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Decomposition of non-stationary crack into discontinuity waves
Z. WESOLOWSKI (WARSZAWA)

THe DEA that each elementary fracture produces a discontinuity wave was introduced and
exposed in [1]. It was shown that in stationary case this idea leads to the already known
formulae. In the present paper the non-stationary case is considered. It is shown that the
method allows to consider cracks in finite regions. The procedure follows closely to that given
by EsHELBY in [2].

Rozwazanie ogranicza si¢ do antyplaskiego stanu odksztalcenia. Zaklada sie, ze kazde ele-
mentarne peknigcie powoduje powstanie fali niecigglosci. Fale te nakladajg si¢ na siebie dajac
catkowite przemieszczenie. Odpowiednie rozwazania dla przypadku stacjonarmego podano
w [1]. W niniejszej pracy pokazuje sie, Zze rowniez w przypadku niestacjonarnym otrzymuje
sie wlasciwe rezultaty.

Paccy»ieHMA OrpaHMUMBAIOTCA AHTHIUIOCKHM AedopMaNMOHHBLIM cocToAHMeM. I[Ipemmona-
TaeTc, YTO KAKAAA JJIEMEHTAapHAA TPEIMHA BBISHIBACT BO3IHMKHOBEHHME BOJIHBLI paspeIBa.
OTH BOJmHBI HAKIAMLIBAIOTCA OPYT HA ApYTa, JaBas HOJHOe nepemeiienre. CooTBETCTBYIOMIME
PACCY {IeHHMS AJIA CTALMOHAPHOrO CiIy4as npuBedeHs! B [1]. B Hacrosmueit pabore okasbiBaercs,
YTO TOXKE B HECTANMOHAPHOM CJIydae IONYYAIOTCA NMpPaBHIBHBIE PE3yIBTATHI.

1. Elementary wave

ConsIDER the propagation of a plane crack into a linear isotropic elastic medium. In
the fixed Cartesian coordinate system (x, y, z), the crack occupies the half-plane, Fig. 1

(1.1 x<y@), y=0,

where 7 is a function of time ¢.
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The speed of the crack tip is

1.2) p=1,
where a dot denotes the time derivative,
The function inverse to %(r) will be denoted by x(x), i.e.
(1.3) t=2(x), 2M()) =1t
Let us confine ourselves to the case for which the displacement vector is parallel to

the z-axis and does not depend on z. Denoting the corresponding component by u we
have

(1.4) u=u(x,yt),
1
(15) u.xx+“.)=7 &= C_zu"”
e = plo,

where u and p are the shear modulus and density of mass, respectively, and c is the pro-
pagation speed of transverse waves.

Further calculations are based on the following assumption: Each elementary fracture
at (s, 0) of the length ds produces a discontinuity wave centered at x = s, y = 0. This
wave starts at the instant y(s). Due to the isotropy of the material, its front is a cylinder
of a radius ¢(f— x(s)).

In order to find the displacement du of the elementary wave, we write the equation
of motion (1.5) in the cylindrical coordinate system (r, &, z) (cf. Fig. 1)

(i), 1 )+ ), = i )

It has a solution

(1.6) i % flr—c(t—1())lsind2,

r
where fis an arbitrary function and B a constant. Furtper, we shall prove that the special
case of Eq. (1.6), namely

Bds
—Vr—smﬂfz for r< e(t—x(s)),
(1.7 ="

for r>c(t—x(5)),

is the discontinuity wave produced by elementary fracture of the length ds. Figure 2
(courtesy of dr. J. F. Kalthoff, Freiburg) provides experimental evidence of elementary
waves in steel. For details concerning experimental technique see for example [3].

In Cartesian coordinates Eq. (1.7) reads

h(x,y,s)ds for r<c(t—x(),

(1.8) du=1 for r>c(t—x(s),

(1.9) h = Bsigny AT L S i
Vx—92+y?
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Equation (1.7) and Eq. (1.8) equivalent to it are the basic solutions for crack propaga-
tion in anti-plane strain. The quantity

B
(1.10) (), = 5 du

is proportional to the stress dr,.. For y = 0
du=0 for x-—5>0,

(1) (dw),=0 for x-5<0.

