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Fundamental consequences of a new intrinsic time measure
Plasticity as a limit of the endochronic theory

K. C. VALANIS (CINCINNATI)

A NEw measure of intrinsic time is introduced which broadens the endochronic theory and
lends it a wider predictive scope. Idealized plastic models are shown to be constitutive subsets
of the general theory and the phenomenon of yield is proved to be a consequence of a partic-
ular definition of the intrinsic time measure in terms of the plastic strain tensor. Various
versions of the classical plasticity theory are shown to be asymptotic cases of the endochronic
theory. In particular, the kinematic hardening model, the isotropic hardening model as well
as their combinations, are derived directly from the general theory. In addition, the transla-
tion vector of the yield surface in stress space is found to be a constitutive property given by
a linear functional of the history of the plastic strain. The Prager and Ziegler rules are obtained
as special cases.

Wprowadzono nowg metode pomiaru czasu wewnetrznego, ktéra rozszerza zakres stosowal-
nosci teorii endochronicznej i zakres waznosci przewidywan tej teorii. Wykazano, ze wyideali-
zowane modele plastyczne stanowia konstytutywne podzbiory teorii ogolnej. Wykazano tez,
ze zjawisko plyniecia jest konsekwencja szczegOlnej definicji wewngtrznego miernika czasu w fun-
kcji plastycznego tensora odksztalcenia. Pokazano, ze rdine wersje klasycznej teorii plastycz-
nosci s przypadkami asymptotycznymi teorii endochronicznej. W szczegélnosci kinematyczny
model hartowania, model hartowania jednorodnego, jak tez ich kombinacje dajg si¢ wypro-
wadzi¢ bezposrednio z teorii ogodlnej. Ponadto stwierdzono, ze wektor translacji powierzchni
plynigcia w przestrzeni naprezen jest wlasnoécia konstytutywna okre$long przez liniowy funk-
cjonal historii odksztalcern plastycznych. Reguly Pragera i Zieglera otrzymano jako przy-
padki szczegolne.

BBelieH HOBBI MeTOJ M3MEpeHMA BHYTPEHHEr0 BpEMEHHM, KOTOPBIH paciumpser ofnacTse
MPHHAEMOCTH 3HIAOXPOHHYECKOH TEODHH M OOJIACTh CHPaBeNMBOCTH NpejckasaHuil 3ToMH
reopun. [lokasaHo, UTO HOeabHBIE NIACTHYECKHE MOMENH COCTABIAIOT onpeaenAOLHe
nmoAMHOXKecTBa o0wieit Teopuu. ITokasaHo ToXe, UTO ABJIEHHE TEUSHHUS ABIAETCHA CEACTBHEM
YaCTHOrO -ONpejie/leHks BHYTPEHHEr0 MEpUIa BpeMeHHM B (YHKUMH IUIACTHYECKOTO TeH3opa
nmedopmaun. IToxasaHo, 4YTO pasHble BAPHAHTHI KIIACCHYECKOH TEOPHM IIACTHYHOCTH HABJIA-
JOTCA ACHMITTOTHYECKHMH CIyYasAMH SHIOXPOHHUYecHoN Teopuu. B uacTHoCTHM, KHHeMaTHdec-
Kafg MOJeNb 3aKAJIKH, MOJIENb OMHOPOHON 3aKaNKH, KaK TOXKe KX KOMOMHAlHM JAlOTCA BhI-
BECTH HEIOCPE/ICTBEHHO M3 ofieli Teopuu. Kpome 3T0ro KOHCTaTHPOBAHO, YTO BEKTOP TPaHC-
NANHA MOBEPXHOCTH TeYeHHA B MPOCTPAHCTBE HANMPSYKEHHIT ABJIAETCA ONpEAesIAOIIMM CBOMH-
CTBOM, OIHCAHHBIM JIHHEHHBLIM (DYHKIHOHANIOM HCTOPMM NiacTuueckux Aecopmaun. ITpas-
Bwia ITparepa u 3urnepa GbUIM MONyYeHB! KaK YaCTHBIE CIYYaH.

1. Introduction

THE CONCEPT” of the intrinsic time scale was introduced as a proper base of measure-
ment of the memory of a material of its past deformation history, leading to constitutive
theories which we have called “endochronic” [1, 2]. The case of strain rate independent
yet history dependent materials was dealt with at length in previous references by the
author and, subsequently, by other workers in the field whose contributions are duly
referenced [3-8]. Other work, in other directions, involving the inelastic behavior of
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metals is currently being pursued by other authors. References [9, 10 and 11] are typical
of this work. In the papers cited heretofore, we introduced two measures of intrinsic
time. One pertains to the path traced by the deformation state in a nine-dimensional
strain space. The other pertains to a stress path traced by the state of stress in a nine-
dimensional stress space.

