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On the concept of residual microstresses in plasticity; 
a more fundamental approach 

W. SZCZEPINSKI (WARSZAWA) 

A SIMPLE structural model of polycrystalline metals composed of two kinds of cubic grains 
forming a regular aggregate is considered .. Grains of one family begin to deform plastically 
at a certain level of loading while grains of the other family remain elastjc during the deformation 
process. This model allows us to study the redistribution of microstresses during eomplex plastic 
deformation processes., As an illustration the effect of the fading memory is analyied in detail. 

Rozpatruje si~ prosty struk.turalny model metali polikrystalicznych, zloi.ony z szeSciennych 
ziaren dw6ch rodzaj6w two~cych regulamy uldad. Ziama jednego rodzaju zaczynajil defor­
mowac si~ plastycznie przy pewnym poziomie obciilZenia, podczas gdy ziarna drugiego rodzaju 
pozostajil w stanie spr~zystym. Model umozliwia anal~ redystrybucji mikronapr~:ien resztko­
wych w czasie zlozonych . proces6w plastycznego odksztalcania. Jako ilustracj~ zbadano efekt 
zanikajilcej pami~i materialu przy obciilZaniu plastycznym. 

PaccM&TJlHB&eTCR npoCTaH CTPYKTYPH&H MO.z:leJib IIOJ'IlU<PR~eCKilX MeT8JIJIOB, cocro~&H 
H3 K}'6JAeCKHX aepeH ,tlByx po,tlOB, o6paayroiiUtX peryJVIpHyro CHCTeMY· 3epHa O,tlHOI'O POA& 
Ha~aroT ,tle<IK>pMHPOB8TI>CH IIJI8CTWiecKH npH HeROTOpoM ypOBHe Harpy3RH, B TO BpeMH RaK 
aepHa BToporo po,tla OCT&JOTCR B ynpyroM COCTOJII!HH. Mo,tlem. ,tlaeT B03MO>KHOCTL ~ 
pe,tlHcrpH6ymm OCTaTOIUibiX MHJ<POHaiiilR)I{emW BO BpeMH CJlO>KHLIX IIJiaCTI{tleCKHX IIPOI~eccOB 
,tle<IK>PAmPOBamtR. KaR HJIJIIOC"l'Pai.UUI HCCJie,tlOB8H aclxPeRT Hetre38l0meft IlaMHTH MaTepHa.mt 
IIPH IIJI&CTIAeCROii Harpy3Re. 

1. Introduction 

MosT metals subjected to complex two- or three-axial loadings display a very complex 
behaviour which is usually called the generalized Bauschinger efFect. Many attempts have 
been made in the mathematical theory of plasticity in order to describe this efFect in 
terms of mathematics. One of the basic concepts in the mathematical formulation of the 
strain-hardening phenomenon including the generalized Bauschinger effect is · the concept 
of so called residual microstresses. This concept has been formulated by J. I. KADASHE­

VITCH and V. V. NovozHILOV in their work published in 1958 [1}. It consitutes the basis 
cL the so called kinematic strain hardening rule of metals (see W. PRAGER [2]). If in these 
theories the initial yield condition of a virgin non-deformed material is assumed in the 
form of the. Huber-Mises criterion 

(1.1) SIJSI) = 2k2
, 

then, after plastic deformation, the yield condition may be written as 

(1.2) (sll- a.ll)(sll- rxfJ) = 2k2 ~ 

where sii is the stress deviatoric, k is the initial yield locus in simple shear test, and a.u 
stands for the internal parameter, which is interpreted as the tensor of residual micro:. 
stresses. According to such a hardening law the initial yield surface (1.1) in the . six-di-

,. 
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mensional stress space is shifted as a rigid body. The parilmeter a.;i is represented in 
this space as the translation vector of the central point of the initial yield surface. 

In order to obtain a physical interpretation of the a.ii parameter, Kadashevitch and No­
vozhilov considered a mechanical model composed of a slip element suppor:ted by two 
pairs of springs oriented orthogonally. It is evident, however, that the analysis based · 
upon such a simplified model, although very useful in preliminary investigations, cannot 
give a deeper insight into the mechanics of rearrangement of internal stresses in metals 
subjected to complex loadings. 

