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Lattice rotations and localized shearing in single crystals 

Y. W. CHANG and R. J. ASARO (PROVIDENCE) 

LOCALIZED shearing in ductile single crystals undergoing multiple slip is studied using the simple 
model, introduced by AsARo [1], for a crystal deformed in tension with symmetric double slip. 
Special attention is paid to the model predictions concerning the kinematics of localized shear
ing, in particular the predictions of local lattice rotations, and these, as well as the predictions 
for a critical ratio of slip plane strain-hardening rate to tensile stress, are compared to exper
iment. The effects of "local lattice rotations" on the formation and initial development of mac
roscopic shear bands in Al-3 wt percent Cu single crystals were studied experimentally for crystals 
deformed in simple tension and compression. X-ray diffraction, and Berg-Barrett topography, 
revealed that the lattice within the shear bands was finitely rotated from that of the surround
ing crystal parts, and that this · rotation was always such as to induce "geometrical softening" 
within the bands. The character of the observed local rotations is in essential accord with the 
predictions of our recent continuum analyses of localized plastic deformation in single crystals. 
whereas the mechanistics of the rotation process is most simply explained by the dislocation 
theory through the formation of Lomer-Cottrell locks. 

Rozpatruje siC( zlokalizowane scinanie w monokrysztalach poddanych wielokrotnym poslizgom 
posluguj(lc si~ prostym modelem wprowadzonym przez AsARo [1] dla krysztalu rozci(lganego
z podw6jnym symetrycznym poslizgiem. Szczeg6ln(l uwag~ zwraca siC( na przewidzian(l tym 
model~m kinematyke( zlokalizowanego scinania, a w szczeg61nosci na lokalne obroty sieci; wyniki 
te, a r6wniez przewidywania dotycZ(lce krytycznej wartosci stosunku pre(dkosci wzmocnienia na 
plaszczyinie poslizgu do napre(ien rozci(lgaj(lcych, por6wnano z doswiadczeniami. Wplyw· 
«lokalnych obrot6w sieci» na tworzenie siC( i rozw6j makroskopowych pasm 5cinania w mono
krysztalach Al-3% Cu zbadano eksperymentalnie na krysztalach poddanych prostemu rozci(l
ganiu i scisk~niu. Dyfrakcja rentgenowska i topografia Berga-Barreta wykazuj(l, ie siee w obre(-· 
bie pasm 5cinania podlega skonczonemu obrotowi wzgle(dem krysztal6w otaczaj(lcych, a obr6t 
ten jest zawsze tego rodzaju, ie wprowadza do pasm «geometryczne zmie(kczenie». Charakter 
zaobserwowanych obrot6w lokalnych zgadia siC( w zasadzie z naszymi kontynualnymi analizami 
dotycZ(lcymi zlokalizowanych odksztalcen plastycznych w monokrysztalach, podczas gdy me
chanizm procesu obrot6w wytlumaczyc mozna najlatwiej za pomOC(l teorii dyslokacji i tworze-· 
niem siC( zamk6w Lomera-Cottrella. 

PaccMaTJ>KBae-rc.a noKaJIH31fPOBaHHbiH C~llr B MOHOI<pHCTannax, no~ep!'HyTbiX MHoro
RpaTHbiM CKOJIL»<eHil.fiM, nocny»<<{BaHCL llpOCTOH MO));eJILIO, BBe.z:r;eHHOH ACAPO (1] .o;n.fl l<pll
CTanJia paCT.flri{BaeMoro c .o;BOHHbiM CI{MMeTpH~IM cKOJIL»<eHI{eM. Oco6eHHoe BHI{MaHI{e 
o6pamaeTC.fl Ha npe.z:r;CKa3biBaeMyro 3TOH MO));eJILIO KI{HeMaTilKY nOKanl{31fPOBaHHOrO C));BHra, 
B qaCTHoCTH Ha noKaJILHbie spameHil.fl peweTKI{; 3Til peayJILTaTLI, a Tome npe.o;CKaabiBaHHH, 
Kacaro~HeC.fl Kpi{T~eCKOI"O 3HaqeHH.fl OTHOWeHI{.fl CKOpOCTH ynpo~eHI{.fl Ha nnOCKOCTI{ CKOnL
»<eHH.fl K paCT.fii"I{BaiO~HM Hanp.a»<eHil.fiM, cpasHeHbi c 3KcnepnMeHTaMI{. BnMHHe ,noKanL
HbiX spa~eHHH: pellleTKH '' Ha o6paaoBaHHe H paaBI{TI{e MaKpocKo~eCKilX nonoc c~l{ra 
B MoHoKpncrannax AI - 3% Cu 3Kcnepi{MeHTaJILHO Kccne.o;oBaHO Ha KPHCTannax, no.o;sepr
HYTLIX npocroMy pacr.a»<eHiliO ll cmaTiliO. PeHITeHoBcKa.a M<PP~ H ronorpa<fJHH .Eepra-