If we denote these times by {, and {, respectively, then limiting ourselves to small
strains,
(1.0) a, = Puudsudeu-

dl, = Ryjdodoy,

where o;; and ¢;; are the stress and infiniterminal strain tensors respectively, and P;;y
and Ry, are the corresponding metrics. Repeated indices imply summation over their
range of values in the usual fashion unless otherwise stated.

The constitutive equations that followed, in the light of these definitions, were obtained
from thermodynamic arguments. In particular, the internal variable theory was used to
arrive at the following set of constitutive equations which pertain to isothermal condi-
tions:

oy
(1.1) G s
(1.2) 6q +b %‘1 =0 (r not summed),
(1.3) z = z({), % >0,

where £ is given by either Eq. (1.0); or Eq. (1.0),. In the above equations p is the free
energy density and q, the internal variables of the thermodynamic system. These are
second-order tensors in the present treatment. In Eq. (1.2) b, is a fourth-order dissipa-
tion tensor which is positive definite. A dot between two tensors represents an inner
product.

The “rate” of irreversible entropy production, which is a measure of the internal
dissipation, is obtained from the equation

(l°4) T‘;’ e g:: 'ar;

where a roof over a symbol indicates differentiation with respect to z, and T is the
absolute temperature. Evidently, as a result of Eqgs. (1.2) and (1.4),

(1.5) Ty = §,"b,§, (r summed),

where the right-hand side of Eq. (1.5) is an inner product, clearly a positive scalar.
Observation of accumulated results of the application of the above theory to a variety
of histories indicates certain broadly consistent trends. The theory is evidently simple,
versatile and has powers of prediction additional to the theories of plasticity of the classical
type provided there are no reversals in the rate of stress. In particular in one dimension,
the slope of unloading, at a point of the uniaxial stress strain curve, was predicted by
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the “linear” version of the theory to be 2E,— E, where E, is the elastic modulus and E,
the tangent modulus. This is an overestimate of the normally observed unloading slope
which is close to E,.

The purpose of this paper is to eliminate this deficiency of the endochronic theory
by introducing a measure of intrinsic time which is more closely representative of the
dissipation properties of metals. The underlying cause of this discrepancy is of a thermo-
dynamic nature and has to do with the fact that the theory, heretofore, predicts a rate
of dissipation during loading which is identical to that which occurs at the onset of un-
loading. See Ref. [15].

In this paper we introduce a new definition of intrinsic time { which corrects both
these deficiencies. In one (axial) dimension we stipulate that

dor
Eo

where k is a positive scalar such that 0 < k < | and Ej is the elastic modulus. If, at the
onset of unloading, we denote the unloading slope by E£_ and the rate of dissipation
by y_, then it can be shown [15] that E_ tends to E, and p_ tends to zero as k tends
to unity.

In three dimensions we form a strain-like tensor 6;; given by Eq. (1.7):
(1.7) Oy = i3 ~bumOus
where ¢ is a positive definite symmetric fourth-order material tensor. Dealing strictly

with isotropic materials where ¢ is isotropic, we proceed to define a deviatoric strain-
like tensor n;; by the equation

(1.6) dt = |de—

k
(1.8) Nij = €— ﬁ Sigs

where e;; and s;; are the deviatoric strain and stress tensors, respectively. We also define
a hydrostatic strain-like tensor 6,; by the equation

(1.9) O = e— 2 Ok -

k
3K
The relation between ky and k, on one hand and the components of ¢ on the other is
shown in Sect. 2. Evidently, n;; and 6, are the deviatoric and hydrostatic components,
respectively, of 6;;.

A hydrostatic intrinsic time measure d{, and a deviatoric counterpart d, are now
defined by the equations
dly = koodOudby+koy dnyydny;,
aty = kyodOyddy+kyydnyydn,y,
where k,, are material parameters which provide for a coupling between hydrostatic
and shear response.

The resulting constitutive equation for isotropic materials is given by Egs. (2.8) and
(2.9). These are identical in form to those of the simple endochronic theory (where both
ko and k, are equal to zero) but predict behavior that is far closer to that of metals,
when k, and k, are close to unity. '

(1.10)
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1.1. The very significant case of uncoupled deviatoric and hydrostatic response k,o = ko; = 0 and k, =
= ko =1

1.1.1. Deviatoric response. In this case the deviatoric intrinsic time measure d, is equal
to the norm of the deviatoric plastic strain tensor. The resulting deviatoric constitutive
response is given by Eq. (2.35) or, equivalently, Eq. (2.37). With the aid of these equa-
tions the following propositions are proved in Sect. 2 of the text.

(i) A spherical yield surface in deviatoric stress space exists.

(ii) If o, = 0 in Eq. (2.35) and f({) increases monotonically with £, then the classical
theory of plasticity with isotropic hardening follows. The increment of plastic strain is
shown to be normal to the yield surface.

(i) If o, # O (in which case p; > 0) and f({) = 1, then the spherical yield surface
translates in deviatoric stress space and a theory of kinematic hardening results with
a general rule which contains Prager’s and Ziegler’s rules as special cases.

