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Axisymmetric Stokes flow about a body made of intersection
of two spherical surfaces

S. WAKIYA (NIIGATA)

On THE BASIS of a bipolar coordinate solution due to Payne and Pell, the fine structum of Stokes
flows about a crescent-type body and a snowman-type body is oonmdemd Only for crescent-
type bodies a wake region can exist in the concavity, depending on the relative configuration
of inner and outer surfaces. The drag formula is also presented, which is applicable for general

bodies from a disk to two spheres in contact. ‘

Postugujac si¢ dwubiegunowym rozwigzaniem Payne’a i Pella rozwazono strukture przeplywu
Stokesa woké! profilu sierpowego i profilu «éniegowego balwanka». Slad aerodynamiczny
powsta¢ moze jedynic w wydraieniu przekroju sierpowego, w zaleznosci od wzglednej kon-
figuracji powierzchni zewngtrznej i wewngtrznej. Przedstawiono réwniez wzor na opor, ktory
stosowaé mozna dla dowolnych konfiguracji cial od tarczy az do dwéch stykajacych sie kul.

Tocny:xuBasch ABYXnOMOoCcHbIM peluckuem ITelina n Ienna, paccMoTpeHa CTPYKTYpa TeHeHHA
Crokca BOKpPYT CepnoBHmHOro mpoduna i mpodmna ,,cuenman Gaba'’. AspomnHammdecrai
CNEe MOXKET BOSHMKHYTh TONLKO B YryGJIeHHM CEPIIOBHJTHOTO CEHCHMA, B 3aBHCHMOCTH OT
OTHOCHTE/IBHOH KORGQUrypalpin BHeUIHeld 1 BHYTpeHHeH mnoBepxHocreii. [IpescraBnena
TO3ke OpMYNa JiNA CONPOTHBIIEHHA, KOTOPYIO MOYKHO NMDHMEHATH ANA MPOH3IBONBHBLIX KOH-
durypaipt Ten: or ABYX RnocKocTeil, BILIOTE IO ABYX Kacaiommxca chep.

1. Introduction

THERE have been some studies [1, 2] on axisymmetric Stokes flow about a spherical cap.
Among those, DORREPAAL et al. [2] have considered the fine structure of the flow and found
a wake region within the cap’s concavity. For the general lens-shaped body, a similar
feature of flow near its sharp rim has recently been shown by MicHAEL and O’NeiL [3].
However, as their treatment was only local and qualitative, details of the flow separation
seem to be still left to examine. Meanwhile, the two-sphere problem has been solved for
separated and touching spheres already. In particular, DAvis er al. [4] have studied the
behaviour of flow in the neighbourhood of the spheres.

In order to obtain the solution for axisymmetric Stokes flow about a spherical lens,
PAYNE and PeLL [5] introduced bipolar coordinates (£, ) in a plane of cylindrical coordi-
nates (x, r) through

x = hsinng, = hsh§,
where
s=ché, r=cosy and h=c/(s-1),

¢ being a constant. The body is formed by revolving two arcs = 7, and 1;(27 > 1, >
> 7, > 0) about the x-axis. The exterior to that is then given by 7, < < 5, +2x and
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0 < & < c0.Incase 7, < m, say, either for , < @ or 5, > =, bodies may be classified into
two types: type I h'aving convex and concave surfaces and type II with two surfaces both
convex. Payne and Pell’s solution thus allows us to deal with such bodies all together.

The body of type Ii is crescent-like, having a spherical cap as a limit. Further delalfs
for these bodies are to be examined, based on a modified form of their solution. For 7 =
= 9,—1, = x, we have a sphere. Hence for v > m, bodies of type II are snowman-like
and of particular interest from the view-point of the general two-sphere problem. When
the angle of intersection of two arcs is less than 146.3° there exists an infinite sequence
of ring vortexes surrounding the intersection line. The drag acting on the body will be
given in an explicit expression which makes the drag formula for two spheres complete,
together with the known equations for separated and touching spheres [6, 7].

