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On the concept of residual microstresses in plasticity;
a more fundamental approach

W. SZCZEPINSKI (WARSZAWA)

A smMpLE structural model of polycrystalline metals composed of two kinds of cubic grains
forming a regular aggregate is considered.. Grains of one family begin to deform plastically
at a certain level of loading while grains of the other family remain elastic during the deformation
process. This model allows us to study the redistribution of microstresses during complex plastic
deformation processes. As an illustration the effect of the fading memory is analysed in detail,

Rozpatruje si¢ prosty strukturalny model metali polikrystalicznych, zlozony z szeciennych
ziaren dwéch rodzajow tworzacych regularny uklad. Ziarna jednego rodzaju zaczynaja defor-
mowac¢ si¢ plastycznie przy pewnym poziomie obcigzenia, podczas gdy ziarna drugiego rodzaju
pozostajg w stanie sprezystym. Model umozliwia analiz¢ redystrybucji mikronaprezen resztko-
wych w czasie zlozonych procesow plastycznego odksztalcania. Jako ilustracj¢ zbadano efekt
zanikajacej pamieci materialu przy obcigzaniu plastycznym.

PaccmatpuBaeTcA OPOCTasA CTPYKTYPHAA MOMEb MOMHMKPACTAUIHYECKHX METAJUIOB, COCTOALIAN
H3 KyOHMUecKMX 3epeH ABYX POMOB, 06pasylolux PeryIsapHYIO CHCTeMYy. 3ePHa OMHOrO pofaa
HAYHHAIOT NehOPMHUPOBATECA ILTACTHYECKH ITPH HEKOTOPOM YPOBHE HAIPYSKH, B TO BpeMs KaK
3epHA BTOPOro POJia OCTAIOTCHA B YNPYToM cocrosHHM. Mofiens faeT BO3MOMKHOCTL AHANMH3A
PemuCTPHOYIIMK OCTRTOMHBIX MEKPOHATIPAYKEHHH BO BPEMS CIOMHBIX IUIACTHYECKHX NPOLIECCoB
nedopmuposanua. Kak mwunoctpaums mccnegoBad sdibexr ucuesasouleft maMATH MaTepmana
NPH IUTaCTHYeCKOH Harpyske.

1. Introduction

MosT metals subjected to complex two- or three-axial loadings display a very complex
behaviour which is usually called the generalized Bauschinger effect. Many attempts have
been made in the mathematical theory of plasticity in order to describe this effect in
terms of mathematics. One of the basic concepts in the mathematical formulation of the
strain-hardening phenomenon including the generalized Bauschinger effect is- the concept
of so called residual microstresses. This concept has been formulated by J. 1. KADASHE-
vITCH and V. V. NovozHiLoV in their work published in 1958 [1]. It consitutes the basis
of the so called kinematic strain hardening rule of metals (see W. PRAGER [2]). If in these
theories the initial yield condition of a virgin non-deformed material is assumed in the
form of the Huber-Mises criterion

(1.1) S8y = 2k3,
then, after plastic deformation, the yield condition may be written as
(l .2) (SU'_Q”)(Su"'mu) - Zkz,

where s;; is the stress deviatoric, k is the initial yield locus in simple shear test, and a;;
stands for the internal parameter, which is interpreted as the tensor of residual micro-
stresses. According to such a hardening law the initial yield surface (1.1) in the. six-di-
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mensional stress space is shifted as a rigid body. The parameter «;; is represented in
this space as the translation vector of the central point of the initial yield surface.

In order to obtain a physical interpretation of the «;; parameter, Kadashevitch and No-
vozhilov considered a mechanical model composed of a slip element supported by two
pairs of springs oriented orthogonally. It is evident, however, that the analysis based
upon such a simplified model, although very useful in preliminary investigations, cannot
give a deeper insight into the mechanics of rearrangement of internal stresses in metals
subjected to complex loadings.

Much more promising are the attempts in which various theoretical models of the
internal structure of metals are introduced. In these models aggregates of grains are
considered forming the . polycrystalline structure of metals. The boundaries between
adjacent grains in the aggregate are regarded as surfaces of zero thickness, since in real
metals these boundaries have been estimated to be only few atoms thick (see for example
C. S. BARRET [3)).

Considering the fact that T. H. LiN [4] has presented a review of various works includ-
ing attempts to apply the experimental single crystal stress-strain relationship to deduce
the laws of plastic flow of a polycrystalline material, we will mention here only the works
closely related to the aim of the present paper.

