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Modified theory of viscoplasticity
Application to advanced flow and instability phenomena

P. PERZYNA (WARSZAWA)

THE MAIN objective of the present paper is to formulate the theory of viscoplasticity which can
be applicable in a study of the influence of strain rate effects on the instability of plastic flow.
We propose to describe the interaction of the intrinsic plastic failure (plastic instability by.
necking) with the formation and propagation of cracks by assuming new constitutive equations
for an elastic-viscoplastic material. The model of the material proposed takes into account
imperfections. It is conjectured that a new term responsible for the description of imperfections
in the evolution equations proposed can describe effects caused by the interaction of cracks at
inclusions with the intrinsic plastic failure. This modified theory satisfies also the requirement
that during the deformation process the response of a material thereby modelled becomes
elastic-plastic for the assumed static value of the effective strain rate. The material functions’
and constants are determined on the basis of available experimental data obtained under
the condition of dynamic loading for rate sensitive plastic materials_. The initial-boundary value
problems of straining cylindrical specimens with constant velocities U,, U,, ..., U, are formula-
ted. Numerical calculations are performed and discussed. New experimental investigations
useful for determining of the imperfection functions are proposed. These imperfection func-
tions play an important role in the description of instability phenomena and, in particular,
during the necking process.

Gtownym celem pracy jest sformutowanie teorii lepkoplastycznosci, ktéra moglaby by¢ zasto-
sowana do zbadania wplywu efektow predkosci odksztalcenia na niestateczno$é plastycznego
plynigcia. Zaproponowano opis wspoéldzialania plastycznego zniszczenia (plastyczna lokalizacja
lub niestateczno$é podczas szyjkowania) z tworzeniem i rozprzestrzenianiem si¢ szczelin, przyj-
mujac nowe rownania konstytutywne dla materiatu sprezysto-lepkoplastycznego. Proponowany
model materiatu uwzglednia imperfekcje. Przypuszcza sig, Ze nowy wyraz opisujacy imperfekcje
w przyjetych rownaniach ewolucji moze opisa¢ efekty spowodowane oddzialywaniem szczelin
na wtraceniach z plastyczna lokalizacja. Zmodyfikowana teoria spelnia réwniez warunek, ze
podczas procesu deformacji reakcja modelowanego materialu staje si¢ sprezysto-plastyczna
dla przyjetej statycznej wartodci efektywnej predkosci odksztalcenia. Na podstawie dostgpnych
rezultatdow doswiadczalnych otrzymanych w warunkach dynamicznego obcigzenia dla materia-
tow wrazliwych na predkos¢ odksztalcenia okre$lono funkcje i stale materialowe. Sformutowano
problemy poczatkowo-brzegowe odksztalcania walcowych prébek ze stalymi predko$ciami
U,, Ua, ..., U,. Otrzymano i przedyskutowano rezultaty numeryczne. Zaproponowano nowe ba-
dania experymentalne pozyteczne do okre§lenia funkcji opisujacych imperfekcje w materiale.
Funkcje te odgrywaja podstawowa role w opisie zjawisk niestatecznosci, a w szczegélnosci przy
opisie procesu szyjkowania.