. EappeTa noKa3biBaroT, qTO peweTKa B o6naCTil nonoc c~l{ra no.o;ne»<<lT KOHe~oMy Bpa~eHHIO· 
no OTHOilleHI{IO K OKpymaro~HM KPHCTanJiaM, a 3TO BpameHI{e Bcer.z:r;a 3TOrO po,z:r;a, qTO BBO));I{T 
B nonocbi ,reoMeTPilqecKoe cM.arqeHile' '. XapaKTep Ha6mo.o;aeMbiX noKaJILHbiX spameHilH: 
COBna.z:r;aeT B npi{}UUIIIe C HalliHMI{ KOHTIUIYaJILHblMI{ aHaJIH3aMil, KaCaiOIUHMI{C.fl nOKani{3Hpo
BaHHbiX nnacrnqecKilX .o;e<fJopMaiUtii B MOHOKPKCTannax, B To speMH KaK MeXaHI{3M npouecca 
BpameHilH: MO»<HO o6'h.fiCHI{Th CaMbiM llpOCTbiM o6paaoM fiPH llOMOIUH TeOpllll ));llCnoKarudi 
H o6paaoBaHileM aaMKoB JloM~pa-KoiTPenna. 
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370 Y . W. CHANo AND R. J. AsAao 

Introduction 

WHEN ductile single crystals of uniform dimensions and material properties are plastically 
deformed, the initial, typically uniform macroscopic pattern of ft.ow invariably b~comes 
localized as necks and eventual~y into bands of intensely localized shear. Of these two non
uniform modes, localized shearing is of parti~ular interest, not only because it appears 
to be a natural inherent occurrence in apparently homogeneous, perfect, strain-hardening 
solids, but also since it is very often a direct precursor to ductile failure. Recent theoretical 
studies of the phenomena [1, 2] have shown, in accordance with experiment [3], that 
the formation of shear bands is indeed possible even in imperfection free, positively strain
hardening crystals and thus in materials which are neither softening [4] or undergoing 
fracture. Asaro's recent model, described in Sects. 2 and · 3, for crystals deforming by 
double slip is of particular interest here in that the kinematics of localized. shearing he 
analyzed have some important crystallographic implications regarding lattice rotations 
within the shear bands leading to local "geometrical softening" which we have recently 
uncovered experimentally in Al-Cu cry~tals. The present paper describes some of the 
more important results of these experiments, especially those on "local lattice rotations" 
within shear bands. 

Although the idealized geometry considered by AsA.Ro [1] differs slightly from that 
of fee Al-Cu crystals, its kinematical description of deformation is indeed very similar 
to that of the actual crysta' Furthermore, the model's predictions for localized shearing 
are in excellent agreement with our experimental findings. The model is discussed in some 
detail in Sects. 2 and 3. In Sect. 3 a direct correspondence is made between the crystal 
model and the orthotropic, plane strain, incompressible solid studied by HILL and HuT
CHINSON [5]. Their bifurcation solutions, leading to non-uniform deformation modes, 
are discussed by MILES [6] elsewhere. 

Section 2 provides a brief description of the constitutive laws. ~ection 4 describes 
some experimental results, and in Sect. 5 a dislocation model which helps explain the 
mechanistics of the observed and predicted lattice rotations is presented. 

2. Constitutive laws for single crystals deforming by crystallographic slip 

Constitutive laws for single crystals are formulated in accord with the kinematic scheme 
presented by AsARO and RicE [2], which Vtf&S in fact based upon the analysis of Hu.L and 
RICE [7]. The generalization to multiple slip was made by AsARo [1] and applied to the 
crystal model shown in Fig. 1 ; the reader can refer to those :papers for detailed discussions-
a brief description follows below. · 

The total deformation and rotation of the crystal is taken as the superposition of 
a set of simple plastic shears on the currently active slip systems, with rates .y<~>, and 
a general lattice deformation and rotation denoted by D* and .n•. The plastic contribution 
to the rates of material deformation and rotation are then given by 

}; p<~>y<cx) and }; w<cx>.y<cx>, 
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LATTICE ROTATIONS AND LOCAUZED SHEARING IN SINGLE CRYSTALS 371 

FIG. l. Plane orthotropic crystal model for a single crystal deforming by symmetric double slip, in tension 
or compression. The model assumes that the slip plane normals, m, slip directions, s, and loading axi~, 
t, are all in the drawing's plane. • is the angle either slip plane makes with the t. + ~ 35 degrees is used 
to model a fee crystal aligned for primary-conjugate slip, whereas + ~ 55 degrees can be used to model 

certain bee crystals with tll(lll ) as described for example by Rem et al. [9]. 

respectively, where 

and 

(2.1h 

The unit vectors s<(X> and m<(X> are the current slip direction and slip plane normal for the 
slip system ex, and the sums are taken over "active" slip systems only. Addition of the 
plastic and lattice contributions yields, in component form, 

Dij = ~ (ov,foxj+ ovjfx,) = DG+ .2 p~j>y(IX) 
(X 

and 

(2.2h 
(X 

v is the vector of particle velocity. An important point to be noticed concerning this ki
nematical description of crystalline deformation . is that the rate of the lattice rotation, 
Sl*, is composed of both rigid body rotations - these can be arbitrarily large - and 
spins of the lattice (and its associated vectors· s<(X> and m<«>) due to elastic distortion
these are usually very small, on the order of stress, or stress rates divided by elastic moduli. 