In most papers the aggregates of identical differently oriented single crystals were
considered. For example, G. 1. Taylor analyzed in 1938 an aggregate of randomly oriented
crystals under uniaxial tension. He assumed crystals to be rigid-plastic. T. H. LiN [4]
considered a model composed of differently oriented crystals of long square cylinders.
Each crystal is assumed to have one slip direction. Six different orientations of these crystals
were chosen. The material of crystals was assumed to be elastic-plastic. Thus the residual
microstresses and the generalized Bauschinger effect could be analyzed (see [S]). This
idea was later extended to the three-dimensional model composed of identical differently
oriented elastic-plastic cubes each having one slip plane.

The previous work [7] considered a model in which a special idealized configuration
of cracks and voids was assumed. Such a configuration causes local stress concentrations
and local plastic yielding of the matetial. Using this model it was possible to examine
the effect of redistribution of residual microstresses on the generalized Bauschinger effect
of materials subjected to complex biaxial cyclic loading.

These models represent an idealization of the structure of pure metals in which all
grains have the same properties. However, technical polycrystalline alloys are' usually
composed of grains of different mechanical properties. This work presents a simple model
in which cubic elastic-plastic grains of different values of the yield locus form a regular
aggregate. This model may be subjected to various three-dimensional states of stresses
allowing to study the influence of the stress state on the redistribution of microstresses
during the initial stage of the complex deformation of metals.

2. Basic relations for the model

Let us consider a simple model shown in Fig 1. It represents a regular array of cubic
grains of two kinds 4 and B. The elastic properties of grains 4 and B are assumed to be
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identical and are defined by the elastic moduli G or E and the Poisson ratio ». Grains B
are assumed to deform plastically without strain-hardening when stresses in them satisfy
the Huber-Mises yield criterion

.1 shsh = %(aﬁ, 2.

where s7; is the stress deviatoric and ¢5; denotes the yield locus of grains B in simple
uniaxial tension. Let us assume, moreover, that grains 4 remain elastic since we will consider
here only the initial stage of deformation of the aggregate. Thus the properties of the two
kinds of grains in simple tension are as shown in Fig. 2.

o] GRAINS A
! |- GRAINS B
-
FiG. 2.

The model may be subjected to any arbitrary state of stress o;, as shown in Fig. 1. As
far as grains B remain elastic the stresses o7} in grains A and o7} in grains B are equal to o;;.
Grains B begin to yield plastically when the external stresses o;; reach such a level that
the condition

(2.2 sy =5 (@B

is satisfied.
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A further increase of the external stresses oy is responsible for the fact that stresses
in grains A and B are of different value, this is so because at any level of external loading
stresses in grains B must satisfy the yield condition (2.1). For any increment do; of the
external stresses we must calculate the increments dofj and dof; of stresses in grains 4 and
B, respectively. These increments must satisfy the equations of equilibrium

(2.3) dofi+dof; = 2doy;.
Let us assume that the plastic part (def;)® of strains in grains B is given by
(2.4) (def))® = disf,

where sj; is the deviatoric part of the stress tensor of} and 44 stands for a proportionality
factor.
Elastic strain increments in grains 4 and B are given by the expressions

k alj)o
(deg)® = z—i}-(daf 1 :_v dof, 6:;),

respectively, where G and » are elastic constants and 4,; is the Kronecker symbol. The
repetition of the subscript k denotes summation from one to three. The total strain increment
def; in grains B is then given by

1
= 3 o
(2.5)

(2.6) def} = (de, )2+ (def)® = TR (dg' - da"k 8, ,)+d,uf P .

The compatibility of the aggregate requires the equality defj = def; to be satisfied.
On substituting Egs. (2.5) and (2.6) we can write the compatibility condition in the form

(2.7) 2G (do'f; dﬂ'kk 5,_,) + dAJ (daﬁ dﬂ“t au)

The end point of the stress vector of; must always be located on the yield surface of
the material of grains B. If the particular form of the yield criterion (2.1) is written in
the general form F(of}) = 0, then the stress increment dof; must satisfy the equation

oF

(2.8) ~oF

dof; = 0.

Summing up, we have in the general case a system of thirteen equations (six equations
of equilibrium (2.3), six equations of compatibility (2.7) and of the equation (2.8)) with
thirteen sought requested magnitudes: six stress increments dof in grains 4, six stress
increments dof; in grains B and the proportionality factor dA.

This system of equations will be solved for particular cases of external loading with respect
to the stress increments dofj and dofj. Then, using the small increment technique we may
calculate for each increment-of the external loading doy; the corresponding increments
daf; and dof;. As the starting point of the numerical procedure we must take that value
of the external loading o;; which corresponds to the end point of the initial fully elastic
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portion of the loading path or, in other words, the value of ¢;; which satisfies the yield
condition (2.2). Then, assuming the first increment of external loading doy;, we calculate
the increments dof}, dofj and stresses of;, ofj. Now the next increment doy; is assumed
and the procedure is repeated until the end point of the prescribed loading path is reached.