Much more promising are the.. attempts in which various theoretical models of the 
internal structure of metals are introduced. In these models aggregates of grains are 
considered forming the . polycrystalline structure of metals. The boundaries between 
adjacent grains in the aggregate are regarded as surfaces of zero thickness, since in real 
metals these boundaries have been estimated to be only few atoms thick (see for example 
C. S. BARRET (3]). 

Considering the fact that T. H. LIN [4] has presented a review of various works includ­
ing attempts to apply the experimental single crystal stress-strain relationship to deduce 
the laws of plastic flow of a polycrystalline material, we will mention here only the works 
closely related to the aim of the present paper. 

In most papers the aggregates . of identical differently oriented single crystals were 
considered. For example, G. I. Taylor analyzed in 1938 an aggregate of randomly oriented 
crystals under uniaxial tension. He assumed .9rystals to be rigid-plastic. T. H. LIN [4] 
considered a model composed of differently oriented crystals of long square cylinders. 
Each crystal is assumed to have one slip direction. Six different orientations of these crystals 
were chosen. The material of crystals was assumed to be elastic-plastic. Thus the residual 
microstresses and the generalized Bauschinger effect could be analyzed (see [5]). This 
ide~ was later extended to the three-dimensional model composed of identical differently 
oriented elastic-plastic cubes each having one slip plane. 

The previous work [7] considered a model in which a special idealized configuration 
of cracks and voids was assumed. Such a configuration causes local. stress concentrations 
and loeal plastic yielding of the matetial. Using this model it was possible to examine 
the effect of redistribution of residual microstresses on the generalized Bauschinger effect 
of materials subjected to complex bi~xial cyclic loading. 

These models represent an idealization of the structure of pure metals in which all 
grains have the same properties. However, technical polycrystalline alloys are · usually 
composed of grains of different mechanical properties. This work presents a simple mod~l 
in which cubic elastic-plastic grains of different values of the yield locus form a reg\llar 
aggregate. This model may be subjected to various three-dimensional states of stresses 
allowing to study the influence of the stress state on the redistribution of microstresses 
during the initial stage of the complex deformation of metals. 

2. Basic relations for the model 

Let us consider a simple model shown in Fig 1. It represents a regular array of cubic 
grains of two kinds A and . B. The elastic properties of grains A and B are assumed to be 
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FIG. 1. 

identical and are defined by the elastic moduli G orE and the Poisson ratio v. Grains B 
are assumed to deform plastically without strain-hardening when stresses in them satisfy 
the Huber-Mises yield criterion 

(2.1) 

where s~ is the stress deviatoric and d:, denotes the yield locus of grains B in simple 
uniaxial tension. Let us assume, moreover, that grains A remain elastic since we will consider 
here only the initial stage of deformation of the aggregate. Thus the properties of the two 
kinds of grains in simple tension are as shown in Fig. 2. 

GRAINS A 

GRAINS B 

FIG. 2. 

The model may be subjected to any arbitrary state of stress u11 as shown in Fig. 1. As 
far as grains B remain elastic the stresses u~ in grains A and at, in grains B are equal to Uti· 

Grains B begin to yield plastically ~hen the external stresses uu reach such a level that 
the condition 

(2.2) 

is satisfied. 
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A further increase of the external stresses all is responsible for the fact that stresses 
in grains A and B are of different value, this is so because at any level of external loading 
stresses in grains B must satisfy the yield condition (2.1). For any increment da11 of" the 
external stresses we must calculate the increments d~ and daf} of stresses in grains A and · 
B, respectively. These increments must satisfy the equations of equilibrium 

(2.3) da6+dae = · 2dau. 

Let us assume that the plastic part (dsf1)8 of strains in grains B is given by 

(2.4) 

where sfJ is the deviatoric part of the · stress tensor afJ and d). stands for a. proportionality 
factor. 

