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Shock waves in thermo-viscous fluids with hidden variables 

A. MORRO (GENOVA) 

THIS note investigates the amplitude's evolution of a shock wave entering a thermo-viscous 
fluid at equilibrium, through a model of fluid with hidden variables. It is shown that the evolu­
tion of the shock is determined by the difference between the volume gradient and a critical 
value reflecting the properties of heat conduction and viscosity. 

Rozwazono ewolucjC( amplitudy fali uderzeniowej przenikaj~cej do plynu termolepkiego znaj­
duj~cego siC( w r6wnowadze; zastosowano model plynu z wewnC(trznymi zmiennymi stanu. 
Wykazano, ze ewolucja fali uderzeniowej okreslona jest przez r6iniCC( gradientu objC(to8ciowego 
i pewnej wartosci krytycznej zwillZ'lnej z wla8ciwo8ciami przewodnictwa cieplnego i lepko8ci. 

PaccMoTpeHa 3BOJIIOI.UUI aMII.JlllTY.ZU,I y~apHoii BOJIHbi rrpoHuKalO~eit: B TepMOBH3Kyro :>KM­
KOCTh, HaXOM~YlOCH B paBHOBCCM:U; llpUMCHeHa MOACJih ~OCTif C BHYTpCHHl{Mlf rrepe­
MCHHhiMif coCTOHHIUI. IToKasaHO, tiTO 3BOJIIOI.\UH yAapHoit: BOJIHbi orrpeAeJieHa paaHaQeii 
06 CMHOrO rp~eHTa U HCKOTOphiM Kpl{TlflJeCKUM 3HalJCHI{Cll'l, CBH3aHHhiM CO CBOHCTBaMU 
TCllJIOllpOBOAHOCTU 1{ BH3KOCTU. 

1. Introduction 

THIS PAPER deals with the evolution of shock waves propagating in thermo-viscous 
fluids. The investigation is accomplished by adopting a fluid model where heat con­
duction and viscosity are accounted for via hidden (or internal) variables (or para­
meters<1>). With respect to the literature on materials with hidden variables, the present 
constitutive assumptions are rather unusual as far as the argument of the response func­
tion is different from that of the growth equation. This is so since it is assumed that 
the hidden variables depend on the temperature gradient g and the rate of the strain 
tensor D whereas such is not the case for the response function. We mention that a dis­
tinction like this, though confined to the temperature gradient, is present, for instance, 
in the paper by Kosn~SKI and PERZYNA ([2], Sect. 5) in connection with thermal waves. 

The present model delivers a description of thermo-viscous fluids which yields Fourier's 
and Navier-Stokes' laws when g and D are time independent. Moreover, it is compatible 
with the propagation of shock and acceleration waves. As a result of this, the analysis 
of the growth or decay of shock waves shows that for a wave entering a fluid at equi­
librium, heat conduction and viscosity determine the existence of a critical value of the 
volume gradient. As it is well known, the existence of such critical values has already 
been found in other similar contexts (e.g. [3, 4]). Therefore this note provides, in 
particular, a physically significant example of a critical value for shock propagation 
in materials with hidden variables. 

(1) Such a viewpoint may also be applied to the general case of shock and acceleration waves in 
thermo-viscous materials [1]. 
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2. Constitutive assumptions and thermodynamic restrictions 

Throughout R, R+, R++ stand respectively for the set of real, positive real, and 
strictly positive real numbers. The symbols Y, Z, A, E denote finite dimensional vector 
spaces. A superposed dot indicates the material time derivative. A subscripts 0, v, 

g, D, fJ, X denotes partial derivatives. 
A material with hidden variables {Yo , Zo ' exo' a, h} on y X z X A consists of a ground 

value (y0 , z0 , ex0) of the independent variables (y, z, ex) E Y x Z x A and of the maps 

(2.1) a E C 3(Yx A, E), hE C2(Yx Zx A, A). 

The growth of the hidden variables ex E A is determined by the whole set of the in­
dependent variables through the evolution function h, whereas the response of the ma­
terial depends only on the pair (y, ex) through the response function a. 