2. Total displacement

All the elementary waves add together and result in the total displacement. The

displacement due to the fracture from x = a to x = 7(z) is
n(1)

@1) u(x, y, 1) = [ du(x,y,1,5).

Let us confine the calculations to the subsonic crack

(2.2) 0<sq<ec.

In this case the wave fronts of the elementary waves produced at points s,, 5,, 53, ... do
not intersect each other and have the shape given in Fig. 3. It is seen that the waves

produced near (7(¢), 0) do not contribute to u(x, y, t). Denoting by s the point where
the latest wave contributing to u was produced, we have

(2.3 V(x=5)2+y? = c(t—1(3))-
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Once the function y(s) is given, this equation may be solved for s(x, y, t). If x(s) is
continuous, 5 is continuous, too. Note that for y = 0 there is '
x<s<n() for x<n();
(2.4) = v 4
s<n() for x>(t).
The inequalities follow either from Eq. (2.2) or directly from Fig. 2 (the wave fronts
do not intersect each other).
The formula (2.1) in accordance with Eq. (1.8) may be replaced by
Ty

@.5) u(e,y,0)= [ h(x,y,1,5ds,

a

h = B(s) '/'/(f*f‘.ﬂ_iz?ﬁ”).
V2V (x=s)+y?

We pass to the proof that u as given by Eq. (2.5) satisfies the equation of motion
(1.5). For the special case s = const, Eq. (1.5) is satisfied automatically because the
integrand of Eq. (2.5) satisfies Eq. (1.5). For 5 = 5(xyt) we proceed as follows. In ac-
cordance with Eq. (2.5),

(2.6) signy.

b xxds+2h S 5+ S xx

U xx
@7 U.yp

h,,,ds+2h s ,+hs,y,,

j
]

Uy = J' h yds+2h 5+ Sy,
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(2.8) Uz tUy,— P —sUn f (h.xx+ ftyy— h :r) ds

_ B 1, _ _ _ _
+2(h,,s_,+k‘,s,,,- c—zh_,s',) +k((s,,,,+s,,,— 238'")'
The first term on the right hand side equals zero because h satisfies Eq. (1.5). In order
to calculate the remaining terms differentiate Eq. (2.3) in turn with respect to x, y and ¢
to obtain

g
7 x—5=ycr’
- ¥
2. =
( 9) S-J‘ x_s_xfcr ?
i cr PR —
P == / —35)? 2,
S,z promm - ol V(x—35)?+y

From Eq. (1.3) it follows ' = 1. Therefore the denominator in Eq. (2.9) may be written
-5

in the form
X c
o= -1}

It follows from Eq. (2.2) that it equals zero only for r = 0.
Further differentiation of Eq. (2.9) gives

—5)2 [
Sa= 12{ —x'er+y' c(x % +5 | xer— xc( _) +x'e(x—5 r]}
Q r L
= - ’ x_E & = ] x_g‘ "
2.100 s,, = Q—z—{(x_s) xc( ) +5,ly—x CJQ +x cr]},
i 1 x—5)? W i
su*_‘b"z'{ :l ( r‘) —cr+y Czl'-}.

Taking into account the above relations and Eq. (1.8), we obtain

2(!1'-“3"-‘-'- h,S.,— % h_,g_,) = — '/r_—r(éx;a_ ,
(2.11) ==
4 - ~ r—(x=7)
and, in accordance with Eq. (2.8),
(212) Uyt U,y — g 0.

P
This proves that u as calculated from Eq. (2.1) satisfies the equations of motion.

