CNOA BAOJE IHAKHAPA M B MarHuTHOM noje. Juddepenipanmsusie
YPaBHEHHA B YACTHBIX ITPOM3BOMHBIX, ONMCHIBAIOIIME 3TY 34034y, pellleHbl YHCIEHHO, IOCTy-
JKHBAACh METOJIOM KOHEWHBIX pasHocreil. OkasbiBaeTcs, YTO Pe3yJILTATHl 3aBHCAT CYLIECT-
BEeHHbIM 00pa3oM OT MarHMTHOTO IOJIA M NapamMeTpa AMCCHIIAIMM, & NEPEHOC MAacChl BIMAET
Gonbllle HA MOBEPXHOCTHOE TPEHHE, YEM Ha TEIUIONPOBOJHOCT. Pe3ysbTaThl CpaBHEHBI C pe-
SYJIBTATAMH TIOJIYUEHHBIMM METOMIOM PSMIOB, ACHMITOTHYECKHX pelleHMit, merogom I'iayspra
i ITafiTXunna, MeToloM JIOKATBHOTO MOJOGHA M OTCYTCTBHMA JIOKAJBHOTO MONOOHA, a TaloKe
muddepenunansHo-pasHocTHEIMM  MeTofami. KoHCTaTHpoBaHO XOpollloe cOBHAJeHHE BCeX
peangraroa, 33 HCK/IIOYEHHEM DPe3yJbTATOB, IMOJNYHEHHBIX METOJaMH PAJOB H JIOKAILHOTO
moobus.

A mass transfer parameter (constant),
B, applied magnetic field,
Br Brinkman number,
C, skin friction coefficient,
S dimensionless stream function,
fw mass transfer parameter,
F(or f’), G dimensionless velocity and temperature, respectively,
F,(£,0) skin friction parameter,
Gy(£,0) heat transfer parameter,
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K thermal conductivity,
M magnetic parameter,
Nu Nusselt number,
q heat transfer rate,
r distance measured from axis of cylinder in radial direction,
R radius of the cylinder,
Re; local Reynolds number,
T temperature,
u,v velocity components in axial and radial directions, respectively,
vo constant,
U velocity in axial direction at the edge of the boundary layer,
& transformed coordinates, '
u coefficient of viscosity,
v kinematic viscosity,
e density,
o electrical conductivity,
7. shear stress on the wall,
y dimensional stream function.

Subscripts
r,x,7n,& denote derivatives with respect to r, x,n and &, respectively,
w conditions at the wall, 3
o0 conditions in the freestream.
1. Introduction

THE STEADY laminar incompressible boundary layer flow over a longitudinal cylinder
can be regarded as an extension of the Blasius solution for a flat plate; however the
effect of the transverse curvature must be taken into account. This problem was considered
by Youncg [1], and Jacoe and Dow [2] under certain restricted conditions using the
momentum integral method. SeBAN and Bonp [3] re-studied the above problem under
more general conditions. They solved the equations using the series solution method
and computed 3 terms of the series. Subsequently, KELLEY [4] introduced some correc-
tions in the solution of SEBAN and BonD [3]. WANoOuUs and Sparrow [5] further refined
the existing numerical informations and provided the fourth term of the series of [3].
GLAUERT and LiGHTHILL [6] used a different series to solve the problem for very large &.
They also constructed an interpolation curve for the wall shear to bridge the gap between
their solution and the series solution of [3]. JAFFE and OKAMURA [7] have obtained a solu-
tion for the same problem using the difference-differential approach which reduces the
partial differential equations governing this problem to ordinary differential equations.
Recently, SpArRrROW and co-workers [8-9] have investigated the same problem using the
local nonsimilarity method which also reduces the partial differential equations to ordi-
nary differential equations. More recently, NATH [10] has re-examined this problem using
an approximate method based on a series expansion in derivatives of the stream function.
It may be remarked that all these investigators considered only the hydrodynamic case
and not the hydromagnetic case (which includes the effect of the magnetic field). Further-
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more, to the authors’ knowledge, the solution of this problem using the finite-difference
method has not been reported in the literature.

- The aim of this paper is to study the steady laminar incompressible boundary-layer
flow and heat transfer problem for an electrically conducting fluid over a longitudinal
cylinder with an applied magnetic field. The effects of mass transfer and dissipation terms
have been included in the analysis. The partial differential equations governing the non-
similar problem have been solved numerically using an implicit finite-difference scheme.
The results have been compared with those of local similarity, local nonsimilarity, the
series solution, the asymptotic solution, the Glauert and Lighthill’s solution, and dif-
ference-differential methods.