We take the lattice deformation to be elastic and L the tensor of elastic moduli phrased 
relative to lattice directions. Then 

V 
(2.3) er* +er tr (D*) =L: D*, 

where 

(2.4) 
V 
er*= a-Sl*·er+er· n•. 
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V 
· a* is the Jaumann eo-rotational stress rate of true stress, a, and as implied by Eq. (2.4), 

its components are formed on axes that spin with the lattice. To study material deformation 
on the other hand, we require a stress rate whose components are formed on axes that 
spin witp the material as given by 

V 
(2.5) a= a-n. a+a. n. 
The two rates in Eqs. (2.4) and (2.5) are related by 

(2.6) 

Now ifD* in and Sl* Eqs. (2.3) and (2.4) are expressed in terms ofD and n, then Eq. (2.3) 
becomes, with Eq. (2.6), 

(2.7) ;+a tr(D) = L: {n-2 p<ex>,;<ex>}, 
ex 

where 

(2.7') 

A relation between y<ex>, and the stress rate is now required. 
We assume that yielding on each active slip system begins and continues when -r~l = 

= (m<ex> ·a· s<ex>) reaches and maintains a critical value (which depends on strain). Then 
if the a. system is to remain active, we must have 

(2.8) 

ha.{J are the elements of a slip plane hardening matrix, the off-diagonal elements of which 
represent "latent", or coupled, hardening. AsARo and RICE [2] have discussed va~ious 
possible ways of interpreting the left-hand-side of Eq. (2.7); for the present we will assume, 
following AsARo [1], that m<ex> and s<ex> simply rotate rigidly at the lattice spin rate Sl*. 
Then 

(2.8') 
V V 

dfdt(m<ex>. a. s<ex>) = m<ex>. a* . s<ex> = p<ex>: a*. 

V 
Evaluating a*, using Eq. (2.3) and replacing D* and Sl* with D and n, Eq. (2.8) becomes 

(2.9) L: {n _ 2 p<P>y<P>} : P = }; ha.fJy<P> 
p p 

which, when inverted, yields 

(2.10) y<P> = 2: {hi1{J +p<ex>: L: p<P>}-lp(ex): L: D. 
ex 

By combining Eq. (2.10) with Eq. (2.7) we obtain 

(2.11) 
V ~,A R 

a+atr(D) = L: D-L: 2_; p<ex>N~j/p<f'>: L: D 
ex,P 

http://rcin.org.pl



LATIICE ROTATIONS AND LOCALIUD SHEARING IN SINGLE CRYSTALS 373 

or its inverse, 

(2.I2) D = L- 1 : {~+atr(D)}+ ~p<cx>N~i/(p<P>:L:D), 
cx,fl 

N- 1 is the matrix whose elements appear in brackets in Eq. (2.10). 
To reformulate Asaro's model, for the crystal geometry of Fig. I, we first assume that 

the crystal's elasticity is isotropic and incompressible. Then tr (D) = 0 and the first term 
V 

in Eq. (2.I2) is (2G)-1a, where G is the elastic shear modulus. Next, for this crystal assumed 
to be undergoing a nearly symmetric double mode of slip, we take ha.fJ to have the elements 
hu = h22 = h and h12 = h2t = h1 - now the summations over a. and fJ range from I 
to 2. For the present case of simple tension along x2 , the only non-zero stress component 
is 0'22 ( = a). Also, for the geometry of Fig. I, 

(2.I3) 

sP> = sin</>, 

si2> = cos</>, 

mP> = -cos</>, 
m~1 > = sin</>, 

si2> = -sin</>, 

si2 > = ·cos</>, 

m~2 > = cos</>, 
m~2> = sin</>. 

Using Eq. (2.13) and the above constitutive assumptions, Eq. (2.12) yields the following 
constitutive laws for what amounts to an orthotropic, incompressible, pressure insensitive 
material:· 

(2.14) 

2G(h+h1 ) 
----,-2--=- (D22 -Du), 

(h+h1)+2Gsin 2</> 

v , _ 2G(h -h1 + ucos2cp) D 
0'

12 
- (h-h~)+2Gcos22cp 12

' 

D11 +D22 = 0. 
Before using the above relations to formulate the localization conditions we note two 
interesting features contained within them. 