(iv) If g, # 0 and f({) is a monotonically increasing function, then the yield surface
translates and expands simultaneously according to rules inherent in the theory.

(v) The above are true in the case of softening, in which case the yield surface con-
tracts, when f({) is a monotonically decreasing function.

REMARK. No yield surface exists if k; < 1. Thus the classical theory of plasticity is
the “boundary” of the endochronic theory, assuming that the hydrostatic response is
elastic.

1.1.2. Hydrostatic response. The endochronic theory admits a more general hydrostatic
response than the elastic hydrostatic response usually adopted in the classical plasticity
theory. This is given by Eq. (2.53) which is discussed in the text.

2. Analysis in three dimensions and » internal variables

We define the strain-like tensor @;; by the following equation:
(2.1) 01y = &, —Pijut Gur>

where ¢ is a positive definite symmetric fourth-order tensor. In the case of isotropic
materials, ¢ is of the form

(22) ¢Ukl' . 6” ‘3u¢o +¢l(alk (s_.fl + all 6&}) 3

In this event, 8 may be decomposed into its deviatoric and hydrostatic parts as follows:

1
(23) 'BU == Tou au‘}"’}u-
where
k
(24) O = ex— 3!?0 Ok s

(2.5 Nig = €y—5— Sij-
(1]
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In Eq. (2.5) e and s are the deviatoric parts of € and @, respectively, 4, and K, are the
elastic shear and bulk moduli of the material, respectively, and the constants k, and k,
are related to ¢, and ¢; by the relations

ko
2¢, = s (3po+2¢)) = 3K,

Various degrees of generality are now possible. For instance, mindful of the con-
sequence that in the case of isotropic materials, undergoing small deformation, the de-
viatoric and hydrostatic responses are separable [2], we may define a hydrostatic in-
trinsic time measure df,, where

(2.6) dh = koo dudby+koy dny;dn;
and a deviatoric intrinsic time measure df,, where
2.7) dip = kyodbudby+k,y dn;dn,;.

The hydrostatic measure d; would then be the appropriate one to use in the hydro-
static constitutive response, while d{, would be used in the deviatoric constitutive res-
ponse. In this case k;; (i,j = 0, 1) is a matrix of nondimensional scalars.

Using the formulation of Ref. [1] as a point of departure, we may then write the rate
independent (plastic) response of metals in the small deformation region as follows:

(2.8) s = 2f y(zp—z;,)a—?dzi,
p 0zp
and
3 ] aek.l: ’
2.9 o = 3 | K(zy—2p)———dzy,
3 0zy
where
dlp
(2.10) dzp = ——2_
° 7 folCo)
and
dly
2.11) dzy = ——2H _
( Sl ()
The functions fp, and f are both non-negative and satisfy the condition
(2.11") Jo(0) = fx(0) = 1.

Of particular importance is the case where hydrostatic and deviatoric responses are
uncoupled, i.e. kg = k;o = 0. In this case ky, and k,, are both set equal to unity, with-
out loss of generability, as one can verify by analysis if one wishes to do so. Thus
Egs. (2.6) and (2.7) now become

(2.12) i3 = dﬂudﬂu;
(2.13) dif = dbydhy,.
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We wish to discuss, at length, the case of the shear response; the arguments will apply
equally well to its hydrostatic counterpart. With reference to Eq. (2.8), one obtains the
following relation:

Zp
. d
(2.14) s = 2u0 | oleo—25) -ds,
H D
where
(2.15) w(@) E 4oG(z), GO) =1,

and p(z) is related to G(z) by the integral equation
(2.16) o(2)—k, fg(z-z’) g—g—dz' = G(z).
0

The solution of this equation in the case of two internal variables is given in Appendix A
of Ref. [15]. More simply, the following algebraic relation exists between the Laplace
transforms g and G of ¢ and G, where p is the Laplace transform(*) variable:

-
I—fclpa'

This specific form of the theory has the characteristic feature that it leads to a consti-
tutive equation which gives the deviatoric stress response to the history of the deviatoric
strain-like tensor v in terms of the path in n space. We point out, however, ‘that there
is no specific connection with an a priori existence of a yield surface. Furthermore, there
is no dichotomy in the constitutive representation of the loading and unloading responses.

It is of interest to note that dy is akin to and is equal to the deviatoric “plastic strain”
increment, in classical plasticity terms, if k, is unity and the “elastic strain” increment

217 o=

is defined as %} Moreover, we will proceed to show that if k; = 1, then a yield surface

exists. The proof will apply strictly to the case where k, = 1.
To this end we invoke the result of Ref. [1] according to which

@2.18) 6@ = Y G,

r=1

where G, are positive; also, «, are all positive with the exception of «, which may be
zero. Furthermore, since G(0) = 1, it follows that

2.19) j’o, =1
r=1

Let G(p) be the Laplace transform of G(z). Then, as a result of Eq. (2.18) G(p) is of the
form

— P(p)
2.20 Glp) = =22,
(2.20) (») )

(*) For explanatory notes on this treatment see Appendix C of Ref. [15].
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where
(221) P=G(p+as) ... p+oa)+(p+2)G; ... (p+a) ... +(p+ay) ... P+ 0_y)G,

and

(2.22) 0(p) = (P+%) (P+3) ... (P+a).