T'naenoii uesmio paGoThl siBiseTcss (OPMYMHPOBKA TEOPHH BASKOILIACTHYHOCTH, KOTOpas
morna 6bl ObITh NMpHMeHeHa ANA HccnegoBaHus Bimauusa 3ddekToB ckopoctH medopmarmu
Ha HeyCTOHUHBOCTE IMAacTHUeCKOro Tedenus. IIperoikeHO onucaHie B3aUMOAEHCTBHS IUIACTH-
YeCKOTO paspylleHHs (IUIacCTHYECKad JIOKAMHM3AUMA KK HEeyCTOHUMBOCT BO BpemsA ofpaso-
BaHHA TOPJIOBHHEI) ¢ 00pasoBaHHEM M DPACTIDOCTPaHEHMEM Ilenelf, NPHHUMAs HOBbIE Ompe-
JenAwollye yPaBHEHHA [UIA YIPYro-BASKoILIACTHYecKoro matepuana. IIpeanosxennas moaenb
maTepHana yuurbiBaer mmmepdexumu. IIpemmonaraercs, WT0 HOBBIH WiEH, OMHCHIBAOLIMI
umrepdeKMy B NPUHATHIX YPaBHEHHAX IBOJHOLMH, MOYKET ONMHCHIBAaTH 3(hdeKTh!, BBI3BAH-
Hble B3aUMOJEHCTBHEM Ilenell Ha BIUDOYEHHAX C IUTACTHYECKOH JoKanmu3saumned. Momudmum-
POBAHHAs TEOPHA YHOBIETBOPHET TOME YCIOBHIO, UTO BO Bpems mpouecca Aecopmaluu peak-
LA MOJeMPOBAHHOIO MaTePHAJA CTAHOBHTCH YIIPYTO-IUIACTHYECKOH JUIA NPUHATOTO CTATH-
yecKoro aHavenuAa sddexruBHoi cropoctr Aedopmanmm. Ha ocHoBe JOCTYNMHBIX SKCIIEPHMEH-
TaJIBHBIX PE3YJIBTATOR, [IOJYUYEHHEIX B YCIOBHAX AUHAMHYECKOrO HAIPY)KEHHA 1A MaTePHANOB
YYBCTBHUTELHBLIX Ha CKOPOCTh AedopMalui, onpefenenbl YHKIME ¥ MaTePHANbHLIE IOCTOAH-
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e. ChopmymMpoBaHbl HAYATEHO-TPAHHIHbIC 3a/1aH HedopMaImy MUIHHAPHYECKHX obpas-
OB C NOCTOSHHBIMA CKopocTama U, U,, .s Up. TIonydeHEI B 06CY)KMeHB! UHC/TEHHBIE
peaynbTaThl. IIpenoykeHbl HOBLIE SKCTIEPHMEHTANIBHEIE NCCIENOBAHMA MONESHbIE UIA ONpe-~
nenenns dyHramil, oNMECHIBaOMMX nMaepdeKimy B MaTepuare. ITi QYHKIME HrpaioT 0CHOB-
HYIO POJIb B ONMCAHUH ABJICHHI HEYCTOWYHBOCTH, B YACTHOCTH NPH OIHCAHWH mpolnecca o6pa-
30BaHMA TOPJIOBHHEI.

1. Introduction

MANY recent theoretical and experimental investigations have been focused on the instability
phenomena of plastic flow. The intrinsic plastic failure or the localization of plastic flow
may be treated as a prelude to fracture initiation and therefore is a matter of great interest.

It is very well recognized and confirmed experimentally that there are two main modes
of localization of plastic deformations, namely necking and the localization in the direction
of pure shear(*).

A comprehensive consideration of localization of plastic deformation into a shear
band as an instability of plastic flow and a precursor to rupture has been presented by
J. R. Rice [30].

A critical review of the theories of strain localization with reference to bifurcation
behaviour and the growth of initial imperfections has been given by A. NEEDLEMAN and
J. R. RICE [22]. These authors have shown that the oneset of localization does depend
critically on the assumed constitutive law. Their analysis has been based on the classical
rate independent elastic-plastic equations and departures from this idealized model that
include the effect of (i) yield surface vertices, (ii) deviations from plastic “normality”
and (iii) the dilatational plastic flow due to the nucleation and growth of voids.

Experimental investigations have shown that -the intrinsic plastic failure (necking
or instability in the direction of pure shear) is strongly dependent upon the strain rate
effects. P. J. WraY [31] has demonstrated that at high strain rates it is cracks at inclusions
that interact with the intrinsic plastic failure (3).

The main objective of the present paper is to study the influence of strain rate effects
of the necking phenomenon(®). We propose to describe the interaction of the intrinsic
_plastic failure (plastic instability by necking) with the formation and propagation of cracks
by assuming new constitutive equations for an elastic-viscoplastic matérial. The model
of the material proposed takes into account imperfections. It is conjectured that a new

. term responsible for the description of imperfections in the evolution equations proposed
can describe effects caused by the interaction of cracks at inclusions with the intrinsic
plastic failure.

(*) A second basic mode of localization has been investigated experimentally by A. K. CHAKRABARTI
and J. W. SPRETNAK' [5]. They have examined two aspects of the phenomenon of plastic instability in the
direction of pure shear, namely that the condition od maximum in true flow stress is necessary for the
localization of plastic deformation along characteristics, and that fracture is initiated and propagates
along characteristics.

(*) For a thorough discussion of the experimental results see Section 2.1. .