2.1. Yield vertexes 

The term 2Gcos2 24> in the denominator of Eq. (2.I42) actually represents a vertex 
on the crystal's yield surface. The vertex softening implied is extremely pronounced in 
that the incremental effective "shear modulus" multiplying the shear deformation rate D12 

in Eq. (2.142) rapidly decreases from the elastic value 2G when 4> = n/4, to values of the 
order of the slip plane strain-hardening rate, h, when 4> ~ 35°. This latter value for 4> 
would represent a face-centered-cubic crystal, tested in tension so that the tensile axis 
rotates toward the [001]-[lll] symmetry boundary. The origin of the vertex is simple 
to understand: if 4> = n/4, then simple shears on the slip systems cause no shear along the 
geometric axes, x~. and x1.; the response is thus elastic with stiffness 2G. If 4> deviates from 
n/4, simple shears along the slip systems do contribute to D12 and the response is elastic
plastic and thus much softer. Although uniform extension of the crystal (at rate D 22) 

is described by Eq. (2.I41)- the incremental slope of the e122 versus extensional strain 

http://rcin.org.pl



374 Y. w. CHANG AND R. J. AsARO 

· 4G(h + h1) h I I' d h . d d' h 1 1 curve IS (h+ht)+ 2Gsin 2c/> 2 - t e oca_tze s earmg mo es Iscussed s ort y invo ve 

shearing along the geometric axis (at rate D 12). For this reason vertexes and vertex soften .. 
ing in shear can play an important role in destabilizing uniform extension. 

2.2. Geometrical softening 

Another important and novel feature of our crystalline constitutive laws in Eq. (2.14) 
is their description of "geometrical softening", through the term acos2c/> in the numerator 
of Eq. (2.142), due to rotations of the crystal's lattice in the current stress field, This term 

V V 
arises by our accounting for the differences in a and a* as in Eq . . (2.6). As worked out 
by Asaro, this term in fact completely describes geometrical softening in a tension test 
for a crystal undergoing single slip. The importance of geometrical softening will become 
evident in examining the shear band solutions of the next section. 

3. Localized shear bands 

The structure of the incremental relations (2.14) is identical to that developed by BIOT 
[8] and more recently studied by HILL and HUTCHINSON [5] for orthotropic, pressure in
sensitive materials deforming in plane strain. A formal correspondence is made by iden
tifying the moduli p and p,* (cf. HILL and HUTCHINSON [5) p. 240, Eq. 21) and rewriting 
Eq. (2.14); 

V V 
a22 -au = 2p,*(D22 -Du), 

V 
(3.1) C112 = 2p,Dt2' 

Du +D22 = 0. 

The comprehensive bifurcation analyses worked out by these authors should now still 
apply to our crystal model if special care is taken to allow for possible negative values 
for p,. Bifurcation solutions in plane strain tension for this material are also discussed 
by MILES [6]. Here we will limit our attention to localized shearing medes. 

To proceed we introduce the nominal stress, tii. Its definition is that, beginning at 
time t, iii is the rate of change ·of the xi component of load acting on a plane material ele
. ment which was perpendicular to the x1 axis and had unit area. Since the only non-zero 
current true stress component is 0'22 .( =a), the components of i are 

• V 
fu = l1u' 

(3.2) 
• V . 
t12 = a12 - aD12 = u12 -2a!J12 , 

• V 
t21 = C121 + afJ12 = a21. 
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Continuing equilibrium requires that 

(3.3) 
atlj _ 0 ox, - . 

375 

We now seek solutions to Eq. (3.3), given the constitutive laws (2.14) or (3.1) and (3.2) 
co~responding to velocity fields of the form 

(3.4) v1 = g1f(n · x). 

If/" :/: 0 (with real n), this corresponds to non-uniform shear across planes with unit 
normal n, in directions g; for the incompressible material behavior assumed, g · n = 0. 
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FIG. 2. Elliptic-hyperbolic-parabolic regimes for the crystal model shown in Fig. 1. For the cases where 
• = 30 and 35 degrees, the orientations of the first bands (i.e. 8) are indicated. 
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The conditions required for such solutions to satisfy continuing equilibrium (they are 
.already compatible) are derived in a fashion identical to that discussed by HILL and HuT

CHINSON [5] (cf. their equation A-10)- the result is the following consistency equation 
for n: 

{3.5) 

Shear bands may exist if real n's exist satisfying Eq. (3.5). 
A general picture for shear bands emerges when we recognize that real n's imply either 

.a parabolic or hyperbolic nature of Eq. (3.3) depending upon whether there are 2 or 4 
real characteristics of Eq. (3.5), or in other words 1 or 2 real, positive values for (n2 /n 1) 2 • 

Let the material be rigid plastic and q = h1 /h = 0, for example. The results are then 
:shown in Fig. 2 for a range of values for l/J. Typically for low values of (a/h) the equilib
rium equations are elliptic and shear bands do not exist; as this ratio increases, with 
:strain, either the elliptic-hyperbolic or elliptic-parabolic boundary is crossed; this de
pends upon whether ljJ is less or greater than n/4. Furthermore, whether shear bands 
.appear before or after load-maxima are reached- a= 4;a* corresponds to a load maximum 

. .and now 41-'* = 2~h~;1 ) also depends on ljJ or as discussed by HILL and HuTCHINSON 
sm qJ 

[5] on whether f.'/(2;a*) is less or greater than unity. The curve representing load max
imum is also shown in the figure. Now, as discussed by AsARo [1] the present crystal 
model can be used to model fee or some cases of bee [9] crystals tested in tension. 
Appropriate choices for ljJ would be l/J(fcc) ~ 30-35 degrees whereas l/J(bcc) ~ 50-55 
degrees. T~e model thus indicates tha~ bee crystals can be less stable than fee crystals 
in that (a/h)crltlcal is lower. 

