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Growth and decay of weak discontinuities in a non-equilibrium flow
of an ideal dissociating gas

V.D. SHARMA (VARANASI)

THE GROWTH and decay properties of weak discontinuities in a non-ethbnum flow of an ideal
dissociating gas are investigated. The state ahead of the wave is considered to be spatially uni-
form and in a general state of disequilibrium. The singular surface theory is used to show that
weak discontinuities propagate through this system at the frozen sound speed and, if the degree
of disequilibrium is sufficient, are amplified by the non-equilibrium dissociation reaction. The
strength of attenuation induced by the wave-front curvature relative to the growth induced by
the non-equlibrium dissociation in the gas has been investigated.

Zbadano wlasnosci wzrostu i zaniku stabych nieciggloéci w nierbwnowagowym przeplywie
dysocjujacego gazu doskonalego. Stan gazu przed czolem fali zalozono jako przestrzennie jedno-
rodny i znajdujgcy si¢ w ogdlnym stanie mrbwnowam Zastosowano teori¢ powierzchni osob-
liwych dla wykazania, ze slabe niecigglosci rozchodzg sie w takim ukladzie z predkodcia zamro-
zonego diwigku i, jesli tylko stopien nierébwnowagi jest dostateczny, s one wzmacniane przez
nierdwnowagowg reakcjg dysocjacji. Zbadano intensywno$¢ tlumienia wyw krzywizng
czola fali oraz rozwoju nieciggloéci spowodowanego nieréwnowagows dysocjacig zachodzacy
w gazie,

Hccnenosasb! CBOJCTBA POCTa M 3aTyXaHMA Cabbix pPasphiBOB B HEPAaBHOBECHOM TEUCHHH
IRCCOLHEPYIOMEro Haecanbaoro rasa. Cocroasne rasa nepel GPOHTOM BOJHEI NPEANONATACTCHA
KaK NPOCTPAHCTBEHHO OJHOPOAHOC M HaXoAsleecd B OOLUEM : COCTOAHMH HEPaBHOBECHA.
ITpuMenena Teopusn 0cOGLIX MOBEPXHOCTEH /A MOKa3aHusA, WTO cnalble pasphIBbI pacmpo-
CTPaHAIOTCH B TAKOH CHCTEME CO CKOPOCTHI0 BMOPOMKEHHOTO 3BYKA H €CJIH TOJBKO CTEleHb
HEPAaBHOBECHS JOCTATOUHA, OHM YCHIHBRIOTCA HCPaBHOBECHOH peakumelt IMCCOLMALMM.
Hiccnenopana WHTEHCHBHOCTS 3aTYXAHHA, BLISBAHHAA KPHBH3HON ()POHTa BOJHBI, H pasBHUTHE
pasphiBa, BbIIBAHHOC HEPABHOBECHOH MMCCOLMAIHE!l MPOMCXOAAILEH B rase.

1. Introduction

THE PROPAGATION of weak discontinuities has been discussed by several researchers who
have applied the theory of singular surfaces to different material mediums. For example,
THoMAs [1] and ELCRAT [3] considered sonic waves in ideal fluids. CoLEMAN and GURTIN [4]
studied acceleration waves in ideal fluids with internal state variables. CHEN [5-6] treated
waves in elastic materials, while CoLEMAN and GURTIN [7] waves in materials with memory.
MCCARTHY [8] analysed second-order waves in relativistic gas dynamics and in other
publications [9, 10] he treated acceleration waves in highly nonlinear deformable solids-
Rarity (11}, CHU [12] (pp. 41—46) and CLARKE [13] discussed wave propagation in
relaxing or reacting fluids, using the method of characteristics; as they were concerned
with plane waves only, they did not investigate the effects of curvature on the growth
and decay properties of these waves. BECKER and SCHMITT [14] considered special cases
of cylindrical and spherical waves but they did not consider the case when the medium
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ahead of the wave is in a state of disequilibrium. The purpose of this paper is to study
these singular surfaces in the plane, cylindrical and spherically-symmetric motion of an
ideal dissociating gas due to LIGHTHILL [15] and FReeMAN [16], taking into account the
state ahead of the wave in disequilibrium. :

2. Basic equations

For the Lighthill - Freeman ideal dissociating gas, the reaction rate is given by [17]
(page 233)

2.1) — = = —(1—a)e” T +pa?[g} = —o,

where v = (CoT™)! is the characteristic time of the rate process. The quantities ¢, p, T,
e, g4 and 0 are respectively the time, density, temperature, degree of dissociation, charac-
teristic density and characteristic temperature for dissociation. The constants C, n,  and
o4 describe the rate and equilibrium properties of the gas.