Evidently, P and Q are polynomials of the order (n—1) and n, respectively. Further-
more, the coefficient of the leading term of P is equal to unity. It follows from Egs. (2.17)
and (2.20) that

. P(p)
2.23 .
(2.23) o(p) 7)
where
(2.24) R(p) = O(p)—pP(p).

It may be shown by direct computation that R(p) is a polynomial of the order n—1,

such that the coefficient of p"~! is exactly the sum Z a,G,. Hence the ratio P(p) is
r=1

R(p)
not function-like, in the sense of Mikusinski, in that it contains a delta function of

1 . = -
strength ————. In fact, if — g, are the zeros of R, then g(p) may be written as
D %G,

r=1
n=1
+ £
n 3
e, Tl

re

(2.25) elp) =

where g(p)—

- — is the ratio of two polynomials, the numerator being of degree

2 %G,

r=1

n—2, and the denominator R(p) of degree n—1. It is shown below that if the absolute
values of the zeros of Q(p) are ordered in the sense that

o < 0y < O3 .00 < Oy
then B, must always satisfy the inequalities
o <P <ay<fa<ay.. <P, <a

and are therefore all positive. The proof is elementary. Evidently,

R(—o;) = —ay(az—a;) (@3 —1t,) ... (0 —0%;) < 0,
E(—'Iz) = —ay(y —oy) (@3 —a3) ... (@—0z) > 0.
Similarly,
R(—-03) <0

and generally R(p) alternates in sign at the zeros of Q(p). It follows that R(p) must vanish
at the points p= —8,, p= —f,...p = —B._, where B, are all positive and are
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bounded from above and below by «, according to the inequalities given above. Finally,
since R(p) is a polynomial of degree n—1, it can have no other zeros. This completes

the proof.
The values of the residues R, are found from the formula
(2.26) Ry= M
R (-ﬁ r)

where R'(p) dérj—f:. For a detailed calculation see Appendix B of Ref. [15], where it is

shown that the residues R, are all positive.
Clearly, as a result of Eq. (2.25),
n-1
(2.27) o(z) = -"ai + 2 R, e Fr,

> aG, =1

r=1

which we write as

(2.28) 0(2) = 006(2)+0,(2),
where
n—-1
(2.28) D) = D) R
r=1

Evidently, it follows that

(2.29) s = 2yogo%+2yo of g,(z—z')—i’;idz’.

Now, as a consequence of Eq. (2.29), at z = 0:

d
(2.30) s = 2u000 d_‘: -

Also from Eq. (2.5) (and for k, = 1), the condition = 0 (and, therefore, z = 0) gives
the relation

(2.31) s = 2uge.

Equation (2.31) merely attests to the fact that while z = 0 the deformation process is
reversible and therefore the deviatoric stress response is elastic. See Sect. 3. It is also

. dng . . : ; .
of interest that at z = 0, TE is indeterminate and can take any value consistent with

Eq. (2.31). Specifically, Eqs. (2.30) and (2.31) combine to give

dn

‘E e.

(2.32) 2

1]
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However, at z > 0 the derivative % exists and specifically at z = 0* one obtains the

limit of-d—';I by approaching z = 0 from the right. In fact, the point 0* is the point of

d
deviation from elastic response or the yield point. At this point
dn *
(2.33) ‘| = 1

in accordance with Eq. (2.12). Therefore, applying Eq. (2.30) and mindful of Eq. (2.11°),
(2.34) IsI? = 4udod < s3.

In conclusion, in the process of monotonic loading, while [s| < sy, z = 0 and Eq. (2.31)
applies and the material response is elastic. However, when |s| > sy, then Eq. (2.29)
applies and the response is no longer elastic. Of course, sy is the yield stress and Eq. (2.34)
is the von Mises yield criterion.

In particular, as a result of Eq. (2.34), the constitutive relation (2.29) may be written
more succinctly as

Zp
(239) =9 S+ 20 of 0 o—20) 4o d
where s§ = 2uo00 and has the physical significance of an initial yield stress.

We shall show presently that Eq. (2.35) yields very rich results and reveals important
characteristics of plastic behavior that first appeared as assumptions or conjectures in
the classical theory of plasticity.