3. Residual microstresses

Suppose now that our model loaded up to the prescribed magnitude of the external
loading is then fully unloaded. Plastic strain (ef;)® in grains B may be expressed as the
difference between reversed elastic strains of grains 4 and B if they are considered separa-
tely. Thus we can write

26(ef)® = (oo~ (7)o — 1o Sul(oh)o=(otdol,

where (o7j)o and (o)), denote stresses in grains 4 and B, respectively, at the end point
of the loading path. Therefore, in order to satisfy the compatibility conditions of the
aggregate after unloading, we must introduce the residual microstresses (o)), in grains 4

and (of}), in plastically deformed grains B. Then the compatibity condition may be written
as

G ()= (0B)r =5 Oul(ot) = (o8] = (o8)o—(oB)o = 7o dul(ohdo—(oB)al.

However, the condition of internal equilibrium of the unloaded aggregate requires the
following equality to be satisfied:

(32) (@), = ~(aB).-
Now the compatibility condition (3.1) takes the form
2
B3 2ot~ 175 @88y = (@8)o— (OB Sul(ofdo—(oRe.

Solving this equation with respect to (o7j),, we obtain a simple formula for residual mi-
crostresses:

34 (@) = [oB)o—(oBl.

Suppose now that the prestressed and then unloaded aggregate is reloaded by an

external loading o;;. In the fully elastic state of the aggregate the stresses in grains 4 and
Bare

U‘fj = o+ (C’fi)n

3.5
( ) (TIBJ = 0;;+ (Uff r
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respectively. Grains B begin to yield plastically when the stresses of; satisfy the condition
(2.1). Thus the yield condition of the prestressed aggregate may be written in the form
(3.6) s+ (B Alsiy+ (sD)r] = 22,

where (sf;), is the deviatoric of microstresses in grains B. Note that (sf}), may be identified
with the internal parameter «;; in the kinematical hardening law (1.2). However, now
the interpretation of the parameter a;; as a tensor connected with residual microstresses
is more clear.

The yield condition (3.6) may also be written in the following form:

(3.6)  {lox+(D]=[o,+ (@)} + {[o,+ ()] = [0+ (D]}
| + {[o:+ (@D~ box+ (D)1}
+6 {[72y+ (2P + [Ty + ()P + [T+ ()1} = 6K,
which may be directly used in the analysis of particular modes of prestressing.

4. Example of uniaxial tension

In this case the only non-zero component of the tensor of external loading is the
component d,. At each stage of deformation we must calculate the increments of internal
stresses do?, do, do? and do?, dof, dof. For reasons of symmetry we have doj = dof =
= dof and doj = do? = do?, where the notations doy' and dof are introduced for the
sake of brevity. Increments of shear stresses in grains A and B are equal to zero. Instead
of Eq. (2.3) we can write

" dot+do® = 2do,,
@1 dof+de? = 0.
+ The compatibility equations (2.7) take the form
do® —2vdo? + EdAs® = do? —2vdof,

—vdo®+ (1 —=v)doP+ EdAs? = —vdod+ (1 —v)ddf,
where E is the elastic modulus, s} = 57 = s7 and s = s = s{ are deviatoric compo-
nents of internal stresses.

The yield condition (2.1) for grains B may be written as

“4.2)

43) (02 —03)*+ (07 —02)* + (07 —0%)* = (op)*
Condition (2.8) takes the form
; 58
(4.4 do? = _25_’3463_
Solving these equations with respect to do?, we obtain
+ 2
. ] . 5
(45) ddx = vt 1—1’_-5';_+£ do',
g PR -]
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Assuming finite increments of external loading do., we may calculate the correspond-
ing increments do? in grains B and then from Eqgs. (4.4) and (4.1) increments do?, doZ
and dof. Let us note, however, that our calculations are simplified by the fact that the

= 2 1
initial values of the components s2 and sf are s% = 5 ob and s = - 3 ob. Thus, from

Eq. (4.4) we obtain dof = do%. It means that in the first step and also in the following
steps of calculations the state of stress in grains B increases by a spherical stress increment
tensor doy = doy = do; defined by Eq. (4.5). The deviatoric components s; and s7 ap-
pearing in Egs. (4.4) and (4.5) do not change, and relationship (4.5) takes the form

@4.5) do = % do,,

Thus, for any arbitrary value of the external stress o, > o} the stresses in grains B

are

0% = oBt 5 (Ge=0h,
“6)

o) = o = 3 (0s—ah).