The equations of continuity, momentum, energy and state for the ideal dissociating
gas under consideration are

de A du 0op
22 Ev‘t""Q(F-FT)"O, Q‘E+F—0,
@3) g% . j_f —0, p=o(l+®)RT, h=R{(4+0)T+6},

where Tf}' = % + u—:;—_, and the quantities p, u, h, and R denote respectively the pressure,

velocity, enthalpy and the gas constant. The flow variables u, p, ¢, «, etc. are functions
of the Eulerian coordinate r (the distance from a fixed origin) and the time 7. The coef-
ficient¥ = 0, 1, 2 refers to the case of a plane, cylindrical and spherical motion, respectively.

Equation (2.3), with the help of Egs. (2.1), (2.2),, (2.3); and (2.3); can be written as

dp Y N T
(2-4) _dt +gﬂ'! (__'ar + __'r ) = Qa_rdm,
1 0
v REEE: : — e e -
where a} = I'p/p is the square of the frozen sound speed and o = ITT=1) ( T ¢h 1))
with I = 4%

3. Wave as a singular surface

Let r = R(t) or, for brevity, 2(¢) denote the weak discontinuity surface, where R(?)
is the position of the wave front at any time ¢. The description of the surface X(¢) is such
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that its speed of propagation G = % is always positive. Here we shall restrict our at-

tention to the singular surface X(z) across which the flow variables u, p, o, @ and T are
essentially continuous but the discontinuities in their derivatives are permitted. We infer
that a,, o and o will behave similarly and that they will have subscript — 0 values at the
wave front. A subscript — 0 indicates a value in the medium just ahead of the wave front.
The unperturbed field ahead of the wave is assumed to be spatially uniform and at rest.
Thus from Egs. (2.1), (2.2), and (2.4) we have

= o\ _ 5 da\ _
3.1 @o = const, (W)o— 00d7,00we and (“ér"),, = wo.

The reaction rate w, will be zero if the chemical time becomes infinite or, more practically,
if the state ahead of the wave is one of chemical equilibrium.

In our case, the geometrical and kinematical conditions of first and second order
deduced by THOMAS [2] reduce to

o [lee 5]

9%z 64
@ 15]-2 [22] - —ea+y.

where the quantity z may represent any of the variables p, p, u, z and T. The square bracket
stands for the value of the quantity enclosed immediately behind the wave surface minus
its value just ahead of the wave surface. The quantities 4 and A are defined over the sin-

gular surface Z(f) and the é-time derivative of any quantity f is defined as L = g;f +

at
of
+G—a—r—.
on Z(¢) is identical with the ordinary derivative of the quantity. However, we shall choose
to retain this notation in order to emphasize the fact that we are considering the time
derivative of quantities which are only defined on the singular surface Z(z).
Taking jumps, across Z(¢), in Egs. (2.1), (2.2),, (2.2), and (2.4) and making use of

Eq. (3.1) and of the fact that u, = 0, we have

Thus the d-time derivative of any quantity which is considered to be expressed

(34 Ge =0, G{=004 0GA=2¢& GE&=pea}4,
where ¢ = [3“] {= [ ] A= [— nd & = [—] are the quantities defined on the
wave front Z(z).

Now, if G # 0, then & =0 and it follows from Egs. (3.4); and (3.4), that po A(G*—
—apf,) = 0, what suggests that either G = *+a,, or 4 =0, but 1 cannot vanish, for
if it does, then it follows from Egs. (3.4),—(3.4), that 1 = & = { = 0, which violates
the basic assumption about Z(¢). Hence, without any loss of generality, we assume

3.5 G=a,,
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4. Behaviour at the wave front

If we differentiate Egs. (2.2), and (2.4) with respect to r, take jumps across Z(¢) and
then make use of Eqs. (3.2) and (3.3), we get

8 | =
(4-1) '—a'—t’ = - a (E -goa!n 2),
4.2) % = a, (E—poay, B) —(To+1)g0ay, A=+2(Ao—”;;3)s,
where
e-|55] o= [F]
and
wocro Io-1) 6 eo(1+ao)lo05a5
(4.3) Ao = {(I‘Q"[" l)'{‘ﬂ(ro 6T { Po TO o 1} 2_:09‘

Inserting the term (& — o0y, 7) from Eq. (4.1) into Eq. (4.2), and using Egs. (3.4), and
(3.5), we get

P X Ty,+1)A 4
4.4) ‘&*IOS{(Qoa!o)zj'}'l'( o; ) =( o= 2‘:;)'

Integrating Eq. (4.4) between #; (where 1 = 1) and ¢ yields

1 ‘
Aay, Ja;)? exp{ f ( s fo ) dl}
4.5) ; UL

{l+——f (as,/las,) (I’°+l)exp{f (Ao 3R )dz}d‘} g

Equation (4.5) gives the variation of discontinuity A associated with Z(z) as it moves
into a non-equilibrium dissociating gas at rest. It is evident from Eq. (4.5) that the temporal
behaviour of the velocity gradient at the wave head will depend critically on the sign of 4,.