Our experiments described in the next section were conducted on fee, Al-3 wt percent 
Cu single crystals. When localized shearing (or necking) set in, the tensile axis generally 
had rotated to (or within a few degrees of) the [001]-[i 11] symmetry boundary. Th~ de
formation pattern was then one of nearly symmetric primary-conjugate slip and to model 
this we will take ljJ = 35 degrees. Then, in Eq. (3.1) f.' > 2;a* > 0 and real n's exist 
when 

sin4<f> 
cos2if>± 

l/ 2(1+q) 
(h/a)· ~ sin22~ ,· 

---=: 2(q+cos4tfo) 'f' 
(3.6) 

q = htfh. 
The equality sign yields the critical value and with ljJ = 35 degrees 

{3.7) 
0.064 q = 0, 

(h/a)critlcal = 0.040 q = 1, 

o:o2s q = 2. 
Alternatively we may pose the following question: what are the conditions leading 

to a shear band inclined at angle 8 to the x2-axis, as depicted in Fig. 3? The band forms 
between two surfaces across which the deformation rates are discontinuous by the quan-
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FIG. 3. Plot of the critical ratio of h, the slip plane hardening rate, to u, the current tensile stress, for lo
calized shearing in a band inclined by the angle 8 to the tensile axis. The crystal model, shown on the right, 
is an ~dealized plane double slip with both slip plane normals, slip directions, and tensile axis in the draw-

ing's plane. 

tity ).p<3 >; p<3> is given by 1/2 (gn+ ng) where 1 is the magnitude of the jump in velocity 
and now both g and n are unit vectors. g and n, for example, can have the same form 
as s< 1> and m<1> in Eq. (2.13) with 0 replacing </J. The equilibrium conditions are now 
applied directly - for the initially homogenequs crystal the condition is that the in-plane 
jump in stress rate across the band's surface vanish, 

(3.8) 

By using the constitutive laws for the rigid plastic idealization, again as an example, Eq. 
(3.8) yields 

(3.9) 
cos20 -cos220 /cos2</J 

(h/a)critlcai = --:(-1--q-)-co-si20fcos2 2</J + (1 +q)sin220/sin22</J 

As before, we take q = 0 and display some results for <P = 35 degrees in Fig. 3. There 
are several important implications to be drawn from these results and which can be com
pared to our experiments on aluminum alloy crystals. 

In the range 35 ~ 0 ~ 45 degrees the critical (h/a) ratio is positive so that with positive ll, 
localized shearing is predicted with positive h. Available latent hardening data suggests 
that q falls within the range 0 < q < 1 and thus we expect, approximately, that 0.40 < 
< (h/a)crltlcai < 0.64. Now since h generally decreases and l1 increases, with strain near' 
the points of localization the largest (h/a)crlucal ratio, which occurs at (J = 40 degrees, 
can be considered optimum. Thus the bands are predicted to be rotated from the ·slip 
planes by several degrees away from the tensile axis. We examine the kinematical 
implications further. 

The difference in the velocity gradient across the band we recall has the form 

(3.10) LJ ( av ') _ ( av ) ( av ) _ ;. 
Tx - dx band- Tx matrix- gn 

4 Arch. Mech. Stos. nr 3/80 · 
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with (g1, g2) = (sinO, cosO) and (n1, n2 ) = ( -cosO, sinO). If we recognize that this jump 
involves essent_i.ally plastic deformations, we find, after setting L1D = l/2(gn+ng), that 

(3.11) L1(j,<l> -y<2 >) = A.cos20fcos2cf>. 

Similarly, from the jump .in material spin rate Lln = A./2(gn- ng), we find by forming 
both sides of Eq. (2.22) that 

(3.12)t LI!J1 2 = L1!Jt2 + A.f2cos20 fcos2cf> = A./2, 

or 

(3.12h LI!Jt2 -= A.f2[1-cos20fcos2cf>], 

or 

(3.12h n* L1D22 
Ll~~t2 = ~20 f1 _.cos20/cos2cp]. 