The function h is subject to the following conditions. 
I. There exists a map E: Y x Z -+ A such that for each pair (y, z) E Y x Z the hidden 

variable E(y, z) E A yields 

b(y, z, E(y, z)) = 0 

and 

E(yo, Zo) = exo. 

11. There is a map A E L(A, A) and a positive constant ~ such that 

lh(y,z,ex+~)-h(y,z,ex)-A~I ~ ~1~1, (y,z)eYxZ, ex,ex+~eA, 

while A+ ~lA is negative definite. 
Thus h(y, z, · ) e Lip(! AI + ~) for every (y, z) e Y x Z. Property 11 ensures the asympto­

tic stability of (y0 , z0 , ex0 ) and the uniqueness of the solution of the evolution equation 

(2.2) ci = h(y, z, ex), «(t0 ) = «'. 

As we are interested in thermo-viscous fluids, we confine our attention to the choice 
y = (0, v) and z = (g, D), where 0 is the temperature and v the specific volume. Mean­
while, we represent by a the set of the (specific) free energy 1p, the entropy fJ, the Cauchy 
stress tensor T, and the heat flux q. So the thermo-viscous fluid is described by 

G = a(O,v,ex), 

ci = h(O, v, g, D, ex). 

Assume now that ex is in fact a pair (ex1 , ex2) of a vector ex1 and a symmetric tensor 
ex2 • Letting dim A = dimZ- see, e.g. [5]- property 11 is certainly satisfied if h is so 
chosen that the evolution equations for ex1 and ex2 are 

ci1 = __!_ (g-ex1), exl(to) =ex~, 
'l' 

(2.3) 
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Physically the quantity -rE R++ plays the role of relaxation time. The obvious solu­
tions of the initial value problems (2.3) are 

« 1 (t) = g(t)+«~exp{-(t-10)/-r}, t-10 ER+, 
(2.3') 

« 2 (1) = D(t)+e~;exp{-(t-10)/-r}, t-10 ER+, 

the symbol ~(t) being defined as 
I 

"' I I ~(t) = -;r exp{ -(t-C)/-r:}~(C)dC. 
lo 

Consider the set of evolutions of hidden variables starting from the vanishing initial 
values Cl~ = 0, Cl~= 0(2). In this case the response function a= {~, ~' T, q} is restricted 
by the Clausius-Duhem inequality expressed by 

I .... . I( I .... ) } ( I . I .... ) (2.4) - v-<'1'8-f))O+tr T-tp~~I--:rv"'" D - oq+ TV 'Pi ·g 

I " " ,.. +- ('rpg · g+tr{'Pi>D}) ~ 0, 
-r:v 

which must hold for every path 7t(C) = (0, v, g, D)( C), C -10 ER+. It is a general property 
within the theory of hidden variables, true here as a particular case, that «(t) is in­
dependent of the present value 7t(t). Therefore Eq. (2.4) holds if and only if 

" " I " 0 " (2.5) fJ= -'1'8, T='Pol+re'Pi>' q= -TV'I'i' 

(2.6) ~~ · g+tr{~} ~ 0. 

The application exhibited in Sect. 3 and 4 corresponds to choosing the free energy 
in the form 

(2. 7) 'P = W(O, v, tt) = 'l'(O, v) + •n·l ;O ii · ii+ ptr {DD}+ ; (tr :0)2
}, 

where~, p,, ). are non-vanishing constants. The function (2.7) is compatible with inequa­
lity (2.6) if and only if 

(2.8) ft > 0, 3.A.+2p, ~ 0; ~ > 0. 

Meanwhile Eqs. (2.5h,3 deliver 

(2.9) T = -p(O, v, «)1+2p,D+.A.{trD}I, q = -~g, 

being p : = - ~~~. If D( · ) and g( · ) are time independent, i.e. D(t) = D, g(t) = g, t ER, 
we have the asymptotic condition 

lim(g(t), D(t)) = (g, D). 
l-+00 

In this instance, except for the dependence of p on «, Eqs. (2.9) asymptotically become 
Navier-Stokes'· and Fourier's constitutive equations. Then the conditions (2.8) may be 
regarded as Stokes-Duhem's and Fourier's inequalities. 

