Arch. Mech., 32, 4, pp. 481-490, Warszawa 1980

The two-loop method for determination of dynamic stress intensity
factors from dynamic isochromatic crack-tip stress patterns

H.P. ROSSMANITH (VIENNA)

THE sTATIC three-parameter method as developed by Dally and Etheridge for the determination
of stress intensity factors from data pertaining to a pair of non-identical isochromatic crack-tip
fringe loops is generalized to the dynamic case. The influence of the transition from plane strain
to plane stress when selecting larger loops is discussed. Generalized stress intensity factor versus
fringe loop tilt angle relationships and various adjustments are presented, which include both
dynamic and higher order term corrections.

Statystyczna metodg trojparametrowa rozwinieta przez Dally’ego i Etheridge’a stuzaca do okres-
lania wspélczynnikéw intensywnosci naprezenia na podstawie danych dotyczacych pary nie-
identycznych petli izochrom w wierzcholku szczeliny uogélniono w niniejszej pracy na przypadek
dynamiczny. Przedyskutowano wplyw przejicia z plaskiego stanu odksztalcenia do plaskiego
stanu naprezenia przy wyborze coraz wigkszych petli. Przedstawiono zalezno$¢ miedzy uog6l-
nionym wspolczynnikiem intensywnosci naprezenia a katem nachylenia petli oraz oméwiono
rozme czlony korekcyjne wynikajace z efektéw dynamicznych i poprawek wyzszego rzedu.

Cratideckmii TpexmapameTpHdeckuii McTON, paseuThii Janm m Orepumxom u cuyrautmit
IuiA ompenencHMA Koad(HIMEHTOB MHTCHCHBHOCTH HaNpsyKeHHH Ha OCHOBE [IaHHBIX, Kaca-
JOIMXCA Mapbl HeMJIEHTHYHBIX - IreTJiell H30XpOM B BepllluHe Iieim, oGofmeH B HacToAmIed
paGote Ha quEAMEYeCKHi Ciryyasi. OGCcy)IeHO BIIMARNE NEPEXOAa U3 IIOCKOro AedOpMALMOH-
HOTO COCTOAHHMA B MJIOCKOE HANPSOYKEHHOE COCTOAHME, NpH BhIGOpe Bce GONBIUMX METHEi.
IlpencraBnieHa 3aBHCHMOCTD MeXKIy o06oOLIeHHBIM KO3(GHUIMEHTOM HHTEHCHBHOCTH HAIpA=
YKEHHMH M yTJIOM HAKJIOHA NICTIIH, 8 TalKe oOCY)XJ/IeHbl pasHble NONPABOYHEIC WICHBI, BbITE-
Karolliie ¥3 JUHAMHYECKHX NONPaBOK M MOMPABOK BEICIIETO MOPAAKa.

1. Introduction

A coMmoN procedure for the determination of the stress intensity factor X from photoelastic
data was introduced by IRwIN in 1958 [1]. In this method, the stress around a crack tip
can be characterized by two parameters, the intensity factor K, and a uniform stress
0ox, and may be evaluated from measurements of the apogee distance r,, of a fringe
loop and the fringe loop tilt angle 6,, (Fig. 1).

Since then, BRADLEY and KOBAYASHI [2] have modified Irwin’s method employing
a technique which involves measurements of r,, and @, on two different fringe loops.

ETHERIDGE et al. [3] introduced an additional parameter f into the analysis to account
for finite boundary effects. This two-term truncation of the Taylor series expansion of
the “Westergaard” stress function allows the use of larger isochromatic fringe loops which
exceed the range of applicability of the singular stress field analysis. A static two-loop
method has been developed by ETHERIDGE and DALLY [4] where a cubic equation for 8
was derived.
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All the preceding methods of analysis pertain to the static case. Recently, ROSSMANITH
and IRwIN [5] generalized the methods to the dynamic case. Here, a dynamic two-loop
method is developed and a simple cubic equation for f is presented.