Elastic strain increments in grains A and B are given by the expressions 

(dsei.)A = -
1
- (dat:- _v_ dcrf,kk f5,J) 

J 2G .'J 1 +v. ' ' 
(2.5) 

(def;)8 = 2~ ( d~- .
1 
:

7 
duf, 61J), 

respectively, where G and J' are elastic constants and ~u is the Kronecker symbol. The 
repetition of the subscriptk denotes summation from one to three. The total strain increment 
ds~ in grains B is then given by 

(2.6) . del'} = (d~j)8 + (defj)8 = 2~ ( d~- I :7 dU:, 61}) + dAs~ . 

The compatibility of the aggregate requires the equality ds6 = dsfJ to be satisfied. 
On substituting Eqs. (2.5) and (2.6) we can write the compatibility condition in the form 

(2.7) 2~ ( d~- I :v duf,611) +dAs~ = 2~ ( du6 - 1 :. a:.t,61J) · 

The end point of the stress vector <tf; must always be located on the yield surface of 
the material of grains B. If the particular form of the yield criterion (2.1) is written in 
the general form F(a~) = 0, then the stress increment da~ must satisfy the equation 

(2.8) :~ da~ = 0. 
u(]ij 

Summing up, we have in the general case a system of thirteen equations (six equations 
of equilibrium (2.3), six equations of compatibility (2.7) and of the equation (2.8)) with 
thirteen sought requested magnitudes: six stress increments drr6 in grains A, six stress 
increments daf} in grains B and the proportionality factor dJ... 

This system of equations will be solved for particular cases of external loading with respect 
to the stress increments ddd and dd~. Then, using the small increment technique we may 
calculate for each increment · of the external loading ddiJ the corresponding increments 
d~ and d~. As the starting point of the numerical procedure we must take that "Value 
of the external loading diJ which corresponds to the end point of the initial fully elastic 
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portion of the loading path or, in other words, the value of e111 which satisfies the yield 
condition (2.2). Then, assuming the first increment of external loading de11h we calculate 
the increments dufi, daf.J and stresses afb af.J. Now the next increment dali is assumed 
and the procedure is repeated until tht( end point of the prescribed loading path is reached. 

3. Residual microstresses 

Suppose now that our model loaded up to the prescribed magni~ude of the external 
loading is then fully unloaded. Plastic strain (sf1)8 in grains B may be expressed as the 
difference between reversed elastic strains of grains A and B if they are considered separa­
tely. Thus we can write 

where (u'fJ)0 and (ofJ)0 denote stresses in grains A and B, respectively, at the end point 
of the loading path. Therefore, in order to satisfy the compatibility conditions of the 
aggregate after unloading, we mu~t introduce the residual microstresses (a6), in .grains A 
and (at}), in plastically deformed grains B. Then the compatibity condition may be written 
as 

However, the condition of internal equilibrium of the unloaded aggregate requires the 
following equality to be satisfied': 

(3.2) 

Now the compatibility condition (3.1) takes the form 

(3.3) 

Solving this equation with respect to ( e1tj),, we obtain a simple formula for residual mi­
crostresses: 

(3.4) 

Suppose now that the prestressed and then unloaded aggregate is reloaded by an 
external loading C1;j. In the fully elastic state of the aggregate the stresses in grains A and 
Bare 

(3.5) 
~ = all+ (o1J),, 

o1J = all+ (ofJ), 
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respectively. Grains B begin to yield plastically when the stresses o-& satisfy the condition 
(2.1). Thus the yield condition of the prestressed aggregate may be written in the form 

·(3.6) [s,1+ (sZ),][sii+ (s~),] = 'l!k2
, 

where (s~), is the deviatoric of microstresses in grains B. Note that (s~), may be identified 
with the internal parameter a.u in the kinematical hardening law (1.2). However, now 
the interpretation of the parameter a.1i as a tensor connected with residual microstresses 
is more clear. 