7 Arch. Mech. Stos. nr 2/80
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3. Stationary motion in infinite medium

Consider first stationary motion. The crack tip moves with constant speed p < c.
The amplitude B does not change in time and the function y(s) assumes the special form

5

(ERD)] 206) = >

Equation (2.3) may be solved to give

T N .. ity (1) gt
(32) 3=_c’-p’[x p‘*p]/(" “"”(I c'-’)y '

The integration in Eq. (2.5) is elementary and leads to the expression

(3.3) u = BYZsigny VY G =947 —(x—9)| -
The lower integration limit does not influence the function ». The upper limit, in accord
with Eq. (3.2), gives

(3.4) u = C/Tsigny VY G=p)*+ (0 —p7Ie) 72 — (x —pt),
where
B
3.5 = ——
(3.5) C Titale"

The stresses 7., and 7,, are proportional to the derivatives u . and u,. Differentiating
u as given by Eq. (3.4), we obtain
(3.6) Txz = My, Ty = flhy,
_ pu

2y (x=pt)* +(1=p?*[c)y?
py(1=p*[c?)

2uy (x—pt)*+(1-p*|c?)y?

Note that the displacement jump [u] on the crack x < pt, y = 0 and the stress 7,,
in front of the crack tip x > pt, y =0 are

7 = CY1-p*c? | Vd,
[4] = 2c Va4,
where d is the distance from the crack tip. In each case, when the displacement jump

and stress 7,, satisfy (even locally) Eq. (3.8), the coefficient C will be called the crack

strength,
Let us pass to the calculation of the crack speed p. Consider the strip shown in Fig. 4.
The work done by the external forces in time d¢ equals (stress — 0 for |x| — o)

3.9 L =lim2 mdx Mo,
(') "‘M -J; :uay E :

S

(3.7)

Ty

(3.8)

= Cpaudt ) 1-p?/c?,
=h
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is used to produce a crack of length pdt. If ¥ denotes the energy necessary to produce
a unit area of crack, the energy needed in 6t equals ypdr. The balance equation leads
to the formula for the propagation speed

2 2

p_,_ 7
(3.10) s 1 —re o
The propagation speed increases if the crack strength increases. The maximum pro-
pagation speed equals the sound speed ¢ and corresponds to infinite crack strength.
There exists minimum crack strength setting the crack in motion, namely

(3.11) Can=1/ L.
T
To the static case there corresponds p = 0. Denoting the displacement by u,, in
accord with Egs. (3.4) and (3.7), we have (for the crack tip situated at x = 0)

(3.12) up = Co)/2signy )/1/x2+ yi—x,
13 0 for x<0, y=0,
@13 T Colyd for x>0, y=0.

The full expressions for 7., and z,, may be obtained form Eqs. (3.6) and (3.7) by setting
t=0.

4. Approximate theory of the crack motion in finite regions

Due to the time changes of the boundary conditions and the reflections of waves
produced by fracture, the crack speed p is a function of time #, p = p(¢). In order to
find an approximate solution, assume that p(t) is a piecewise constant function of time.
Denote by sy, 53, ..., S, ... fixed points on the x-axis, and by ¢, t;, ..., I, ... the instants
at which the crack tip is situated at s,, $;, ..., Sy, .... Assume

4.1) 50=0<s5 <5< .. <81 <H <.y

T
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(4.2) L=0<t, << ... <l <, <..
4.3) Pa =251 _ const < c.
f,""'f,, 1

Denote by #,, the actual displacement field at #,, and by u,, the additional displace-
ment due to the fracture from sn_, to s,. In accordance with Eq. (2.5),

]/;/(x $)2+yr—(x—s) :
V(x—s)*+y?
where B, is a constant. Integratlon of Eq. (4.4) leads to

(4.4) f dsn 58

@5 tm = B VZsigny VY G=sV 77— —5) ...