Fi. 1. Characteristic geometry of a pair of isochromatic fringe loops at the crack tip.

2. Analysis

The dynamic stress field around a running opening mode crack can be represented
by [6]
o, = Ap{(2r} —r;—1)Re Z; —QRe Z, } + 0y,
0)) o, = Ap{—(1+r3)ReZ, +Q2ReZ,},
Ty = Ap2r, {ImZ,-1m Z, },
where Re and Im denote the real and imaginary parts of the complex two-term Wester-
gaard type stress function

@ 7, [l+ﬁ~%’~.

V2nrz,

The coefficient A may be determined from the boundary conditions and is given by

. e
@ ol o

where u is the shear modulus, r} = 1—(c/c))* (j = 1, 2), ¢ is the crack tip speed, ¢; and
c, are the longitudinal and transversal wave velocities, respectively, for plane waves in
an infinite medium and 2 = 4r,r,/(1+r3). Figure 2 provides some advantageous geo-
metrical relationships between z; and z:

z = x+iy =re®,

z; = x+iy, = g;€",

© oy = rY/T=(cle’sin® = ry},

(6) tanf, = rjtan0 (j = 1, 2).

@)
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FiG. 2. Crack tip coordinate systems employed in the stress function analysis.

Employing the relations (4)—(6), the real and imaginary parts of the stress functions
(2) take the form

K 1 e
(@) ReZ)z) = '/2; 5 cos— ( +p = y;).
1 0,
@®) InZ(z) = — —o (I—ﬂ—y )
] ,/ J
and upon substitution into Eqs. (1), the stresses take the form
A,uK : 1 : a*
P/ I
® o . = (A+r3)Ci1+8 yl)-r-.QC 1+8—92
-V mleli-e)-a i L))
Txy = ]/2:!:? 1 B—yi)-Ci\1-B—»i

where the abbreviations C/, C/ (j = 1, 2) are given in the Appendix and the parameter
e« involving oy, is given by
(10) a=T0sV20 .1/
K T
and controls the character of the biaxial stress field near the crack tip.
The maximum in-plane shear stress is

(11) (2731)2 = (J,—o‘x)2+ (27”)2-
From the fringe loop geometry, it follows that

. 0T
(12) 0 oo, =0,

where r,, is the apogee distance and 0,, is the associated fringe loop tilt angle.
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Substituting Egs. (9) into Eq. (11) and employing Eq. (12) gives an equation

(13) “0_*}/1_(_2@ = a"/:rﬂ = —(F+Gg)a-a,. = 1(9-:: Tmjs ﬂ)’

£l =7,

which holds for each fringe loop. Since oy, and KX do not depend on the orders of the
fringe loops, the transition from one loop to another 100p 7p; = rj, Omi = 0,,; changes
only the value of f. This is obvious since loops of different sizes are differently influenced
by the specimen boundaries. The radius r; in Eq. (13) is a reference radius. It is usually
chosen to equal the radius of the region of applicability of the near crack tip analysis.
The quantities F, G and g are given in the Appendix. By selecting two non-identical loops
(i = 1 and j = 2) and equating their associated expressions (13)

i
(14) ]/r_: {F2+G,8,} = F,+G,g,

a cubic equation for f may be derived

(15)  PP(Ae =MD +P*(Ra—Aio— 111 £+ A5677)
FB(—Aoé ' + A —AgE+ 4387+ 4 E—47 = 0,

where & = }/r,,l/r,,,z and the expressions for A, and Fj, G; and g; (j = 1, 2) are given
in the Appendix. The arbitrary reference radius r, has been selected to equal the square
root of r,; times r,;.