*(3) This problem has been the subject of consideration in the recent papers by O. T. BRUHNs [2] under
the condition of rigid-viscoplastic approximation, by J. W. HuTcHINSON and K. W. NEALE [14] and by
G. K. GHosH [10, 11] for the simplified one-dimensional case of loading.
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It is a very well recognized fact that the most probable mode of localization to occur
is that of necking which is usually connected with the fluctuations in the cross-sectional
area. It is supposed that this leads to a maximum load criterion for the instability condition
(cf. A. K. CHAKRABARTI and J. W. SPRETNAK [5]).

A comprehensive numerical analysis of necking in circular cylindrical bars of an elastic-
plastic material has been presented by A. NEeDLEMAN [21]. The latter formulated two
boundary-value problems for a circular cylindrical bar in uniaxial tension(*). In the first
of them the ends of the specimen are assumed to be cemented to rigid grips, while in the
second they remain shear free. In both cases the bar is strained parallel to its main axis
with a constant velocity U.

This velocity U in the numerical computations is assumed to change from 0.04 -0.0072 L,
cm/s to 0.9-0.0072 L, cm/s. So, the mean strain rate varies from 2.88-107%s~! to
6.4+ 10~3s~! and is only of a statical nature.

Basing on the analysis of the results obtained by A. NEEDLEMAN [21], we observed
that the investigation of strain rate effects on the necking phenomenon could be performed
by a solution of a sequence of similar boundary-value problems (to that posed by Needle-
man) under the assumption that the material of a bar has elastic-viscoplastic properties
with imperfections included and the specimens are strained with the constant velocities
I:Il, sz, i 29 U,., respectively. _

The spectrum of velocities U,, U,, Us, ..., U, has to be assumed such that it causes
changes of the mean strain rate in a sufficiently large range.

Particular attention is also devoted to the modification of the constitutive equations
for an elastic-viscoplastic material to satisfy the requirement that during the deformation
process in which the effective strain rate is equal to the static value (e.g., the second in-
variant of the strain rate tensor I, = I3) the response of a material becomes elastic-plastic.

For such modified constitutive equations we can obtain the NEEDLEMAN results as
a limit case of our processes under the assumption that the velocity U, = Uypue = U
(assumed by NEEDLEMAN). _

In Sect 3.2 it is shown how to determine the material functions and the material constants
basing on available experimental data for rate sensitive plastic materials. However, this
procedure does not shed light on the determination of the functions responsible for the
description of imperfections. Hence the additional purpose of this paper is to show what
kind of experimental investigations are needed to obtain data which can provide a reason-
able basis for determing of the new functions.

2. Analysis of instability and fracture modes

2.1. Discussion of experimental investigations

Let us start from the analysis of the failure of metals deformed under a unidirectional
tensile mode of loading. It can be expected that in the temperature-strain rate spectrum

(*) A similar problem for a rectangular bar has been recently investigated by M. A. BURKE and
W.D. Nimx [3]
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different failure modes may occur. This conjecture is justified by the fact that different
mechanisms of plastic flow should lead to different fracture modes of a material.

A comprehensive discussion of the failure modes which can occur in a uniaxial tensile
test of a polyphase, polycrystalline material at various strain rates at elevated temperature
-has been presented by P.J. WrAY [31]. The particular results in the temperature range
(0.56-0.70) 9,, (where &, is the solidus temperature of 1370°C) and in the strain rate range
2.08x1075—1.66x 10! s~! for Type 316 stainless steel as a representative material
have been given. In the strain rate-temperature plane four different modes of failure have

Strain rafe

Temperatura Un
Fic. 1.

been observed, Fig. 1, Mode I being that of brittle fracture, Mode II ductile fracture,
Mode III creep rupture and Mode IV the intrinsic plastic failure.

The general conclusions of the investigations performed by P.J. Wray [31] are as
follows. The failure of a polycrystalline material at elevated temperature may be treated
as the interaction of the intrinsic plastic failure with the formation of cracks at second
phase particles and grain interfaces. The intrinsic plastic failure is strongly dependent
upon the strain rate in the temperature range from 0.56 @, to 0.70 #, (650 to 870°C).
At low strain rates cracks at grain interfaces lead to fracture well before intrinsic failure
can commence, and hence there is no interaction of intrinsic failure with the internal
cracks. At intermediate strain rates cracks form at grain interfaces within the neck, and
thereby interrupt the intrinsic plastic failure process, in some cases resulting in_a shear
fracture mode. At high strain rates it is cracks at inclusions that interact with the intrinsic
plastic failure. For low temperature and very large strain rates brittle fracture mode is
observed.