To this end, let the integral on the right-hand side of Eq. (2.35) be denoted by r,
ie. set

2.36) £ =20 [ oulio—2b) - deb.
0 ZB
Equation (2.35) then reads
dn
2 —r=350"1
( 37} S—r Sy dCD f(CD)'

We recall that k; = | and therefore dv is exactly equal to the increment of plastic strain.
We wish to examine Eq. (2.37) in the specific case where {, and {y are uncoupled,

(2.38) dc3 = dy- dn

and the hydrostatic response is elastic, i.e. dzy = 0, in which event both Egs. (2.9) and
(2.13) give rise to Eq. (2.39), i.e.

(2.39} O = 3K8”‘

in our previous notation.
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Case (i): f(O) =1

Equations (2.37) and (2.38) give rise immediately to the following two results:
(2.40) lls—=rli? = 9%,

1
(2.41) dn = g (s=1)d,.

It is clearly obvious that if r = 0 then Eq. (2.41) is that of an elastic perfectly plastic
material with a von Mises yield criterion. In this case

(2.42) dn = ;15 sdlp.
Y

On the other hand, if r # 0, then Eq. (2.40) shows readily that case (i) corresponds
to kinematic hardening. This relation is in fact the equation of a hypersphere in deviatoric
stress space. It also represents the equation of a circle in principal stress space. In either
case 5§ is the radius of the hypersphere (circle) and r is the radius vector which connects
the origin of the stress space to the centre of the hypersphere (circle). The yield surface
is, therefore, a translating spherical (circular) surface. Equation (2.41) shows that the
increment in plastic strain is normal to the yield surface. These results are shown dia-

’d\?

5
3 s

I

0
/ \\‘\ 5 Fic. 1. Geometric illustration of Egs. (2.40) and
s 2 (241).

grammatically in Fig. 1. Note, however, that whereas in the classical theory of plasticity
the concept of kinematic hardening was a conjecture, here it is a derived result.

Furthermore, we feel it is important to emphasize that in the classical theory it is
not known how the surface translates, i.e., it is not known a priori how r depends on the
history of loading or plastic strain. For instance, Prager assumed that

(2.43) dr = cdn,
where ¢ is a material constant. Ziegler suggested that
(2.44) dr = du(s—r),

where du is a positive quantity not specified. We point out that Eq. (2.43) is equivalent
to Eq. (2.44) if du is proportional to df, as Eq. (2.41) readily indicates. However,
Prager’s (or Ziegler’s) rule is a particular case of the present theory as is pointed out in
the following Remark.
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REMARK 1. Prager’s rule of kinematic hardening is a particular case of the present
theory obtained from Eq. (2.36) by setting

(2.45) 0:({p) = constant
in which event
(2.46) r = 2400:M.

This, as is well known, is called linear hardening in the sense that the stress strain curve
in shear is linear beyond the onset of yield.

In this same vein, if g,({p) is not a constant but consists of a single exponential,
that is

(2.47) 0(Cp) = 1"
then it is easily shown as a result of Eqgs. (2.36) and (2.37) that

(2.48) e 2_‘;%9_’ dz(s—pr),
Y
where
asy
2.49 -1+ )
( ) 4 21001

This is a new type of kinematic hardening. Note that the yield surface no longer trans-
lates along the outward normal at the extremity of the stress vector but in a direction
which is skew. The skewness depends on the value of f.

Of course, the above are particular cases. In general the translation vector is de-
termined by Eq. (2.36), in terms of a convolution product which involves the material
function ¢,({p). Within the assumptions of the present case, it is important to observe
that g, ({p) can be determined by a simple shear experiment. In fact, one can show readily
from Eq. (2.36) that

dr
dYr r,-C,,’

where 7 is the shear stress and y, the tensorial plastic shear strain component.
ReEMARK 2. The function g,({p) is determinate from a single monotonic shear test.
Remark 3. The mode of translation of the yield surface(?) is determined from a single
monotonic shear experiment.

(2.50) 2p004(%p) = T> Ty,

Case (ii): f({) monotonically increasing
The counterparts of Eqgs. (2.40) and (2.41) are now the following:
(2.51) lls—rll = f({o)s?,

2.52) dy ?m_lg . @-D)dLs.

(®) for all histories
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Clearly, if r = 0, then Eq. (2.52) is that of a plastic material with isotropic hardening
and a von Mises yield criterion. In this case

1
(2.52a) dn = g sty

On the other hand, if r # 0, then Eq. (2.51) shows that the yield surface now expands
as well as translates. The increment of plastic strain is still normal for the yield surface,
The translation vector r is still given by Eq. (2.36). We shall not go into the details of
determining f({) and p,({p) in this case, at this juncture. The reader is referred to Ap-
pendix D, of Ref. [15].