The latest wave contributing to u, is centered at 5,. The algebraic equation for 5,

48 Vx—sa)?+? ——c(t —tpy — Sm p‘:"- )

FiG. 5.
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(cf. Egs. (2.3) and (3.2)) has the solution

4.7 Sm—Sm-1 = — e [(x _-Tm-—!)"‘;‘z_(r"fm——o

?—pa
2
* ;_. ]/[(x —Sm-1) =P(—tm- )1+ (1 —-‘i‘z' ) b ]

If 5., as calculated from the above formula is larger than s, 5, > 5w, it means that all the
waves produced in the n-th interval contribute to u, and in Eq. (4.6) 5., = s» should be
taken.

Figure 5 shows the fronts of elementary waves produced at 0, s,, ..., 5,, .... At the
typical point P the additional displacement due to the fracture from s, to s, equals

(4.8) u(P) = u;+u;+ ... +u,, m<n.

The displacement u(P) is influenced by all the waves produced in the intervals 1, 2, ...
..., m—1; therefore

4.9 81 =81, S52=052,.c, Smey = Sm_y.

The latest wave contributing to »(P) is centered at s, given by the formula (4.7). In ac-
cordance with the above, the contributions from the intervals 1, 2, ..., m—1, m are the
following: '

@.10)  u, = B,y 2signy YV x=s02 41 —(x—)
—B Y Zsigny VY s H 1 — G50

k < m,

(4.11)  uy, = M; signy ]/;"57:"3:_(?;03./02)}"—6

V1+pulc

—BY Zsigny VY (—sm- ) 47"~ (5 —5m_)»

§ = X—Sp1 ~Pu(t—14-1).
In both cases (4.10) and (4.11) the stresses 7., and 7,, may be calculated from Eq. (3.6).
Of particular importance is the stress 7,, corresponding to points on the x-axis in

front of the crack tip. At the instant #,_, the crack tip is situated at x = s,_, and the
stress 7,. for x > s5,_,, y =0 is (cf. e.g. [4])
DII"‘]

(4.12) Tyy = - — +O(]x —Sp-1]).
X —8m—1

The coefficient D,,_, is influenced by u,, all the waves produced between 0 and s,_,,
reflections and refractions of these waves, double reflections etc. Finally, it is influenced
by changes of the boundary loads, possessing again the form of the waves. Only com-
putational difficulties are involved when calculating D,_,. For ¢ > t,_; to the stress
(4.12) are added the stresses due to the waves produced in the interval s,_; < s < 5(1).
Figure 6 shows the wave fronts for #,_, < t < t,. The displacement u,, at point P’ is
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- given by the formula (4.11). The first term does not influence the stress z,, at P’. The
second term gives

_ B
T T VxS

The crack is stress free, therefore the stress (4.13) must annihilate the already existing
stress (4.12). It follows that the coefficients B,, and D, are connected by the formula

(4.14) B =D,_,.

(4.13)

In order to complete the solution, the formula must be obtained for p,. Guided by
the procedure exposed in Sect. 3, calculate first the work L, done by the external
forces in time ¢, provided the crack tip is situated between s,_, and s,

(4.15) = lim 2 J‘dx( a") )

due to the fact that

=k

i 2 =0,
.16) Br0 OV |yoh, x<n(t)
du
lim —— =0,
20 O [yoi, x>n(n)

the work L is given by the formula, exactly following the formula (3.9)

B2 SR
; o /T=p2je.
4.17) Ln l+pm!cp,..up6r| 1—pilc
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This work has to be equal to yp,dr where y is the Griffith energy. Therefore,

O e
(4.18) il (p ot

From the above analysis an easy approximate treatment of the dynamic crack pro-
pagation follows. The treatment is based on the following steps:

1. Start with the known solution “%z”(x, y, 1).

2. Find from Eq. (4.12) the crack strength.

3. Find from Eq. (4.14) the coefficient B, and from Eq. (4.18) the crack speed p,.

4. Find from Eq. (4.11) the additional displacement u,.

5. Take into account reflections and refractions of u,, u,, ..., 4, and calculate % ac-
cording to the formula u = uy+u, +1... +u,+reflected, refracted, doubly reflected ..,
waves produced between 0 and s,.

6. Repeat points 1-5 for n replaced by n+1.
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