T. B. Cox and J. R. Low [6] have investigated the mechanisms of plastic fracture in
high purity and commercial 18 Ni 200 grade maraging steels. They have found that there
are three generally recognized stages of plastic fracture, namely void initiation, void growth
and void coalescence. The most important microstructural features governing the plastic
fracture of these alloys are the void nucleating, second phase particles. The sizes of non-
metallic inclusions are an important aspect of the fracture resistance of these alloys since
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the investigation has demonstrated that void nuéleation occurs more readily at the larger
inclusions and that void growth proceeds more rapidly from the larger inclusions.

W. PavinicH and R. Ras [23] have performed a systematic experimental study of
fracture in materials which contain hard second-phase particles. Creep fracture experiments
have been carried out on copper-silica alloys in the strain rate range of 10~* to 10~7 s~
and in the temperature range of 400 to 800°C. Three modes of fracture have been observed,
namely transgranular necking fracture at high strain rates, fracture by the propagation
of intergranular cracks initiated at the surface at intermediate strain rates and intergranular
fracture by grain boundary cavitation throughout the entire specimen cross-section at
low strain rates. The transition between the fracture modes was shown to shift systema-
tically with temperature, strain rate and the microstructure.

2.2. Theoretical propositions

A discussion of experimental investigations has shown that the fracture problem evem
for the one-dimensional case becomes very complex. However, we are convinced that
the description of viscoplastic materials within the internal state variable structure pro-
vides the framework for interpreting and handling the fracture phenomena of metals.
Particularly, the introduction of a set of the internal state variables {E,(t), »(), &(t)}
which are interpreted as the inelastic strain tensor, the work hardening parameter and
the concentration of defects, respectively, can be a very convenient tool for this study (cf.
P. PErzYNA [24, 27)).

Considering the main features of fracture phenomena observed experimentally, we
propose to interpret the scalar state variable £(¢) as the measure of concentration of defects,
inclusions and imperfections in the material.

This parameter is of a similar nature to that introduced in the phenomenological
theory of creep rupture by L. M. KacHANOV [15] and Y. N. RaBotNov [28] (cf. also
J.B. MarTIN and F. A. Leckie [20], D. R. HAYHURST and F. A. Leckie [12, 18] and
D. R. HAYHURST, F. A. Leckie and C.J, MorrisoN [13]) and which was interpreted as.
a measure of the cracking or damage in the material during the process of creep phenome-
non.

Unidirectional tensile mode of loading experimental investigation of metals suggest
that the elongation at fracture decreases with a decrease of temperature, and it decreases.
with an increase of the strain rate. It is also observed that the magnitude of the elongation
at fracture does depend on the concentration of defects, inclusions and imperfections,
namely it decreases with an increase of the concentration of defects.

This confirms our indication that by proper interpretation of the scalar parameter
£(t) and proper assumption of its evolution equation we can supply important information
about fracture phenomena of the material considered.

It is noteworthy that the description proposed will have practical value provided we -
have, for the material under consideration, experimental data sufficient for determining
all the material functions and material constants.
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3. Model equations for an elastic-viscoplastic material
3.1. Constitutive equations with internal state variables

In what follows we shall consider only pure mechanical processes. Let us assume that
the intrinsic state ¢ of a particle X consists of its local configuration E(t) and its method
of preparation w(?), i.e.

(3.1) o = (E(1), (1)),

where E(¢) denotes the strain tensor and w(t) is the internal state vector. It is postulated
that the internal state vector w(¢) can be assumed in the form

(3.2) w(t) = (E,(1), %(2), (1)),

where E,(f) denotes the inelastic strain tensor, x(t) is an isotropic work-hardening pa-
rameter and &(¢) is interpreted as a scalar measure of the concentration of defects, in-
<lusions and imperfections.

It will be shown that the parameter £(¢) and its evolution constitute the crucial point
in the description of instability phenomena in elasto-viscoplastic processes (cf. also
P. PERZYNA [27]).

The constitutive equation for the Piola-Kirchhoff stress tensor T(¢) is assumed in the
form as follows:

(3.3) T(t) = T(o).
The tensorial material function T is assumed to be differentiable with respect to all

<components of the intrinsic state o.
The evolution equation for the internal state vector w(¢) is postulated in the form

(.4 W) = L(E®D), E0), w(),§(1), €0, de]
-with the initial value as follows
{3'5) W(O) =Wy = (Egs xﬂ, EO),

‘where dp denotes the duration of the process considered.