Sin 

Since elastic contributions to this difference in lattice spin rate are negligible (they are zero 
for the rigid plastic model), L1!Jt2 is interpreted as a finite spin of the lattice in the band 
relative to that outside. Again, taking cf> = 35 and () = 40 degrees as examples, we find 
that LI!Ji2 ~ 0.246 A. (radians) 14.1 ). (degrees). To gain some appreciation for the mag
nitude of rotation implied by this, let A.dt = 0.1 (dt is a time increment), i.e. let an ap
proximately 10 percent excess shear strain increment develop in the band; then A!Jf2 

dt ~ 1.4 i degrees. In other words, one-to-several degrees of rotation are implied by a 10-
to-30 percent strain increment. It is important to note that the sense of this spin with this 
particular model. geometry tends to increase the Schmid factor of the band by rotating 
the lattice within it away from the tensile axis (i.e. toward a 45 degree orientation which max
imizes the Schmid factor for this idealized geometry) relative to the lattice in the surround
ing parts of the crystal. Thus the kinematics of localized· shearing imply a "local geometrical 
softening" of the slip plane with which the shear band is nearly aligned. Rotations of 
this type have been experimentally documented as de~cribed below. 

4. Experimental results 

A series of tension and compression tests were carried out at room temperature on 
single crystals of Al-3 wt percent Cu aged to contain GPI and GPII zones, and ()' precip
itates. Most crystals were initially aligned for single slip on the (Ill) [TOI] (primary) 
slip system. A full report of the mechanics of band formation will be the subject of a forth
coming report. Here we briefly note that there were impottant qualitative differences 
in the way bands developed in the · various microstructures. Crystals with 8' precipitates 
developed shear bands, in tension, only after load maximum and small amounts of necking . 
as suggested by the model, and usually before the tensile axis reached the [001]-(lll] 
symmetry boundary. These bands were nearly aligned with the primary slip system._ For 
the underaged microstructures . containing GPI or GPII zones, however, the shear bands 
were proceeded by the formation of "coarse slip bands" which were nearly aligned with 
either the primary or conjugate system and, in tension, which occasionally appeared while 
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the load-extension curve was still rising. Furthermore, for all the microstructures localized 
flow was often observed to progress alternately on tpe primary and conjugate systems 
leading to a double wed~e [6] 'f~acture mode. Finally, we note that in all c~ses macroscopic 
localized shearing began while the crystals were strain.hardening - there was no evidence 
of either softening or fracture (i.e. void or microcrack initiation) preceding shear band 
formation. For crystals covering a · rather wide range of init\al orientations, and for all 
microstructures, the critical ratio (h/CI) wht(re macroscopic localized shearing set in was 
found to be sensibly constant with an average vatue equal to (h/a)crltlcat ~ 0.035. This com
pares favorably with the range 0.40 < (h/a)crltical < 0..064 predicted by our simple model. 
The "coarse slip bands" that formed in the zone-hardened crystals, and in which macro
scopic localized shearing set in, may be viewed as material imperfections that strain
harden at a lower rate than the surrounding crystal. 

5,000 

4,000 

z 
;- 3,000 
<t 
0 
_J 

2,000 

1,000 

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

NOMINAL STRAIN 
FIG. 4. Typical load-nominal strain curves for the three microstructures containing GPI, and GPII zones 
and ()' precipitates along with in-situ micrographs taken at the indicated stages of deformation. Note the 
load drop, apparently accompanying localized' shearing, in the GPI microstructure and that macroscopic 
localized shearing only occurs after the load maximum (and the onset of necking) in all the microstructures. 

Figure 4 shows typical load-extension curves together with corresponding surface 
micrographs taken in-situ at the indicated stages of deformation. As implied by our choice 
of examples, underaged crystals initially oriented for double slip displayed the largest 
load drops accompanying shear band formation, often .as large as 130 N. Loads drops 
were commonly, but not always, ·observed in all three microstructures. 

Micrographs of shear bands formed in tension aqd compression are shown in Fig!!. 5a 

4'" 
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and 5b, respectively. One of the particular noteworthy features of the band in Fig. 5a, 
common to all shear bands, is the difference in orientation between its material plane 
and the slip planes of the surrounding lattice. The trace of the primary slip plane is marked, 
approximately and as confirmed by x-ray diffraction, by the slip traces labelled S. The 

a 

b 
F1o. 5. Macroscopic shear bands in tension and compression specimens. Note in (a) how the slip traces 
intersect the shear band indicating a difference in orientation between the operative slip planes and the 

shear band. A full description is given in the text. 

angle between Sand the tensile axis, t, is about 30 degrees whereas between the material 
. plane of the band,, B~ and t it is about 40 degrees. As described in the next section, x-ray 
evidence shows that the lattice in the band is ·also rotated with respect to that of the sur
rounding crystal in the same way- in other words so that the traces of the primary slip 
plane in the band rotate from S toward B. Such rotation would lead to an increase in the 
Schmid factor, as described in Fig. 9, in the band thereby encouraging increased deforma
tion on its primary planes. 
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4.1. Lattice rotation 