(2) This condition is meaningful in view of the asymptotic stability of Eq. (2.3'). 
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It is worth emphasizing that the assumption (2.7) does not significantly reduce the 
generality of the present note. As it is shown in Sects. 3 and 4, the contributions to the 
jumps arise from the linear terms. 

3. Jump relations 

The motion of the fluid is described by a function x defined on fJl x R, 9f being a fixed 
reference configuration with volume v0 • Labelling the particles by their position in the 
reference configuration, we say that 

(3.1) x = x(X, t), (X, t) E &l x R, 

is the position at time t of the particles X. Consider a motion containing a shock wave 
.sP(t). Adopting the usual definitions, we denote by [~](t) : = ~- {t)- ~+ (t) the jump 
across .sP(t) of any function ~ defined on fJl x R and by U(t) the speed of propagation 
of 9'(t). The motion (3.1) is assumed to be continuous across 9'(t). Moreover, as a(t) 
is independent of 7t(t), the same assumption is introduced for the hidden variable ex. 
Then, letting V stand for the material gradient operator, we set: 

S 1. The functions x, ex are continuous on fJl x R. 
S2. The functions 0, v, x, Vx, ci, Vex, and the derivatives of higher order suffer jump 

discontinuities across .9 but are continuous functions on (rJl x R)/.9. 
S3. The body force and the heat supply (per unit mass) are supposed to be C1 func­

tions on fJl x R. 
Although D(t) has a jump discontinuity the function D(t) is continuous. This implies 

that 
[T] = - [p]l. 

An immediate consequence is that the shock waves are always longitudinal while the 
same property is not true for the acceleration waves [1]. Thus, in the study of shock 
waves we may confine our considerations to uni-dimensional waves; henceforth we will 
refer only to the meaningful component of vectors and tensors relative to the direction 
of the wave. A standard procedure applied to the balance of momentum (in integral 
form) leads to the well-known relation 

(3.2) 

being 

(3.3) 

U2 
[p] = --2 [v] 

Vo 

U[v] = -v0 [x]. 

Moreover, since [q] = 0, the energy balance makes it possible to write the Hugoniot 
relation 

(3.4) [e] = T[v], 

where e is the internal energy and f: = (T- + T+)f2. The balance of momentum and 
energy in differential form yields the further relations 

(3.5) 

(3.6) 

[.X] = Vo[Tx], 

[e] = [Tv]-vo[qx]. 
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With respect to previous analyses of shock waves in fluids with hidden variables - see, 
e.g. [3] - the set of jump relations (3.4)-(3.6) exhibits the additional contributions 
(T+p)[v], [Tx+Px], and [(T+p)v] due to viscosity and [qx] due to heat conduction. 
Just these terms are responsible for the existence of a critical value of [vx] in the evolu­

tion of [v]. 
The investigation of the growth of a wave hinges on the compatibility relation 

(3.7) d~] = [~] + U[~xl. 

On account of Eqs. (3.3), (3.5), and the continuity equation v = v0 xx, the application 
of Eq. (3.7) to ~ = v and ~ = x gives 

d[v] dU 2 [ ] 2 [ ] (3.8) 2U dt + [v] dt = U Vx -vo Tx . 

4. The shock amplitude equation 

Henceforth we suppose that the fluid ahead of the wave front has been at equilibrium, 
(O,v,g,D,«) = (O+,v+,o,O,O), at all past times. Moreover, we assume as (uniform) 
reference configuration that of the fluid before the arrival of the wave. Then we have 

(4.1) o+ = o, .v+ = o, g+ = o, D+ = o, (X+ = o, ci+ = o, 
and 

(4.2) g± = 0, jj± = 0, 

on the wave. The assumptions (4.2) slightly simplify the jump relations. In fact, 

T± = -p±, [Tv] = - [pv], 

while the compatibility condition [D] = - U[Dx] allows us to write 

A.+2,u 
[Tx] = - [px]- -----:ru[D]. 