2. Governing equations

We consider an axisymmetric flow of a steady laminar incompressible electrically
conducting fluid over a long thin non-conducting cylinder of radius R under the influence
of an applied magnetic field B, imposed in a transverse direction to the flow. It is assumed
that the magnetic Reynolds number of the flow is very small so that the induced magnetic
field can be neglected in comparison with the applied magnetic field. Further, the wall
and freestream temperatures have been considered as uniform. In this problem, the non-
similarity is due to the transverse curvature of the surface. Under the above conditions,
the governing equations taking into account the effects of mass transfer, viscous dissipa-
tion and Joule’s heating, can be expressed in dimensionless form as [8-9]:

@.1) (1499 F,+(f+E)F,—(M[4)EF, = &(FF.—F,fy),
(22) (14956, +(Pcf+8)G,+(M[4)Br&2F2 + (1+9&)Br F; = Pr&(FG;—G,fe)
with the boundary conditions
(23 F(§,0)=G(,0)=0, F(§,0)=2, G, 0)=1,
where
& = (4/R)(x/U)'2, = (Ulrx)'"*(r*~R*)/4R,
ux,ry=r"y., o(x,r)= —rty,,
(2.4) v(x,r) = RexU)'f(§,m), F=f,=ulU,

G, = (T-T)(To=T.), f= [Fdy+f.,
0

M = oB3R*[u, Br = pU?|[4K(T,,—T.)],
fo=A.

Here 4 = —Rv,,/(4v) when v,, is a constant and 4 = —v,/(»U)"/? when v, = vox~ /2,
It may be remarked that at £ = 0, Egs. (2.1) and (2.2) reduce to similarity equations
(Blasius equation) for a flat plate and for M = 0 (i.e., in the absence of a magnetic field);
they reduce to hydrodynamic equations for longitudinal flow over a cylinder studied
in [1-10].
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The skin friction coefficient and heat-transfer coefficient (Nusselt number) can be
expressed as [8-9]:
Cs(Re)'? = F,(£,0)/2,
@3 Nu(Re) "2 = —G ¢, 0)12,
where
C; = 27,/oU?  Re, = Ux/y,

(2.6) Nu = gx/[K(T\, ~Tp)].

3. Results and discussion

Equations (2.1) and (2.2) under the conditions (2.3) have been solved numerically
using an implict finite-difference scheme. Our method is the same as that described in
[11-12] except that we have not converted the infinite interval (0, c0) for 5 to finite one
(0, 1) as has been done in [11-12]. Hence the description of this method is not given
here. The computations have been carried out on a IBM 360/44 computer. The step size
4y = 0.01 and 4¢ = 0.05 have been used throughout the computation. Further reduc-
tion in them changes the results only in the 4th decimal place. In order to test the accuracy
of the present method, the result of the similarity solution obtained by putting £ = 0
in Eq. (2. ) has been compared with that tabulated in [7] and it is found to agree up
to the 4th decimal place.

A=M=0

——— Finite Difference
~———— Local Nensimilarity {3-equations model)
——:—— Local Similarity

——=-——Series solution.
05 .

| | |
0 1 2 3 4

0.25

FiG. 1a. Comparison of skin friction Fy(£, 0)/2 with other methods.
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i 1 I
A=M=Br=0 Pr=07

Finite Ditference

——-—— Segries solution
o Local Nonsimilarity( 3-equation model)
—-— = Local Similarity

0 ] | |
Q 1.0 20 5 30 — 40

Fic. 1b. Comparison of heat transfer —G,(§, 0)/2 with other methods.

Figures 1a and b show the comparison of the finite-difference results for skin friction
F,(&,0)/2 and heat transfer —G, (&, 0)/2 with the series solution [5], local similarity and
local nonsimilarity methods [8-9] and the asymptotic method [10] for the parameters
for which their results are available (i.e. for 4 = M = Br = 0). Since the results obtained
by the asymptotic method are nearly the same as those of the local nonsimilarity method,
they are not shown in the figures. The heat transfer results (obtained by the finite-dif-
ference method) are found to be in good agreement with those of the local nonsimilarity
method, however, the skin friction results differ from the corresponding results of the
local nonsimilarity method maximum by about 5 per cent. The finite difference results
for the skin friction and heat transfer for large £ differ considerably from the local simila-
rity and series solution results, indicating the inadequacy of these methods. Figure 2 gives
the comparison of the finite-difference results for F,(&,0)/2 in the range 0 < £ < 40
with those of JAFFE and OkAMURA [7] (difference-differential results) and GLAUERT and
LiGHTHILL [6] (expansion procedure results valid for 6 < £ < 40) and they are found
to be in good agreement with both of them, except when & is very large (£ > 20). For
very large &, the maximum difference between the JAFFE and OkAMURA [7] results and the
present results is about 7.5 per cent and between the GLAUERT and LIGHTHILL [6] results
and the present ones is about 5 per cent.