A general feature of single crystal plasticity is that the load axis rotates along a great 
circle toward the [l01] or [111] pole with tensile or compressive· straining in fee crystals 
undergoing essentially single slip [10]. Our x-ray studies confirmed that this was indeed 
the case. To study non-uniform lattice rotations occurring within shear bands as indicated 

a c 

• (c) 

b 
FIG. 6. Laue back reflection diffraction patterns taken at points on the crystal's surface, relative to a macro

scopic shear band as indicated. One-half mm collimator was used. 
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by . Eq. (3..12), Laue back reflection diffraction patterns were taken from the shear band 
and surrounding .regions and analyzed stereographically. Figute 6 shows results that are 

. typical for all three microstructures. We note though, that crystals with a (J' microstructure 
were more difficult to analyze due to additional complex 'patterns of lattice rotation caused 
by necking. 
· As shown by Fig. 6, diffraction patterns taken 'from the shear band regions displayed 

severe asterisms characterized by unidirectional streaking with double intensity . maxima, 
whereas patterns taken outside the bands bad no noticeable asterism. Furthermore, it 
was found that the lattice on either side 'or the band had the same orientation and, as 
indicated ip. · Fig. 7, that one_ of the intensity peaks in the shear band pattern precisely 
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Fio. 7. Analysis of the diffraction patterns shown in Figure 6. The. streaks correspond to a lattice mis
orientation of the band with respect to the surrounding matrix produced by a ro1tation of approximately 
. 4 degrees about the [llO] axis. ' 

coincided with that of the matrix. For the particular example shown in Figs. 6 and 7, 
the remaining peak in the band was rotated counterclockwise approximately 4 degrees 
about the [llO] axis- this is the direction of intersection of the primary and conjugate 
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slip planes. Thisaxis and direction of rotation were identical for all crystals; the amount 
of rotation varied but generally appeared to increase with strain accumulation in the bands. 

The x-ray diffraction results were qualitatively supported by Berg-Barrett x-ray mic
roscopy [11] of the shear bands. Figure 8 is an example in which the orientation contrast [12] 

a 1mm 

b 
Fro. 8. Optical micrograph of a sectioned, electro-polished and etched crystal containing a macroscopic 
shear band. A Berg-Barrett topograph of [112] surface using [lll] reflection is shown in (b). Note the 
abrupt change in orientation contrast indicating rather discontinuous change in orientation across the 

·band's surface. 

of the band versus the surrounding crystal further demonstrates that the lattice miso
rientation can be quite abrupt and even appear discontinuous across the band. 

It is, of course, important to note that in all cases, in tension and compression, the 
observed rotatio~s increased the Schmid factor in the bands relative to the matrix -:- the 
bands become "geometrically soft". 

Figure 9 illustrates this further by displaying the poles of the tensile axis in the bands 
and surrounding crystal for four specimens. The initial orientation is denoted by x; the 
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101 

FIG. 9. Stereographic representation of the poles of tensile axes, before and after deformation, in various 
shear bands and in the surrounding matrix. As explained in the text, the poles of the bands (marked by 
closed dots) indicate, when compared with respect to orientation with those of the matrix (marked by 
open squares), that the bands are "geometrically soft". Open circles represent the poles of macroscopic 

· shear bands. 

orientations after deformation for the tensile axis in the band is marked by a closed dot 
and in the surrounding crystal (or matrix) by an open square. For the crystals labelled 
28, 31 and 42 the bands were nearly parallel to the primary plane - thus the positions 
of the bands' poles indicate a higher Schmid factor in the band than in the matrix. A few 
contours of the Schmid factor are indicated in the figure for the reader's convenience -
more detailed information is widely available (10]. Crystal 15 is particularly interesting 
in that there were two bands formed, nearly parallel to the primary and conjugate slip 
planes. The pole of the tensile axis in the "conjugate band" is marked by the closed triangle. 
Here again it may be seen that the Schmid factors are higher on the slip system to which 
the corresponding shear bands is nearly parallel - in this sense both bands become geo
metrically soft and encourage larger strains to develop. 

The stereogram of Fig. 9 also shows the poles of the material planes of the shear 
band- the rotation from the (111) poles of the primary slip plane is evident. 

Crystals tested in compression also showed severe s~reaking without any intensity 
maxima in diffraction patterns. But it was even mQre difficult to analyze the patterns 
precisely because of the complex asterism induced by small amounts of buckling that 
often occurred· very soon after localized shearing. However, we were able to determine 
that the streaks of the shear bands also corresponded to a [Ol 1] rotation axis. 
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S. Dislocation interactions 

We seek here a possible description for the observed local lattice rotation in terms. 
of dislocation interactions. We begin with the case of tension. 

As the tensile axis undergoes a general rotation toward the [lOl] pole, the conjugate 

s 

COl 

LilO 

~-----L--~------~~~IlO 

+ 

a 

s 

TENSION COMPRESSION 

b 

FIG. 10. Dislocation arrays, formed by interaction of primary and conjugate dislocations, that give rise, 
to the "local lattice rotations" shown in Fig. 6. 
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slip system becomes highly stressed . . When the tensile axis approaches the [001]-[l 11] 
boundary, interactions between primary and conjugate dislocations become frequent 
:and lead, as is well known, to the formation of Lomer-Cottrell (L-C) dislocations [13] -
the reaction can be written as 

(5.1) 
a - a a -2 [101]+ 2 [011] -4 T [110] ... _along [110]. 