The yield condition (3.6) may also be written in the following form: 

(3.6') {[ax+ (a!),]- [ay+ (a:),]}2 + {[ay+ (a:),]- [az+ (a:),]}2 

+ {[az+ (a:),]- fax+ (0'~),]}2 

+6{[Txy+{T~y),J2+ [Tn+(T:z),J2+ [Tu+(T:x),]2
} == 6k2

, 

which may be directly used in the analysis of particular modes of prestressing. 

4. Example of uniaxial tension 

In this ease the only non-zero component of the tensor of external loading is the 
component ax ... At each stage of deformation we must calculate the increments of internal 
stresses da~, dU:, df11 and dcr!, da:, da'1. For reasons of symmetry we have dc1 = da: = 
= dcJt and da; = da: = da~, where the notations dcJt and d~ are introduced for the 
s.ake of brevity. Increments of shear stresses in grains A and Bare equal to zero. Instead 
of Eq. (2.3) we can write 

(4.1) 
daf+da~ = 0. 

· The compatibility equations (2. 7) take the form 

(4.2) 
da~-2vd~ + Ed ).s: = da: - 2vdaf, 

-vda~+(l-v)da~+Ed).sf = -vd~+(I -v)daf, 

where E is the elastic modulus, s~ = s: = s: and sf = s: = s: are deviatoric compo­
nents of internal stresses~ 

The yield condition (2.1) for grains B may be written as 

(4.3) (a! -a:)2+ <a: -0"1)2 +(a: -a-!)2 = (a:,)2. 

Condition (2.8) takes the form 
B 

( 4.4) da~ = - 2SxB dct!. 
St 

Solving these equations with respect to da!, we obtain 

(4.5) 

s! 
v+-

. $~ 
da: = --1.,..--_-,-s"'B,-------s---.!" da x. 

2v+--2+-
2 s! s: 
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Assuming finite increments of external loading dax, we may calculate the correspond­
ing increments da! in grains Band then from Eqs. (4.4) and (4.1) increments dar, da: 
and duf. Let us note, however, that our calculations are simplified _by the fact that the 

initial values of the components s~ and sr are s~ = ~ u:, and sr = - + u:, . Thus, from 

Eq. (4.4) we obtain da[l = da!. It means that in the first step and also in the following 
steps of calculations the state of stress in grains B increases by a spherical stress increment 
tensor da~ = del; = aa; defined by Eq. (4.5). The deviatoric components s! and sr ap­
pearing in Eqs. (4.4) and (4.5) do not change, and relationship (4.5) takes the form 

(4.5') 

Thus, for any arbitrary value of the external stress rlx > 00:1 the stresses in grains B 
are 

(4.6) 
B B 1 ( B) a, = a:r. = 3 ax-apl . 

Making use of the equations of equilibrium (4.1), we obtain the stresses in grains A: 

(4.7) 
1 a:= a1 = -3(ax-0:r)· 

Suppose now that the aggregate is prestressed by the tensile stress (rlx)o and then 
unloaded. The residual stresses can be calculated using the formulae (3.4) and ( 4.6)-( 4. 7). 
Finally, we obtain for grains A 

2 
(U:), = 3 [(ax)o -0:,). 

(4.8) 

(aff), = (o1), = --} [(ax)o -a:,], 
and, consequently, for grains B 

(a~), = - ~- [(ax)o -U:,], 
(4.8') 

l 
(~), = (a:), = 3 [(ax)o -U:,]. 

The ratio of residual stress components takes then the form 

(4.9) <U:), 1 
(U:), = -.2. 

Let the material prestressed uniaxially by stresses. (a x)o be biaxially reloaded by the 
arbitrary biaxial combination of the stresses ax and a,. The remaining components of 
external loading are equal to zero. Residual microstresses are defined by Eq. (4.8). The 
shear components of residual microstresses are equal _ to zero. The yield condition for 
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·prestressed material results directly from the· general expression (3.6'). After rearrange­
ments we finally obtain 

;(4.10) [ux+ (~),-(o-!'),]2 - [ux+ (~), -(c/1),]u,+ a; = (0:1) 2
• 

Thus the initial yield ellipse 

a~- axa, +a: = ( 0:,)2 

is shifted along the (f.x-axis by the segment · 

(~),-(U:), = (a.x)o -a;,. 