Furthermore, since p is a quadratic function of g and D, it follows that the derivatives 
of p with respect to g and jj vanish at the wave. Thus, according to Eqs. (4.1), substitu­
tion in Eq. (3.8) yields 

(4.3) 2U d[v] + [v] dU = (U2+v2p-)v- +v p-()- + vUA.+2,u) .x-
dt dt 0 D X 0 6 X 'tUV- X 

being a~ = (v0 /v) ox. As we are looking for the evolution equation both of (v] and of 
U, further informations are required. These may be achieved via the following procedure. 
First, as a consequence of Eq. (3.6) we obtain 

(4.4) (J• _ rr; ( d[v] u -) TT {)-= -- --- Vx -ievW X 
1Ji dt ' 
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where w = v~f'rU20-v-r{i. The jump of p is due only to [0] and [v]. Then, using Eq. (4.4) 
we have 

(4.5) 
dp- d[v] p;'YJ;; _ . _ _ 
-d- = y-d + U-_-Vx + Up6 (1-xw)Ox, 

t t 'Y/6 

where y = p;; - p;'YJ;; f'YJ;. Applying the compatibility condition (3. 7) to e = 1Jl + (}'YJ we get 

d[e] - d[v] + Tro- - -+ T~o- -(I )O-dt= -p dt U' 'YJv Vx U' 'Y/6 -xw x. 

On the other hand, differentiation of the Hugoniot relation [e]+jj[v] = 0 provides 

d[e] = _ _!__ [v] dp- -jj d[v] . 
dt 2 dt dt 

By comparison it follows at once 

_ I { d[v] dp- _ _ _} 
(4.6) (1 -xw)Ox = 2UO-'YJ; fp]dt -[v] dt -2UO 'YJv Vx • 

On account of Eq. (3.2), substitution of Eq. (4.6) into Eq. (4.5) gives 

(4.7) 
dp- v+ 2cp d[v] 
dt = 7' 1+2cp dt' 

where cp = o-7J; jp; [v], v = - U2 jv~y. Another expression of dp- fdt may be obtained 
by differentiating Eq. (3.2) with respect to t; it turns out that 

dp- = _ 2 ~[v] dU _ U
2 

d[v]. 
dt v5 dt v~ dt 

A comparison shows that dU/dt and d[v]Jdt are related by 

(4.8) 
dU U cp(I -v) d[v] 
dt = [v] v(l +2cp) dt · 

Finally, substitution of Eqs. (4.6)-(4.8) into Eq. (4.3) delivers the evolution equation 

(4.9) d[v] (1-v) (I +24>)__l!_ (F-vx) 
dt = 3v-I +l/>(3v+ 1) ' 

where 

(4.10) 

According to the result (4.9), the evolution of [v] is determined by the difference between 
the volume gradient v:x and the critical value r. The coefficient of r- v:x is usually 
a positive quantity. Indeed, recalling that the medium ahead of the wave has been at 
equilibrium until the arrival of the wave, we have 

p = p(O, v, 0), 

7J = ~(O,v,O), 
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on the wave. Then, letting ~0 -::/- 0 so that we can write p = p('YJ, v), it is reasonable to 
assume the validity of Weyl's inequalities 

Pv = Y < 0, Pvv > 0, Pt'J > 0. 

As a consequence the shock is compressive, [v) < 0, and the shock speed is subsonic 
with respect to the material behind the wave ([6), § 65); this implies that 

(4.11) O<v<l. 

In conjunction with NUNZIATO and HERMANN [7], since [v] < 0 and p, > 0 the quantity 
4> is restricted by 

(4.12) 

The sought result follows from Eqs. (4.11) and (4.12). So the quantity I [v]l either grows 
or decays according as Vi is greater or smaller than r. 

In view of Eq. (4.10) the value of r is the whole result of heat conduction and visco­
sity; it vanishes if the fluid is non-viscous and non-conducting, i.e. A. = 0, p. = 0, " = 0. 
Moreover, F is inversely proportional to the time constant 'l'. Thus the contribution of 
heat conduction and viscosity vanishes in the limiting case 'l' .-. eo. We may interpret 
this behaviour in terms of an extremely long memory which hides the effects of the 
shock as far as heat conduction and viscosity are concerned. On the other hand the value 
r, and d[v]fdt as well, increases unboundedly as 'l' tends to zero. This is hardly surprising 
since the memory effect due to the hidden variables fades more and more as T tends to 
zero; at the limit 'l' .-. 0 the constitutive Eqs. (2.9) deliver Navier-Stokes' and Fourier's 
equations which are not compatible with wave propagation. 
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