The variation of the skin friction parameter F,(¢, 0) with & for various values of the
magnetic parameter M and the mass transfer parameter 4 when v,ccx~1/2 is given in
Fig. 3. Figure 4 contains the corresponding results for F,(&, 0) when v, is a constant.
F,(&,0) increases as M or ¢ increases. Similarly, the effect of suction (4 > 0) is to in-
crease the skin friction F,(¢, 0), whereas the injection does just the reverse. This behaviour
is true whether v,, is a constant or varies as x~'/2,
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Fi6. 2. Comparison of skin friction F,(&,0)/2 with other methods for large &,
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FIG. 3. Variation of Fy(£,0) with &(v,ccx~1/2),
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The distribution of the heat transfer parameter —G,(§, 0) with & for different values
of Br, M, and 4 is shown in Figs. 5-6. When Br = 0, G,(¢, 0) changes very little with &
and this trend is valid whatever may be the values of M. Similarly, for M = 0, —G,(&, 0)
changes very little with & irrespective of the magnitude of Br. When Br > 0 and M > 0,
—G, (£, 0) decreases rapidly with & for large &; but for small &, the rate of decrease is
small. On the other hand, the behaviour of —G,(§, 0) is just the opposite when Br < 0,
M > 0, i.e. it increases with & (for small £ slowly and for large & rapidly). For given &,
the effect of M is to decrease —G, (&, 0) when Br > 0 but its effect is just the reverse when
Br < 0. These results do not change qualitatively with mass transfer or depending on
whether v,, is a constant or a variable.

The velocity profiles (F(£, n)) are displayed in Fig. 7. It is observed that there is a
velocity overshoot when M > 0 and & > 0 and the velocity overshoot increases as M
or £ increases. However, there is no velocity overshoot when & = 0 whatever may be
the values of M. Since there is a velocity overshoot when M > 0, and & > 0, there is
always a point of inflexion as is evident from minimum in F,(&, n) (not shown in figures
for the sake of brevity).

The temperature profiles (G(£, n)) for various values of Br are shown in Figs. 8-9.
From these figures it is seen that for Br > 0, £ > 0, and M > 0, G(&, ) first increases

20 | T T

{! \ A = 0.1( V= Const.)

154 ‘\‘ Br=0.5, Pr=0.7 |
| \ £=0
s \ L » "
.’r/ ‘\. ‘\‘ —_— 4

FiG. 8. Temperature profiles (v. = constant, 4 = 0.1, Br = 0.25).
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A=01(V,, =Const.)

Pr=0.7
Br=-05

F1G. 9. Temperature profiles (v. = constant, 4 = 0.1, Br = —0.5).

with 7, attains a maximum and then rapidly decreases to zero as 7 further increases.
This maximum value strongly depends on the values of M, £ and Br. It is found that the
behaviour of G(&, n) is the same whether »,, is a constant or a variable, hence, for the
sake of brevity, G(&, ) when v, ccx~*/? is not shown here. When Br < 0, M > 0, and
& > 0, G(&, n) rapidly decreases with #, attains a minimum (G(£, ) becomes negative)
and then increases with # and finally tends to zero asymptotically. It can be concluded
that Br exerts a strong influence on the temperature profiles.

4. Conclusions

The skin friction increases as the magnetic parameter increases, but the heat transfer
decreases as the magnetic parameter increases when the Brinkman number (dissipation
parameter) is positive. However, for negative values of the Brinkman number, heat
transfer increases as the magnetic parameter increases. The effect of the mass transfer
is more pronounced on the skin friction than on the heat transfer. The heat transfer is
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strongly affected by the dissipation parameter. The skin friction results differ from the
corresponding results of the local nonsimilarity method by about 5 per cent, but the
heat transfer results are found to be in excellent agreement with those of the local non-
similarity method. The results differ considerably from those of the local similarity and
series solution methods which imply that these methods are not suited to the present
problem. For very large &, the results differ from difference-differential results maximum
by about 7.5 per cent and from expansion procedure results due to Glauert and Lighthill
by about 5 per cent.
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