~s. A theoretical study of the fading memory eff'ect under conditions of plane state of stress 

Let us consider a particular case of the plane state of stress in which there exist only 
·two non zero-components. (f.x and (11 of external stresses. The remaining stress components 
and particularly the T.x., component are assumed to be equal to zero. Moreover, let .us 
.assume for simplicity that the Poisson ratio is also equal to zero (11 = 0). 

The increments of stre.sses in grains A and B must satisfy the equations of equilibrium 
{compare (2.3)) 

{5.1) 
~+dU: = 2da.x, 

dU: + da: = 2da ,, 

dU:+dll: = 0. 

·The compatibility equations (compare (2.7)) are 

d~+Ed).s: = da~, 
{5.2) dU: + Ed).s: = dU:, 

dc/1 + Ed).s: = dU: . 

.Condition (2.8) takes now the form 

{5.3) s:d~+s:dU:+s:dU: = 0. 

Solving Eqs. (5.1), (5.2), and (5.3) with respect to stress .increments in grains B we 
:finally obtain the following equations: 

{5.4) 
. ~ (0:1)2d~ = [(s:) 2 +(s:)2]dax-s:s:da,, 

s: s: da: = (s:l 2dax- [(s:) 2 + (s:)2]a~, 
from which the stress increments d~ and dU: may be step by step computed by means 
of . ~he finite diff'erence technique. The third stress increment da: is then given by Eq. 
{5.3). 

The stress increments dU:, da: and dU: in grains A are then defined by Eqs. (5.1). 
Having found the stress increments we may calcul~te at each step of computations the 
·stresses a~, a: , cl1 and U:, a:, ~ corresponding to the respective level of external loading 
.qx, a,. For any level of external loading we may also calculate from the formulae (3.4) 

. and (3.2) the components of residual microstresses (U:),. (U:),, (U:), and (a!}, (a:l,, 
(a:), and the~ define the position of the yield surface. 

The equation defining the position of the shifted yield ellipse · in the ux, a.,-plane is 
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obtained by eliminating from the general equ,ation (3.6') the zero components of external 
loading az = Txy = T1z = Tu = 0 and the zero components of residual microstresses 
('r!,), = <-r:z)r = (T!'x)r = 0 [note that the component (a:), is not equal to zero]. Finally, 
after rearrangements we obtain the equation of the shifted yield ellipse in the form 

(5.5) [ax+ (a!},- (a~,]2 - [ax+ (a!),- (a:),][a,+ (a:),- (a!'},] 

+ [a,+(a:),~(a:),]2 = (a:1)
2

• 

The position of the central point of the shifted yield ellipse is defined by. the radius­
vector r whose components in the Clx and Cl1 directions are 

rx = -(a!),+(a:), 

r, = -(a:),+ (0:), 
(5.5') 

respectively. 
In order to study the effect of the fading memory of the model in the process of complex 

plastic deformation, two particular loading paths were compared. These loading paths 
are shown in the inset in Fig. 3. According to the programme I the model was first pre-

0' y 

FIG. 3. 

0' 
X 

stressed by uniaxial tension in the y-dire_ction up to the point C defined by the dimension­
less stress a; = a1 /a';, = 1.3, then unloaded and reloaded by uniaxial tension in the 
x-direction. The loading programme 11 consists in uniaxial tension in the x-direction 
only. 

The numerically calculated dimensionless stresses a!' = u!fa:,, o-ff'= fl;fa:, a:' = 

= a: fa:Z in grains B are shown in Fig. 4. In spite of the fact that the external loading 
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programmes consist in uniaxial tensions in various directions, the state of stress inside 
the material is three-dimensional. 