The solution of Eq. (15) yields three values for

(16) ﬁl = ﬁl(eml.: 6-3,!"‘1,?-2); (1= 1,2, 3)’

which are substituted into Eq. (13) to obtain three values of «. These three solution pairs
are then substituted into Eq. (11) to obtain three values of the stress intensity factor K.
It is obvious for physical reasons that only the solution for § which provides real-valued
positive K-values is of practical interest. The value of « may be negative (SEN-specimen,
0m < 90°) or positive (CT-specimen, 90° < 6,, < 110°; DCB-specimen, 110° < 0, < 145°).
The magnitude and sign of the f-term are controlled by the fracture test specimen geometry
and loading conditions, and change during crack propagation [5).

By combining Egs. (9), (11) and (13) one obtains

K 1
17 S R SRS OO S
( ) 2:;“]/ - H( r, ﬁ) GVI_FgZD

where H(0,, rn, p) is a function of 6,,, r,, and . The expressions for G and £ are given
in the Appendix.

The appropriate value of § from Eq. (16) is substituted into Eq. (17) to yield an ex-
pression for the stress intensity factor K in terms of the six parameters O, Fms Omi s Tma1>
Om2, and r,,. It is convenient to let two pairs of parameters coincide (€.8. O = Op1, r'm =
= rm;). This gives the fundamental relationship for the dynamic two-loop method.

%) K 21‘,,.)/23:1-,..,

where K, is a normalized stress intensity factor.

= H(enla Tmi1s Bmz: rliz)!
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Discussion

The B term is a time-dependent function for a propagating crack. The magnitude and
sign of B(r) depend primarily on the geometry of the fracture test specimen and the load
conditions, i.e. f depends on the dynamics of the test specimen. For almost all cases,
B is expected to increase monotonically when the crack propagates under ,,fixed grip”
conditions.

It should be noted that any given combination of two fringe loops of different order
will give a B-value somewhat different from that given by any other combination. Thus
the solution (16) as well as the K-value derived depend on the loops selected.

The following S-dependent K vs 8,, study covers a wide range of # values. The influence
of the # term on the K vs 0, curve is appreciable. Figures 3a and 3b show that the range
of the K, vs 0,, relationship is a function of the sign and magnitude of §, and that cor-
responding dynamic K values (Fig. 3b) are smaller than the static-values (Fig. 3a). For
the static two-parameter method (8 = 0), the range of validity of the K vs 0,, relationship
is limited by the two singularities at 0,, = 69.5° and 0,, = 148.5°. Increasing positive
(decreasing negative) f-values shift this range to the left (right) when the singularities
move towards lower (higher) 0,-angles. Figure 4 compares the adjustment or relative
error, Ejf, in percent which is introduced if one employs the static three-parameter method
rather than the dynamic three-parameter method for K-determination. The minimum
adjustment is 119 for 6,, = 105° in the case of a high speed running crack (¢ = 16000 /s).
The adjustment of relative error Ejf increases when the tilt angle becomes larger or smaller
than 6,, = 105°. This is the case for SEN-specimens, where the fringe loops lean forward
(6= < 90°) and for DCB specimens, where the loops tilt strongly backward (6, 2 130°).
Finally, Fig. 5 compares the adjustment or relative error E&3 in percent which is made
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if one employs the static two-parameter method where § = 0 rather than the dynamic
three-parameter method for the determination of K. Again, the minimum error due to
velocity effects (in the case f = 0, ¢ = 16000”/s) is about 11%; however, increasing
positive f-values enlarge this minimum error whereas decreasing negative f*-values in
the range 0 > f* > —04 (ﬁ* = ﬁri) lower the minimum error. The adjustment curves

for negative B*-values of magnitude around —0.4 are very complicated because of the
presence of the strong singularity in the «*— f#*-plane [5].
The fundamental relation (18) may be combined with the stress-law

Nf,
(19) n = o
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to yield a relation between K and the fringe order N:
Kh
Nﬂ; - H(eﬂ’ rn; ﬁ)’

where f, is the stress-optical coefficient in terms of fringe order and 4 is the specimen
thickness.