. The vectorial function © depends on the strain tensor E(¢), the strain rate tensor
E(#), the internal state vector w(?) and the control vector §(¢). It is assumed

3.6) E=(p,y) and CeU,
‘where '

(3.7 U= {€: max|p| < M, max|y] < M,lim¢ = 0,limy =0,

L=l L=0
90) =0, 90 =0, ¢(-)=0 and ¢(-)=0 for 1, <}
and we introduced the denotations as follows()
3.8) I, = Mp'?, 1§ = ()2

(°)  The second invariant T3 is called the static value of strain rate measure. We define I% as such value
for which, in a test under combined stress conditions with I, < I3, there is no rate sensitivity effect observed.
In other words, rate sensitivity effects are not experimentally detected.
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The reason why we introduce the control vector § in the evolution equation (3.4) is
twofold. Firstly, it helps to describe the properties of a material in a range of strain rates
near the static value (say I, = I3). Secondly, it will play a very impottant role in de-
termining of the material functions and material constants according to available experi-
mental results for strain rate-sensitive plastic materials.

Physical analysis based on the dynamics of dislocations suggested that two mechanisms,
namely the thermally activated process and the phonon damping effects, are most important
for explaining the strain rate sensitivity of metals (cf. P. PERZYNA [26]).

Assuming these two physical mechanisms as fundamental, we can postulate a particular
form of the evolution equation (3.4) as follows:

£,(1) =2 {® @—I»é‘um-),

()N \ ()
3.9) ) = trR@E, )],
Et) = tr[E, (B, (0] +9(-)Ex(0),
where
(3.10) FC) = F(T@0), E,(1), &1))

denotes the quasi-static yield function (loading function), and the symbol {[]) is understood
according to the definition

0 if f()<x(t),
(3.11) < ])“t[] if  f(+) > ().

3.2. Determination of the material functions

To determine the material functions and constants involved in the theory proposed
we shall use available experimental data obtained in dynamical tests.

It will be shown that the determination of the material function ®, the control function ¢
and the material constants can be based on both the combined and one-dimensional
loading tests.

Let us develop first the procedure for the dynamical test under combined loading.

U. S. LinpHOLM [19] performed experimental tests for a number of metals under
combined stress conditions by using a new ppeumatic machine. Of particular interest
for us are the results for mild steel plotted the square root of the second invariant of the
deviation of the stress tensor as a function of the square root of the second invariant of
the strain rate tensor.

Similar results have been obtained by M. R. D. RANDALL and J. D. CaMpBELL [29]
for a low-carbon steel. The authors used a new hydraulically-operated medium strain
rate testing machine, capable of loading tubular specimens in simultaneous tension and
shear.

From these works for particular metals we have the experimental curves as follows
(.12) (M) = F0)] gy conse

6 Arch, Mech. Stos. nr 3/80



410 P. PERZYNA

where
(3.13) S=T—(—;—Tu)l
is the deviation of the stress tensor T.
To obtain reasonable results which can be useful for practical applications, we have
to introduce some simplifications to the evolution equations postulated.
We assume

(3.14) f(+) = ()2

and
L(t L (¢
(3.15) () =0 (‘”—1), »() = (’“ 1)

The first assumption (3.14) is suggested by experimental results. The second (3.15)
is justified by the initial-boundary-value problem we intend to formulate. This problem
will have a quasi-static nature, so we are interested to have an efficient description in a wide
range of small strain rates, near the static value, ie. I,(¢) = I5.

As an optimum criterion for the best fitting of experimental data by theoretical results we
introduce the functional

(3.16) & (w@), 9(+)) = ::E?df] [172(1) —‘?(Iz)]mmm_cmll,
La(f)e(13, 1T°%)
where
tr(E,(0))?)"?
(.17 J,(t) = x(r){1+¢-1[( ( ::(v)) } (Iz(f) )]}
0
Mild steel (1018)
(115) "\
(ksi) ®  Pure fension
A Pure torsion Experimental data (Lindholm[1965])
o Combined loading
60 - (1, /4 m /2
—o— (ITs) sz I{ [ £p) ( E )W]’ﬁ}
- i %#,=2150 ksi
Yo =258237457"
4u -
ol
20 -
10 I 1 1 1 1 1 L L Eo

0% 0% wf w3 w? 1w 1w 107 102
(11g) " (s™)

Fia, 2.
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and
(3.18) Jo(t) = (Ls)'?,  x(t) = x° = const.