Figure 5 presents residual dimensionless microstresses 

(a~)~= (a~)rfa:,, (a;)~= (ay):fa:,, (a:)~= (a:)rfa:, 

in grains B corresponding to various stages of prestressing along the prestressing programm­
es I and 11. Continuous lines show how the residual microstresses 1 (a~); and 1(a:); change 
during the final stage (sector OD) of the loading programme I. It is clearly visible that 
with the increasing length of the loading path along the ax axis (sector OD of the loading 
programme I) these microstresses tend to the common value of residual _microstresses 
11(a;)~, 11 (a:)~ calculated for the prestressing programme 11. This means that the model 
progressively "forgets" the initial portion OC of the prestressing programme I. 

This effect of the fading memory is even more clearly visible in Fig. 3 showing the 
final positions of the shifted yield ellipse for the two prestressing programmes. In the 
prestressing programme I after loading until the point C (a; = 1.3) the initial ellipse 
is shifted along the a;-axis to the position marked by I( OC). The central point of the 
ellipse is now marked by 0~. The ellipse did not change its position during unloading 
from C to 0 nor even during subsequent loading along the 0';-axis to the stress level 
a~ = 0.816. When the ax stresses further increased until the point D (a; = 1.7), the central 
point of the ellipse moved along the curvilinear path from 0~ to 01. The position I(OCD) 
of the ellipse corresponds to the end point D of the loading path. 

In the prestressing programme 11 the initial yield ellipse has been simply shifted along 
the 0'~-axis by the segment 0- O}J. The central point of the ellipse at the end point of the 
loading path D is marked by og. The final position of the ellipse is marked by II(OD). 

Comparing the final positions of the yield ellipses for the two prestressing programmes 
we · can conclude that the longer the common sector 0 D of the loading paths in respect 
to the initial sector OC in the programme I, the smaller the difference between the · yield 
curves resulting from both programmes. This theoretical result may be r~ferred to as 
the effect of the fading memory of the material. A similar theoretical conclusion .was 
obtained in a previous work [9] on the basis of the kinematical hardening hypothesis. 

6. Comparison of the fading memory effect with experimental results 

The effect of the fading memory was experimentally investigated in the previous work 
[9]. Specimens of the aluminium alloy PA-3 (according to Polish standards) were plastic­
ally prestressed according to the loading programmes similar to those analyzed in the 
previous section, and then yield surfaces under general plane state of stress were investi-· 
gated. To make this paper sufficiently self-contained the main experimental result will 
be shortly described below. 

Let the specimens of the material plastically prestressed according to the loading 
programme I be reloaded by various combinations of stresses ax, a, and 'l'x1 , the re­
maining stress components being equal to zero. The initial yield ellipsoid 

ai-axay+a;+3Ti1 = (a:1)
2 
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will be, after prestressing, shifted in the aJo a,-plane to the position described by the 
equation 

(6.1) 

where [compare (5.5)1 

FIG. 6. 

PRESTRESSING PATH 

PROGRAMME I 

The · final position of the shifted ellipsoid after prestressing is shown in Fig. 6. The 
central point was shifted . from 0 to 01. The theoretical line EFD lying on the surface 
of the shifted ellipsoid corresponds to the states of uniaxial tensions of specimens cut 
out from the prestressed sheet material in directions forming various angles with the 
x-axis. In order to obtain the equation of this line in the ax, a1 , Tx1-space, we must solve 
Eq. (6.1) together with the relation 

lixliy = TiJI 
resulting directly from Mohr's circle for uniaxial tension. 

In the previous paper [9] the theoretical lines EF D corresponding to the prestressing 
programmes analogous to the programmes I and 11 discussed above were found on the 
basis of the kinematical hardening rule. These lines· are compared in Fig. 7 with t~ e~­
perimental curves. The difference between corresponding pairs of theoretical and ex­
perimental curves is quite large. Thus it is evident that the kinematical hardening rule 
and the model shown in Fig. 1, giving vety similar results, depart from the real behaviour 
of metals undergoing plastic deformatiot:J.. An interesting feature, however, should be 
noted. In Fig. 7 the distance between theoretical curves for both prestressing programmes 
is practically the same as the distance between experimental curves. This means that our 
model predicts very well the length of the second portion OD of the prestressing·programme 
I after which the material "forgets" the initial portion OC of the loading history. 
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