The constitutive equation for ¢ > oy for the hydrostatic response is identical in form
to the above and can be written down by inspection using analogous terminology. To
wit, when k, = 1, then

‘g
db a0
=g —_ Yy — 4
(2.53) o= 0o? = +Ko§f ¢1(zn —z4) i dzy,

where o = oy,/3. If in the process of monotonic loading o < oy, then the response is
elastic and

(2.54) g = Ko Ek -

Of course, the above discussion applies only to the case when k, is equal to unity. '

3. Elastic response at points of interdeterminancy of ——

dn
Zp

In this section we shall show that when k; = 1, there exist physical processes other
than the ones discussed above for which df, is equal to zero and that in fact these pro-
cesses are associated with elastic deformation. Analogous conclusions can be drawn
with regard to d{y when k, = 1. The above remarks are made in the context of assumed
strict independence between deviatoric and hydrostatic response, in the sense that a history
of deviatoric strain has no effect on the hydrostatic response and, correspondingly, a
history of hydrostatic strain has no effect on the deviatoric response(®).

It is important for our purposes to introduce certain definitions:

Deviatoric plastic strain space

The space of deviatoric strain components with metric é;;. The coordinates of this
space will be denoted by y;, (i = 1, 2, ..., 9) corresponding to the components of the
tensor 7;;.

(%) Henceforth the suffix D will be omitted, Also, this chapter will apply exclusively to deviatoric
response and occasional omission of the word “deviatoric” must not be construed to imply otherwise.
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Deviatoric plastic strain path

This is a continuous oriented curve in yx; space.

REMARK. The path determines the variation of ¥; in this space. We limit the discussion
to paths that pass through the origin. In this event x; = 0 at the origin.

Let s be a parameter which is zero at the origin and increases (decreases) mono-
tonically as the curve is traversed in the positive (negative) direction. Let the curve be
traversed in the positive sense and let P, and P, be two adjacent points on the curve
such that P, precedes P,. We define ds by the relation

3.1 ds = |P, Py,

where |P, P,| is the distance between the two points. If the curve is traversed in the
negative direction, then

3.2) ds = —|P, P,|.

We define { as the cumulative distance travelled by the extremity of 7, i.e.
3.3) d¢ = |ds|

or

(.4) ¢ = lds.

3.1. Equation (2.35) at reversal points

DEFINITION. A reversal point R is a point on the strain path s at which there is a re-
versal in the sign of the strain increment. In effect at R:

(3.5 dyr = —dyi.

F1G. 2. R as a reversal point.

With reference to Fig. 2, the following relations are of interest:
A an
ds ds

Lim6, = 0.
R'-R

R) = —=(R)+6,,

(3.6)
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Similarly,
d.
(3.6) Lim ‘2‘; (R") = x, 2 ().
R"»R
However, as a result of our definitions of ds and dz,
Lim ﬁ 1;
R—R d¢
3.7
. ds
Lim — |z = —1.
i 7 la

Hence, invoking Eq. (2.10),

. ds
i:lm d e =Sf(0lxs

(3.8)
le {:i I = =f(Dlz-
Also,
Lim r(R’) = r(R),
(3.9) R.—OR
Lim r(R"”) = r(R).
R"—R

Let in the vicinity of R
(3.10) dn = 1ds,
where [;; are the direction cosines of the tangent to the path at R. Then, as a result of
Egs. (3.6) through (3.10) and Eq. (2.35),
@a.11) S(R) = sflfa(8)+x(R),
| S(R”) = —s¢Ux(t)+1(R),

in the limit R' = R, R” — R.

Since in fact /j; is normal to the stress hypersphere at R and s¢f({) is the current
radius of the hypersphere, Eqs. (3.11);,; admit the geometric construction shown in
Fig. 3.

Also, perusal of Fig. 2 shows that

Lim z(R') = z(R),
(117 Kok
Lim z(R") = z(R).

R"—R

Therefore in the stress range R'R", z is constant and, hence, dz = 0. The response, there-
fore, in this range is elastic and the constitutive equation is simply

(3.12) ds = 2uyde.
A plot of £ versus s for this process is shown in Fig. 4.

Clearly, at R the slope gf is indeterminate.
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sh

~Y

Fi1Gg. 3. Stress responses in the limits R’ — R, F16. 4. A history with a point of strain reversal.
R’ = R.

3.2. More general deformation processes with constant [

We begin with Egs. (2.35) and (2.36) which we write in the form

dn

B ol

(3.13) S=sy—_—+r

or, equivalently,

(3.19) s-—-s?fé(z—z’);}dz%r.
0

Since, however, the delta function in Eq. (3.14) was obtained by a limiting process
in which k; — 1, we replace d(z) by a function which in the above limiting process
becomes a delta function, i.e., we write

z

- 2“" f —a(z-z7) dn ’
(3.15) s = ik ! e E,—dz +r(2),
where
- 240
(3.16) o = (T —k)s?

and s is obtained from Eq. (3.15) by a limiting process in which k, tends to unity. Equa-
tion (3.15) may now be written as a differential equation in the form

l _kl -
(3.17) —s?(s—r)dz+ o d(s—r) = dn.
We note in passing that in the limit kX, — 1
(3.18a,b) [ls—r|| = sPf(C) = sy