Making use of the equations of equilibrium (4.1), we obtain the stresses in grains A:

5

2
o% =3 % g
@.7

1
0; =0f = '——3-(0'::—'0'::)-

Suppose now that the aggregate is prestressed by the tensile stress (o), and then
unloaded. The residual stresses can be calculated using the formulae (3.4) and (4.6)-(4.7).
Finally, we obtain for grains A '

(), = = ()03
(4.8) |

(0’;'), = (Uf)r = 'T[(ﬂ:)o—":ﬂ,
and, consequently, for grains B

@), = —5-[(0)o~a,
@48) 1
(Ufl, =7 (Uzn)r = _3“[("::)0"'“:!]-

The ratio of residual stress components takes then the form

@), _ _1
@, -~ "2

Let the material prestressed uniaxially by stresses. (0x), be biaxially reloaded by the
arbitrary biaxial combination of the stresses o, and ¢,. The remaining components of
external loading are equal to zero. Residual microstresses are defined by Eq. (4.8). The

shear components of residual microstresses are equal to zero. The yield condition for

(4.9)
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-prestressed material results directly from the general expression (3.6"). After rearrange-
ments we finally obtain
'(4' 10) [ax + (Ug)r ] (‘Tzn)rlz = [o'x + (Gg)r o (o'zs)r] oyt o'rz = 0:!)2'
Thus the initial yield ellipse
0% —0,0,+0; = (op)*
4s shifted along the o.-axis by the segment
(02)r—(03)r = (0:)o—0pi-

5. A theoretical study of the fading memory effect under conditions of plane state of stress

Let us consider a particular case of the plane state of stress in which there exist only
‘two non zero-components o, and ¢, of external stresses. The remaining stress components
-and particularly the 7., component are assumed to be equal to zero. Moreover, let us
assume for simplicity that the Poisson ratio is also equal to zero (v = 0).

The increments of stresses in grains 4 and B must satisfy the equations of equilibrium
(compare (2.3))

dot+det = 2do,,
{5.1) doy +doy = 2do,,
dot+daf = 0.
‘The compatibility equations (compare (2.7)) are
. do?+ EdAs? = dot,
5.2) do? + EdAs? = do?,
' do®+ EdAs? = do?.
Condition (2.8) takes now the form
5.3) s2dol+sEdel +sPdef = 0.

Solving Egs. (5.1), (5.2), and (5.3) with respect to stress increments in grains B we
finally obtain the following equations:

2
'3_ (a.:l)zdag = [(s:)z + (S‘B)IJdax _st S}nddy’
sgsydoy = (s3)do.—[(s2)*+(s7)*)doz,
from which the stress increments do% and do} may be step by step computed by means
of the finite difference technique. The third stress increment dof is then given by Eq.
(5.3).

The stress increments do?, doj and do? in grains A are then defined by Egs. (5.1).
Having found the stress increments we may calculate at each step of computations the
stresses 0%, 03 , of and o2, off, o corresponding to the respective level of external loading
0y, 0y. For any level of external loading we may also calculate from the formulae (3.4)

“and (3.2) the components of residual microstresses (o%),, (o)., (¢2), and (¢2),, (03),,

. {o7), and then define the position of the yield surface.
The equation defining the position of the shifted yield ellipse in the 0., o,-plane is

(5.4
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obtained by eliminating from the general equation (3.6") the zero components of external
loading 0, = 7xy = 7,: = T.» = 0 and the zero components of residual microstresses
(7%,), = (z%), = (z%), = 0 [note that the component (¢7), is not equal to zero]. Finally,
after rearrangements we obtain the equation of the shifted yield ellipse in the form

(55) [ax+ (Ug)r _(Usn)r]z = {Ux + (0’:), __(G:B)'][o.’_‘_ (0':),."‘(0"8),]
+ [0',-'- (og)r_(af)rlz - (6,21)20

The position of the central point of the shifted yield ellipse is defined by the radius-
vector r whose components in the ¢, and o, directions are
(55’) Iy = (05),"" (af)n
ry = _(G?)r'*'(azn)n
respectively.

In order to study the effect of the fading memory of the model in the process of complex
plastic deformation, two particular loading paths were compared. These loading paths
are shown in the inset in Fig. 3. According to the programme I the model was first pre-

Fic. 3.

stressed by uniaxial tension in the y-direction up to the point C defined by the dimension-
less stress oy = ,/0f = 1.3, then unloaded and reloaded by uniaxial tension in the
x-direction. The loading programme II consists in uniaxial tension in the x-direction
only.