5. Discassion

Case I
If w, is zero, so that the medium ahead of the wave is one of uniform equilibrium,

2 2
Eq. (4.3) shows that Ao = — % {M} < 0. Then Eq. (4.5) reduces to

To0l«

(5.1) 3o A(Ro[R)"*exp(—|4olf) ,

{1 + 254D [y Ryexp(~ofirdr
°

where R = Ro+ag, t denotes the position of the wave front at any time ¢, R, being its
initial position at ¢ = 0. Here #; has been set equal to zero for convenience.
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Equation (5.1) shows thatif 4, > 0 (i.e an expanmon wave front),then A —» Qas ¢ — o
i.e. the wave decays and damps out ultimately. Also if 4; < 0 (i.e a compression wave
front) and |4;| < 4., where A, is a positive quantity given by
2|4,/(Ie+1) for » =0 (plane wave),
1
( |4olay, ) exp(—|4olRo/ay,)
7Ry

n for » =1 (cylindrical wave),
Lo+ erfc(l40|Ro/ay,)?

2a,,exp(—|4o[Ro/ay,)
(I'o+1)RoE (|4oRo[ay,)

for v = 2 (spherical wave),

(1]

where erfc(x) = -'—/27 f e~ dt, and Ey(x) = [ t~%e~* dt are the well-known integrals,
mox x

then 4 — 0 as # - oo, the wave damps out ultimately. But if A; <0 and |4;] > 4., then
there exists a finite time #, given by

1 24, }" _
b= TAq] '°g{' LT+n| or 7=
and
v 2
|2 -— Y R— =
! (Ro/RYexp(~|Aol)dt = s for w1 =1,2

such that |A| - co as # — 1, i.e. the wave terminates into a shock at an instant #,. Thus

we find that a compression wave steepens up into a shock after a finite time only if the

initial discontinuity associated with the wave is sufficiently strong. From the above expres-

sions of A, one can see that 3?;; | > 0, which means that the non-equilibriumdissociation
L]

has a stabilizing effect on the tendency of the wave surface to grow into a shock in the

sense that an increase in |4

aR.,
the curvature has a stabilizing effect in that an increase in the initial curvature causes an
increase in A,.

Case I

If wo # 0, and one consideres only short time interval, so that the quantitics ay , I
and 4, do not change appreciably between f; and ¢, it is evident that Eq. (4.5) can be
written in the approximate form
(5.2) i AI(ROIRO-'-afo ‘)’fzexp(Aot) 1

{1+i(r;ﬂ Il (RolRo+Efu?5"’ew(fE‘)d‘}
o -

where @, (Io+1) and A, indicate suitable mean values cver the interval ¢; to 1, and #;
has been set equal to zero for convenience.

An examination of Eq. (5.2) leads to the conclusion that if 4; < 0 and 4, > 0, then
there exists a finite time ¢ given by

3
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1 24,
" = Tlog{l'F' —__n_.} for vy = 0,
4 A(To+1)

and

.
. 2 B
J(Ro/&+a,ut) Pexp(o)t = s for =1,

such that |A] - co as ¢ - ¢, provided Eq. (5.2) remains valid over the required period.
Thus we find that in a state of disequilibrium a discontinuity associated with a compression
wave, no matter how small, always steepnes up into a shock after a finite time and the
stabilizing influence of the wave-front curvature is unable to overcome the tendency of
the wave surface to grow into a shock. On the other hand, if 4; > 0 and Zo > 0, then

using L’Hospital rule, it follows from Eq. (5.2) that for» = 0,1 0r 2, 1 — —(—1%4;01—) as
0

t — o0. Thus when the medium ahead of the wave is in a state of disequilibrium, it is in-
teresting to note that a discontinuity associated with an expansion wave tends towards
a fixed value which is independent of its initial value. Of course the condition # = oo means
that this fixed wave form is attained only after a long time, the approximation (5.2) may
not be valid up to this time, but the tendency towards a stable wave form is in no way
less important.
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