To determine the material functiom @, the control function ¢ and the constant y,,
we shall minimize the functional (3.16).

The results obtained for mild steel and low-carbon steel are plotted in Figs. 2 and 3,
respectively.

(IIs)”i Low-carbon steel
(N/mm?) & @ o Experimental dafa (M.R.D. Randal and J.D.Campbell [1972])
—o— Theoretical
& W)™ , (1) qus
5ga|_ (HS.] =xo{1"[ ( ] ‘“1)] }
o 10
x,-déﬁ N/mm*
Yo =16259459-107s™"
(ITg) =012
m -
I ’ )
400 H 1 1 Q 1 1 1 I
0wt w? w? w' w0 w0 10° ;
(1Ig)™ (s™")
FiGc. 3.

A similar procedure can be developed basing on the results obtained in dynamical
tests performed under one-dimensional loading.
For this case we have as an optimum criterion the following functional:

(3.19) T (w0, 9()) = max ()~ (E(t))l=consil
Ee(Es, Emnx]

where

(3.20) T() = x:{1+¢" [%qa(ﬁi 4)]}

and

(3.21) T(t) = % (E())lgmcons

represents the experimental curve obtained for E = const.
We shall use experimental data obtained by different authors for various metals.
J.D.C. CampBeLL and W.G. FerGuUSON [4] performed experiments in which the
shear flow stress of mild steel was measured at temperatures from 195 to 713 K and strain

6*
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Theoretical results  z3=10056739-10°(s™)}

Ep (NEN _y/5]75
- T=195{1+[a-,§(m—_3—1) ]
i T-‘IBS{‘N ”E" )Tﬁ] 1!?}

¥ =6.5464096- 103 (s")

100

.m'4

10

H
ow? oot w0 ' w0t e w0 10% )

rates from 10-3 to 4x 10* s=1. In Fig. 4 the theoretical assumptions are compared with
experimental results for room temperature (293 K).

M. F. KANNJNEN, A. K. MUKHERIEE, A. R. ROSENFIELD and G. T. HABN [16] presented
experimental results obtained by different authors for plain carbon steel in the range
of strain rates from 10~* to 10* s~!. These data are compared with theoretical result:

in Fig. 5.

T-%- |
1000psi

> D4 m @ 0O

Plain carbon steel
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Krafft [1364], [1966]
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C. H. KarnEes and E. A. RipPERGER [17] performed tests in which specimens of high-
purity polycrystalline aluminium were subjected to strain rates from 10~ to 4 x 10 s™!
in order to determine the nature of the strain rate sensitivity. The specimens used in this
test were cold worked to varying degrees from an annealed condition to an engineering
strain of 50 per cent. A comparison of experimental data for the annealed specimen with
theoretical results is shown in Fig. 6.,

A similar comparison of theoretical results with copper data obtained by A. R. Dow-
LING, J. HARDING and J. D. CAMPBELL [7] by using a punch shear test is presented in Fig. 7
and with data for Cu crystal tested in comprgssion by J. W. EpiNnGToN [8] in Fig. 8.

T
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T Cu Crystal
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‘FIG. 8.

On analyzing the constitutive equation (3.3) and the evolution equations (3.9), we can
easily observe that the material functions T, K, &;, E; and the control function y are still
undetermined.

3.3. Elastic-plastic response

It is noteworthy that for(%)
(3.22) IE@)—EJl =0 =L() =T
the evolution equations (3.9) lead to the following results:
E,(1) = Adraf(+), f(*) =#(t), t(3rfT) >0,

(3.23) #(1) = tr[K(o)E,(1)],

£(1) = tr[E,()E, (1),
where
(3.24) A = {tr[(K—0g,f—0:/Z,) 02f1}" tr(drfT).

The constitutive equation (3.3) together with the evolution equations (3.23) describe
a work-hardening elastic-plastic material. A .

Since the tensorial material functions T, K and &, are the same for the elastic-visco-
plastic response of a material as well as for the elastic-plastic range, we can assume these
functions based on the results for the theory of plasticity. Hence, the main question to
be asked is the determination of the scalar imperfection function =, and the scalar control
function .