The numerically calculated dimensionless stresses o2 = o%/op; 03 = 03 /0h, OF =
= o [of in grains B are shown in Fig. 4. In spite of the fact that the external loading
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programmes consist in uniaxial tensions in various directions, the state of stress inside
the material is three-dimensional.

Figure 5 presents residual dimensionless microstresses

(Dr = @Dilopi,  (03)r = (o) oq, (0D = (07),/op

in grains B corresponding to various stages of prestressing along the prestressing programm-
es I and II. Continuous lines show how the residual microstresses (%), and '(¢?), change
during the final stage (sector OD) of the loading programme I. It is clearly visible that
with the increasing length of the loading path along the o, axis (sector OD of the loading
programme I) these microstresses tend to the common value of residual microstresses
(0®),, "(a2), calculated for the prestressing programme II. This means that the model
progressively “forgets” the initial portion OC of the prestressing programme I.

This effect of the fading memory is even more clearly visible in Fig. 3 showing the
final positions of the shifted yield ellipse for the two prestressing programmes. In the
prestressing programme I after loading until the point C (g, = 1.3) the initial ellipse
is shifted along the oj-axis to the position marked by I(OC). The central point of the
ellipse is now marked by Of. The ellipse did not change its position during unloading
from C to O nor even during subsequent loading along the ¢;-axis to the stress level
o, = 0.816. When the o, stresses further increased until the point D (o = 1.7), the central
point of the ellipse moved along the curvilinear path from Of to O}. The position I(0CD)
of the ellipse corresponds to the end point D of the loading path.

In the prestressing programme II the initial yield ellipse has been simply shifted along
the ¢;-axis by the segment O— O} . The central point of the ellipse at the end point of the
loading path D is marked by O}. The final position of the ellipse is marked by II(OD).

Comparing the final positions of the yield ellipses for the two prestressing programmes
we can conclude that the longer the common sector OD of the loading paths in respect
to the initial sector OC in the programme I, the smaller the difference between the * yield
curves resulting from both programmes. This theoretical result may be referred to as
the effect of the fading memory of the material. A similar theoretical conclusion was
obtained in a previous work [9] on the basis of the kinematical hardening hypothesis.

6. Comparison of the fading memory effect with experimental results

The effect of the fading memory was experimentally investigated in the previous work
[9]. Specimens of the aluminium alloy PA-3 (according to Polish standards) were plastic-
ally prestressed according to the loading programmes similar to those analyzed in the
previous section, and then yield surfaces under general plane state of stress were investi--
gated. To make this paper sufficiently self-confained the main experimental result will
be shortly described below.

Let the specimens of the material plastically prestressed according to the loading
programme I be reloaded by various combinations of stresses o, 0, and 7,,, the re-
maining stress components being equal to zero. The initial yield ellipsoid

2 2 2 __ (.B\2
0z —0.0,+0;4+ 375, = (o)
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will be, after prestressing, shifted in the o, o,-plane to the position described by the
equation

6.1) (0x+a,)*+ (0x+a,)(0,+a,)+ (0,+a,)* +313, = (op)?,
where [compare (5.5)]

a, = (og)r_(af)-r: ar = (G‘:),""(G}B)p-

PRESTRESSING PATH
PROGRAMME |

The final position of the shifted ellipsoid after prestressing is shown in Fig. 6. The
central point was shifted from O to O}p. The theoretical line EFD lying on the surface
of the shifted ellipsoid corresponds to the states of uniaxial tensions of specimens cut
out from the prestressed sheet material in directions forming various angles with the
x-axis. In order to obtain the equation of this line in the o,, g,, 7,,-space, we must solve
Eq. (6.1) together with the relation

0,0, = T2,
resulting directly from Mohr’s circle for uniaxial tension.

In the previous paper [9] the theoretical lines EFD corresponding to the prestressing
programmes analogous to the programmes I and II discussed above were found on the
basis of the kinematical hardening rule. These lines are compared in Fig. 7 with the ex-
perimental curves. The difference between corresponding pairs of theoretical and ex-
perimental curves is quite large. Thus it is evident that the kinematical hardening rule
and the model shown in Fig. 1, giving very similar results, depart from the real behaviour
of metals undergoing plastic deformation. An inferesting feature, however, should be
noted. In Fig. 7 the distance between theoretical curves for both prestressing programmes
is practically the same as the distance between experimental curves. This means that our
model predicts very well the length of the second portion OD of the prestressing programme
I after which the material “forgets” the initial portion OC of the loading history.
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