2 Arch. Mech. Stos. nr 2/80
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a result given previously in Eq. (2.40). We also recall the definition of dn:

k
3.19 dn = de——'—ds.
(3.19 n o
Equations (3.17) and (3.19) combine to give the result
(3.20) ky—dC+(1—k,)dé = dn,
Y

where
(3.21) S=s—r,
(3.22) dé = de— 5 dr

: o,

However, from Eq. (2.36)
(3.23) dr = 2u4(p,(0)dn+hdz),
where
(3.24) h= Of 9;(z-z’)%",~dz'
and
(3.25) e B 053 260)
V7 dz '

Thus, ¢’ is a well-behaved (continuous, monotonically decreasing) function of z. Note
that h(0) = 0.
Equations (3.20) and (3.23) combine to give the following equation for dz:

(3:26) adz+ (1 —k,)de = cdn,
where

(3.27) a= {ka —fa =k, (1 -k:)h}U(C),
(3.28) c=1+k,(1-ky)p,(0).

By taking the norm of both sides of Eq. (3.26) one obtains the following quadratic equa-
tion in df

(3.29) (—c:;:;li:ﬂ dt?—2a- dedl —(1—k,)||de|]|> = 0.
The two roots of Eq. (3.29) are given by Eq. (3.30):

(3.30) dgr = Bdet Ya- de+C(l —k;) Cllde||? ’
where

(3.31) c = C-llall®,

1 _kl
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It may be shown that

(3.32) LimC = C,,
ky—+1

where
3.33 c =20+ (0)+—§L"—
( . ) 1 = Ql sgftc)l -
In the limit of k, — 1, the two roots of d{ are therefore

s de|C
(3.34) & = <0 Ic

with the constraint d¢ > 0.
It follows directly from Eq. (1.15) that the increment dy in irreversible entropy has
the same sign as dz. Since dy must either be positive or zero, processes for which dz is

negative are not admissible.
We shall first investigate the situation where C, is positive and, therefore, bounded

by the inequalities
0 <G <2{1+0,(0)}.

Case (i). §-de > 0

In this case d{ is positive and is given by Eq. (3.35)

8- de

(3.35) i =g

The process is admissible and constitutes “loading” in the sense that plastic response
applies.

Case (ii). S-de < 0

In this case the dissipation is negative, since d{ is negative, and the process is inad-
missible. Therefore the second root of d{ must be chosen and, as a result,
(3.36) dt = 0.

In this event the dissipation is zero and the deformation is elastic since Eq. (3.36)
implies that

(3.37) dn=20
in which case
(3.38) ds = 2uqde.

REMARK. The inequality §-de < 0 of case (ii) is the “unloading condition” given
unequivocally by the endochronic theory. More specifically, given a state of stress on
the yield surface, the process is dissipative and d{ > 0, if the strain increment de makes

2
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an acute angle with the radius vector § through the point which represents the state of
stress; see Eq. (3.35). The process is elastic if the angle is equal to or greater than ninety
degrees, in which case §- de < 0.

Case C; =0

The situation where C; — 0 results in d{ becoming unboundedly large in which event
the material flows without limit. This event will occur when

(3.39 s h = —sP(1+0,(0))1(0)%
3.3. Stress paths within the yleld surface

If Eq. (2.35) is to apply, d{ must be different from zero (in fact positive) since other-
wise the derivative % is not determinate. Therefore, if Eq. (2.35) applies, then the
incremental process emanating from state s is dissipative and vice-versa. In the same
vein, Eq. (2.51) is a direct consequence of Eq. (2.35). Therefore, if an incremental process
originating at state s is to be dissipative, Eq. (2.51) must necessarily apply. It follows
as a corollary stating that stress states which do not satisfy Eq. (2.51) cannot lead im-
mediately to dissipative processes.

REMARK. States s which lie within the yield surface cannot lead immediately to dissi-
pative incremental processes.

It follows from the above remark that all incremental processes which emanate from
stress states within the yield surface are elastic (d, = 0), in which event for all ds emanat-
ing from such state s:

(3.40) ds = 2ude.

3.4. Incremental determination of the constitutive response

Given that the constitutive properties of a material are known, let, at some point
in the course of the deformation (strain) history, s and h also be known. Then C, can
be determined from Eq. (3.33). Given an increment of strain' de, Eq. (3.34) determines
dt, depending on the sign of §- de. If the sign is negative or zero, then df = 0 and ds
is given by Eq. (3.38). If the sign is positive, then

S-de
(3.41) dt = c.
and

d¢
(3.42) dz = m.

In the limit of k, — 1 then, as a result of Eq. (3.17) or Eq. (3.13),

A

(3.43) dn = s dz.
Sy
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Hence dn may be calculated. Knowledge of dn leads to the direct determination of ds
from Eq. (3.19) in the limit of k, — 1, i..
(3.44) ds = 2uo(de—dn).
Clearly dr may now be found from Eq. (3.23) and the procedure may thus be repeated
at will.