(%) The norm || || is understood as the natural norm in the space of strain rate tensors E.
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3.4. Rate type constitutive equations

For the formulation of the initial-boundary-value problem it will be useful to have
the rate type material structure. It is easy to prove (cf. P. PERzZYNA [25]) that the consti-

tutive equation (3.3) and the evolution equations (3.9) lead to the following rate type
evolution equation:

325 T() = Bo+ B, [EQ)],
where
fio _ I?; \ f((r; 1)> {aE,’E'[aTﬂJra,i‘tr[f(an}
w ( IS = ’
(3.26) I, A
+ 5§Ttr[u1 an]'l'lP( I" "‘I) 3efﬁ.3,
ﬁl. . aE'fl9

valid in a range of strain rates I, > I3.

For the elastic-plastic response, i.e. in a range of strain rates I, < I3, the rate type
evolution equation has the form

(3.27) T(t) = B.[E@)],
where the tensorial function ﬁz is determined as follows:
(3.28) B, =B, =T for tr(erfT)<0

and for tr(d1fT) > 0 the function (S; can be obtained from the identity

(3.29) T(t) = 0pTE]+ g, TAOrf+ 0, Ttr[Korf1A+ 8, Ttr[E, d1f1A,
where A is given by Eq. (3.24).
To keep our consideration as simple as possible we can assume 2, = 0.

In the case when the imperfection function E, does not vamsh we could base our
study on recent results for an elastic-plastic material(?).

4. Strain'rate effects on the necking phenomenon

4.1, Formulation of the initial-boundary value problem(®)

Let us study the tensile deformation of a circular cylindrical bar of initial length 2L,
and initial radius R,. We assume the cylindrical coordinates r, 6, z. We treat the problem

(") Conditions for a localization bifurcation with an initial, finite imperfection for an elastic-plastic
material by developing the localization theory given by J. Rice [30] have been studied by H. YAMAMOTO
[32]. Cf. also the literature on the subject cited there.
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as axisymmetric and additionally assume that the deformations are symmetric about the
mid plane z = 0.
To formulate the basic equations and the initial-boundary-value conditions, we introduce
the stress tensor
1/2

@1 T = («i—) T,

where T!* are the contravariant components of the Cauchy stress tensor, G is the determi-
nant of the metric tensor G;; in the deformed body, and g is the determinant of the metric
tensor g;; in the undeformed body.

Let us define the rate of traction

4.2) th = (T¥+ T s+ Toal)n,,

where u is the displacement vector and n the unit normal vector.
The incremental equilibrium equations with body forces neglected have the form

@.3) (T + T, + TV, = 0.
The Lagrangian strain rate E}, is given by

i GRS § i .
4.4 E} = 7 (824, 8,0+ g (5wl + 5]
The constitutive equations of the rate type can be written in the form as follows
TV = B+PhEY, L>1I,

@.5) TY = By, EY, <1,

where the functions éo, ﬁl and ﬁ; are determined by [30, ﬁl and é, given by Eqgs. (3.26)

and (3.29) after transformation to the new coordinate system and using T, and E* as
tensor measures of stress and strain rate.

The boundary conditions are as follows: the assumed symmetry about z = 0 requires
that at z = 0 we have

'ti(r, 0,0)=0 (x=1,2),

(4.6) us(r,0,1) = 0;
at z = L, for the bar with shear-free ends
t(r, Lo, 1) =0, (x=1,2),
4.7 el |
“3(?’, LO’ l) = U] ) Uz; U.’S; wesy Un;

at z = L, for the bar with the ends cemented to rigid grips
" ﬁl(r: LO: t) = 0!

4.8 . S . L 3

( ) uJ(rsLO!t)=Ul’ UZ’ UJ:"" Un;

(®) In the consideration of the boundary-value problem we follow here the exposition presesnted
by A. NEEDLEMAN [21].
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for te [0, dp], where dp denotes presupposed duration of the process considered. The
lateral surfaces of the bar are required to remain stress free in both cases.

The initial condition are assumed as follows: all components of the stress tensor T,
and all components of the displacement vector a for ¢ = 0 vanish.