The Burgers vectors of the L-C dislocations can He conveniently thought of as consisting 
.of two edge components, 

a a - a T [110] -4 6 [112] + T [Ill] 

or 

.(5.2h 
a a a -
2 [110] -4 6 [112]+ ~-[Ill] 

when they form oft the primary or conjugate slip planes, respectively. This is schematically 

illustrated, followiilgWILKEN"S' discussion [14] in Fig. 10. The edge components : [112] 

<>r ·: [112] form a Taylor lattice and do not cause any rotation whereas the edge disloca

tions ; [111] and ; [Ill], when arrayed on the primary or conJugate planes, form sub

boundaries and thus cause local lattice rotation. The rotation axis is the intersection 
between the primary and conjugate slip planes, [110], and the sense of rotation always 
tends to increase the Schmid factor between the layers of L-C dislocations. Both these 
results are in accord with our experimental findings. 

Similary we anticipate L-C dislocation formation in ~ompression as the load axis ap
·proaches the [001)-[011] boundary. On this boundary the load axis tends to rotate toward 

a - a - - a 
the [011] pole. Thus four slip systems, viz., (111) 2 [101], (111)T [110], (111)2 [101], 

- a a - - a 
:and (111) T [110] become highly stressed. The pairs (111) T [101], (111) T [110) and 

- a a -
(111) T [101], (111) T [110] can form L-C dislocations, 

a - a · a 
2 [101]+ 2 [110] -4 T [011] ... on the primary plane 

and 

{5.3h ~ [IlO]+ ~ [101] -4 ~ [011] ... on the critical plane 

http://rcin.org.pl



LAlTICE ROTATIONS AND LOCALIZED SHEARING IN SINGLE CRYSTALS 387 

The Burgers vector of the L-C dislocations can also be thought of as consisting of two 
edge components, viz., 

a a a -T [Oil] -+ T [111]+ 6 [211] 

(5.4) or 
a a - a T [O 11 J -+ 3 · [Ill 1 + 6 [211 1 

depending upon the active slip system. The rotation axis, in both cases, is found to be 
[Ol1] and again, the crystal 'lattice will be rotated locally so as to increase the Schmid 
factor in the region between the two layers of L-C dislocation boundaries. 

Figure 1 Ob provides a schematic view of the lattice rotations· in tension and com
pression. 

6. Discussion 

Although shear bands were always nearly aligned with one of the active slip systems, 
surface studies consistently showed that their material planes were rotated finite amounts 
with respect to the slip plane in the adjacent parts of the crystal. For a well-developed 
band these ro4Ltions were as much as.lO degrees and always with a sense that lines such 
as SS' in Fig. lOb, which originally were meant to be traces of the active slip planes in the 
bands, could- that is, in terms of the sense of rotation also represent the material plane 
of the band. Precise correlations are not possible due to uncertainties in the absolute 
1en~h of streaks in the Laue patterns, but available evidence suggests that the macro
scopic planes of the bands were usually further misaligned with the slip planes outside 
than were the band's siip planes. Lattice misorientations across shear bands rarely exceeded 
about 4 degrees. The orientation of the shear bands we note is in qualitative agreement 
with the model predictions highlighted in Fig. 3. 

As described . by PRicE and KELLY [3], shear bands are often accompanied by load 
drops - the magnitudes of which we found to be dependent on microstructltl'e and with 
the expected degree. of local geometrical softening. For. example, when the tensile axis 
is near the [001]-[111] boundary, a rotation of 3-4 degrees typically raises the Schmid 
factor in the band by about 0.01 above that in the matrix. This, using typical values for 
the flow stress and dimensions of these crystals, corresponds to a 90N load increment 
which, as previously noted, was typical in the tests on underaged crystals. 

The experiments just described suggest that the description of localized shearing in 
ductile single crystals put forth here is essentially correct. Our crystallograp~ic studies 
of localized shearing have shown that shear bands in Al-Cu crystals at least are char
acterized by finite lattice rotations. These rotations have the important mechanical signif
icate of rendering the bands geometrically softer than the surrounding crystal. The existence 
and nature of. these rotations are ·natural consequences of the kinematics of localized 
shearing and, as described above, are in es~ential agreement with the predictions of our 
model boundary value problem for crystalline deformation. · This work suggests that the 
kinematics of localized shearing in single crystals be studied experimentally for other 
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materials, incl1:1ding pure, single phase metals, and that an analysis of the mechanics of 
shear band formation, of the type introduced by Asaro for a model crystal geometry, 
be carried out using the actual crystallography for fee and bee crystals. The theoretical 
procedures for doing this have been described in Sects. 2 and 3. 
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