We note that at the initiation of plastic deformation r =0, h = 0 and s = 2u,e.

4, The closure of hysteresis loops

The question of closure is treated by means of an application to aluminum under-
going stress reversals in a uniaxial stress field. One has difficulties in obtaining closed
hysteresis loops in the first quadrant of the stress-strain diagram if one uses the defini-
tion of intrinsic time of Ref. [1], i.e. Eq. (1.0),. The purpose of this section is to de-
monstrate that no such difficulties arise when

(4. di = |db,|

RS
S~
25
s
73
J
I ; 0
Plastic sfrain x10°
A
/ i
/ £
/ F
G
H

Fi1G. 5. Theoretically predicted unloading-reloading behaviour of aluminum.
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and
k
4.2) 6, =&
and k = 1.
For the purpose of demonstration we use the constitutive equation
¢

s dBl f ’ aﬁl ’
(4.3) 0y = Urd—c"'o E(C—C)-EZ.,—dC.
where
4.4 E({) = E,e"®+E,

with the following values of the constants: oy = 5 tons/in?, E; = 1500 tons/in?, E, =
= 200 tons/in?, & = 500. The elastic modulus E, is equal to 4.46x 10° tons/in?; how-
ever, this value is not pertinent to the present application since o, is plotted directly
against 6,. The computation of the stress response to loading-unloading-reloading
histories is straight-forward and will not be treated in detail here. For a more elaborate
treatment of this problem the reader is referred to Ref. [2]. The results are shown in
Fig. 5.

The point A is the initial yield event. Point B denotes the point of unloading and
C, D, E, F, G, and H are points of reloading. Note that points such as C, where oo >
> oy—20y, give rise to reloading paths which coincide with the unloading paths. In
such a case the area of the hysteresis loops is zero. However, reloading from points where
o < ag—20y gives rise to loops that are closed, as shown in the figure. In this constitu-
tive theory, as it is constituted by Egs. (4.1), (4.2) and (4.3), no open loops exist for

k=1

References

1. K. C. VALANIS, A theory of viscoplasticity without a yield surface, Part I. General theory, Arch. Mech.,
23, 517, 1971.

2. K. C. VALANIS, A theory of viscoplasticity without a yield surface, Part II. Application to mechanical
behaviour of metals, Arch. Mech., 23, 535, 1971.

3. K. C. VAaLANIS, Effect of prior deformation on the cyclic response of metals, J. Appl. Mech., 41, 441,
1974,

4. K. C. VaLants, H. C. Wu, Endochronic representation of cyclic creep and relaxation of metals, J. App.
Mech., 42, 67, 1975.

5. K. C. VALANIS, On the foundations of the endochronic theory of plasticity, Arch. Mech., 27, 857, 1975.

6. Z.P. BAZANT, A new approach to inelasticity and failure of concrete sand and rock: endochronic theory,
Proceedings Society of Engineering Science, 11th Annual Meeting, Durham, North Carolina 1974.

7. Z.P. Bazant, Endochronic theory of inelasticity and failure of concrete, J. Eng. Mech. Div., ASCE,

102, 12360, 1976.
8. G. WEMPNER, J. ABERSON, A formulation of inelasticity from thermal and mechanical concepts, Int.

J. Sol. Struct., 12, 705, 1976.
9. A. MILLER, Inelastic constitutive model for monotonic, cyclic and creep deformation. 1. Equations
development and analytic procedures, J. Eng. Mater Technol. Trans., ASME, 98, 2, 97-105, 1976.



FUNDAMENTAL CONSEQUENCES OF A NEW INTRINSIC TIME MEASURE 191

10.

11.

12

13.
14,

E. W. Hart, Constitutive relations for the nonelastic deformation of metals, J. Eng. Mater Technol.
Trans. ASME, 98, 3, 193-202, 1976.

S. R. BoDNeER, Constitutive equations for elastic-viscoplastic strain-hardening materials, J. App. Mech.,
42, 2, 385-389, 1975.

S. Kerry, HAVNER, Some concepts and results from the mechanics of crystalline solids..., Proceedings,
Workshop on Applied Thermoviscoplasticity, Northwestern University, October 1975.

K. C. VALANIS, Irreversibility and existence of entropy, J. of Non-Lin. Mech., 6, 337, 1971.

E. KrempL, Plastic deformation, microstructure change and the variable heredity property of metals,
Proceedings, Workshop on Inelastic Constitutive Equations for Metals, Rensselaer Polytechnic
Institute, Troy, New York 1974.

. K. C. VaLaNis, Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the

endochronic theory, The University of Iowa, Division of Materials Engineering Report G-224/DME
78-01, 1978.

COLLEGE OF ENGINEERING
THE UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO, USA.

Received May 16, 1979.