Equating a similar expression as Eq. (20) for two indenpendent loops yields

an N Hwors. ) _&g]/lm /™=
l+gz Tm2

(20)

N, H (Bm s Tmisf) N, G,

provided the value of K is independent of the loop size (K; = K3).

The values of the function H differ for different order fringe loops. This difference,
however, is very small whenever adjacent loops in the range of 90° < 0, < 120° are
selected. Thus, the parametric expression

(22)

enters the cubic equation (15). Because & can be evaluated from the measurements of
rmj and the fringe orders N;, & is a function of the ratio of the two loop orders and the
apogee distances ry;.

The value of K obtained depends on the fringe loop combination, i.e. a transition
from one fringe loop to another gives a different K-value. The influence of the finite specimen
boundaries on the loop shape and thus on the determination of K becomes larger for
larger loops. The use of large isochromatic lobes which are more influenced by the f-term
leads to an appreciable overestimation (underestimation) of the stress intensity factor
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Fi1G. 6. The state of stress around a crack tip and the relative position of isochromatic fringe loops.

when the f-term has a negative (positive) sign. When dealing with loop combinations,
where one loop is in the plane-strain region and the other loop extends into the plane-
stress region, unreliable K-values may be obtained. The region of uncertain stress state
is an annular zone around the crack tip whose mean radius is comparable to the plate
thickness. Large scale loops are associated with plane stress strain conditions (Fig. 6).
This effect can be accounted for by defining a coefficient  which characterizes the degree of
transition from one state of stress to the other:

K,

(23) X, = 1+%,

where K; and K, are associated with the large and small loop apogees, respectively.
Eqations (20), (2) and (23) may be combined to give

N, _
(24) E= N (1+8)(1+%).

Is should be noted that » changes with the relative size of the fringe loops, i.e. it is
a function of the différence of fringe loop orders N, —N,. The value of » increases when
N,—N, increases.

Appendix

The symbol ( )’ = d( )/00 is employed for the derivative with respect to the angle.
Using the relations (j = 1, 2),

(A1) ¥y =V 1=(cJc)sin?6,
. 1{c) sin20
L s T(T,) (1=(c/cy)*sin?6)°* *
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(A3) C{ = % sin %’— ,
(A9) Cl= -?-t; cos —62'1- "
(A.5) Di= "1% Cl= iilw?{ r_,cos L= ( :; )38“1 —24-511128},
(A.6) Di= %C{ = ;T;i—r_,sin——+—(~:—) 2005—-—5m28}

The functions F}, Gj, and g; = ('?j/f} have the form

r
F, = Fw-{-ﬁT""F,,,

T
GJ = FDJ‘+3_§'J"GIJ'!

(A.T) Fo_' = QC?}"(I"‘P%)C{; » GOJ = ZrI(C:J—C,zJ),
Fy= QC?JJ’%J—(I‘HJ lj)’f;)- Gy = 2’1(C31?§—C=11?§),
Foy = QD% —(1+r3) DY), Goy = 2r,(DY;—D3),

Fyy = QD434 C42y2592) — (1 +1D) (DLyd,+ Cii2pi,v1)),
Gy = 271 (D735 + C4 2y 24925 — Dy} —Chy 2v1,71))-

The coefficients of the cubic equation (15) are

A = TizFOLs As = Tszﬁol.’ A = Tuiru’

A = Tzzﬁou A = Tszﬁu- Ao = Tnﬁu,

Ay = T}.zi:'us Aq T;IFOZ! Au = Tzaﬁoz;

Ay = Tzzﬁn, Ag = Tzljroz, Ay = TSIF‘IZQ

(A.8)

il

where
I, = FOJF:OJ'{” GDJGOJx
(A.9) Tay = (FyFo;+Gy,Go) (i =1,2),
Tyy = FyFyy+GyGyy.

The expressions for G, F, G, F, and g which appear in Eq. (17) are identical to the
expressions (A-7) with the index j omitted.
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