4.2, Discussion and conclusions

Let the pair (T,, u) be a solution of the initial-boundary-value problem formulated.
Let us presuppose that we can perform an experimental investigation for a similar
boundary-value problem. In.this test specimens of cylmdncal bars (a material of which
is mild steel) are strained with the velocities U,, U,, U;,, ..., U,, respectively. We measure
the load as the function of strain for every test(°). The results obtained can be plotted
as it is shown in Fig. 9 (they are consistent with preliminary, very rough numerical cal-

ol

§

N“ Uy

Uf<{}z<t}3<----<.'_:fn

I
|
I
1
I
I
I
I
I
|
I
|
]
1

2 Strain{U/Lo}
Fi1G. 9.

culations of the initial-boundary-value problem formulated). If we can control the in-
stability points on load-strain curves for the constant velocities U, Gi=1,2,..,n),
then we can obtain two curves, namely the load at the instability point as the function
of the strain rate and the strain at the instability point as the function of the strain rate.
These results are plotted in Fig. 10.

. Having the results discussed, we can introduce the functional

f(Tt) a, c) = i':::ad:] {l Igl‘hm“(li) _91“’([2)” )
4.9 Lieqt?, 1T8%)
192 georecla) =F2 ., DI}

(®) We can recall a very similar experimental investigation of plastic instability in the direction of
pure shear for two types of sheet specimens performed by A. K. CHAKRABARTI and J. W. SPRETNAK [5].
They have found that a maximum in true flow stress is consistent at the onset of instabilities. They have
also shown that fracture is propagated consistently along the instability band-matrix interface. It has
been observed that variations in specimen geometry produce significant changes in stress state, directions
of characteristics and nature of instability phenomena.
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V tood | .. ...
s rmm} at instability point

Load

0 Es=Us/Ly Strein rafe {U/I.,}
Fic. 10.
where
Load L
' (at the instability point) ¥ 1uncorer(l2);
(4.10)

Strain
(at the instability point)
represent the theoretical curves obtained by means of the numerical method.

The functional (4.9) is understood as an optimal control criterion of the process of
straining of cylindrical bar specimens.

The main conception is to determine such an imperfection scalar functlon =, and
the control scalar function y that the solution (T,, u) minimizes the functional (4.9).

The advantage of the procedure proposed is the unified formulation of the problem
for the elastic-viscoplastic range as well as for the elastic-plastic response of a material.
This permits to use a similar numerical method in both regions of the solution.

Of course there are some shortcomings of the procedure proposed. Since the problem
has been formulated as quasi-statical, we have to restrict our considerations to such values
of the velocities U, (i=1,2,...,n) to be sure that our quasi-static approximation is
valid,

As the solution (T, u) can be obtained only by means of the numerical method (e.g.
similar to that proposed by A. 'NEEDLEMAN [21]) then the determination of the functions
Z; and y will depend on the accuracy of the method applied and on the ability of the
computer.

The main disadvantage is t'hg lack of the experimental data presupposed in this proce-
dure. We hope, however, that kind of experimental investigations is not difficult to
perform nowadays.

= gzlheorel(lz) J

5. Final comments

The question arises whether the evolution equation (3.9) assumed for the internal
state variable £(f) is adequate to describe instability effects observed experimentally.
This is the main question we would like to answer.
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The evolution equation (3.9) has no direct physical foundation. It represents con-
venient phenomenological assumptions.

Physical foundations connected- with the intergranular fracture mode could provide
a ground for the justification of the evolution equation assumed.

Recent physical investigations on the growth of an array of grain boundary voids
during a deformation process (e.g. creep process) (cf. W. BEERE and M. V. SPEIGHT [1]
and G. H. EDwARD and M. F. AsnaBy [9]) suggested a coupled diffusion and power-law
creep mechanism to explain complex fracture phenomena in metals, '

G. H. EDWARD and M. F. AsuBy [9] have developed a coupled mechanism in which
each void grows by diffusion, but the void plus its diffusion field is contained within a cage
of power-law creeping material. They have proved that the coupled model predicts times-
and a strain-to-fracture consistent with experimental observation. They have pointed
out that there is also the possibility that interface kinetics, not diffusion, control the rates.
of transport around and out of the growing void.

Basing on this physical suggestion, we have to take into consideration this complicated
nature of interface kinetics.

Therefore, we can expect than the evolution equation for the scalar internal state
variable £(t) interpreted as a measure of concentration of imperfections (e.g. grain boundary
voids, the area fraction of holes) will take the form of the transport differential equation
or, in a simplified form, the diffusion differential equation.

Of course, the coefficients in this partial differential evolution equation can be deter-
mined basing on the physical model assumed or on statistical considerations.

Coupling effects between different cooperative phenomena described by the internal
state variables and its evolution equations may model a complicated fracture process.
in a dissipative material.
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