The stream function due to Payne and Pell for a lens-shaped body in a uniform stream
Uis

Ur? (s—1)'12

an  p=Spe e f Fa, KE)da},

where 7, is a value of % such that ; < 7, < 7, and can generally be chosen 7, = (9, +
+1,)/2, as adopted all over the present study. K;(s) = dK,(s)/ds, where K,(s) = Piy_1.2(5),
the Legendre function of complex degree. The function F(x,7) was determined so as
to satisfy the no-slip; conditions = 0 and dy/dn = 0 on % = 7, and 7,. To do this,
_ the integral representation

(1.2) (=1)2 = [s—cos(n—1)] "2 = [ fla, DKi(s)de
0

was used. However, their solution is a lengthy expression and appears, unfortunately, to
have some algebraic errors. To give corrected expressions to the major equations involved
becomes part of our purpose.

2. Expression near the body of the solution

In order to analyse the flow behaviour near the body, it is suitable to write  in the
form

o
than
H(z)

@.1) p = Y 2Ur¥(s—'? G(a, n)K.i(s)da.
[1]

For 2z > % >1n,, say, G(«, %) can be given as follows:

22) G(a,7) = g,(z)sh(adn)sindn— f;ff: {ach(adn)sin An—sh(adn)cosdn},
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wherée _

(2.3) g:(z) = shzshozsinn,+kzsh(l —o)zsiny,,

(24)  g,(z) = shz(achozsin r;;—sh ozcosn,;)+kz {ach(l —o)zsiny, +sh(l—o)zcosy, },
(2.5) H(z) = sh?z2—k?z2, k = sin(Qa—17)/(2n—1),

and

Ay =n=n;, z=ala-1), o=7n/2r-7).

This expression for G(«, ) is the basis of our analyses which follow. For sufficiently small
values of 47, we asymptotically have .

1
26 6@, 1) = 28,015 Ang:)} (n+ 0.
Near & = o0, the intersection line of two arcs, we can have the representation
@7)  Kich®) = 2L (Ca, H+C(~a, B},
V=
where
(2.8) C(a, &) = Co(a, E)cthme““"“”,
29 Co(2, &) = I‘(3/2 m) ( ~ia, 1—ia, e"‘).

I being a Gamma function and Fa hypergeometrlc function. Using this expression for
K; (s), we alternatively have

12
(2.10) p= 2(%) Ur2(s—1t)'2 _f iCo(a, &) G(OE m) e =31Dédy

The above integral may be evaluated by a contour integration in the upper half of the
complex a-plane, where the respective roots u, and v, of shz+kz = 0 are all poles of
the integrand, exceptthat « = 0 and « = i.

In Ref. [8] the first five (in order of increasing imaginary part) of the eigenvalues have
been evaluated for various k values, in which generally Im(u,) < Im(»,). Referring to
those data, we can see immediately that when 2z — 7 is less than about 146.3°, Moffatt’s
angle, solutions to H(z) = 0 all have a non-zero real part and therefore for such bodies
of type II an infinite sequence of eddies must exist near the line of intersection of two
arcs. When 2x— 7 is greater than the above critical value and 2n—7 < =, thé bodies
are still snowman-like and at least the first root u, is purely imaginary. For 2n—7 > 7,
¢, and v, are purely imaginary at least. They are surveyed in Fig. 1.

The separation point £, of flow on the surface, if any, is found from (0%p/09?),=,, =
= 0, which yields the equation

- . . - £(2) -
(2.11) E(¢) = e,(8)sinn,+e, (&) ksing, = 2! H) athoanK (s)d«
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FiG. 1. The first roots x, and »; of shz+ kz = 0, which are purely imaginary when 27—7 > x.
For symmetrical bodies with 7, +%, = 2% (1, = =), the general expressions are greatly
simplified. In Eq. (2.1), =

@.12) GI(],"E;;’L —H,l(rx) [sh(aAq)sinAnshamsinfh

_1
a?+1

{ach(adn)sin An—sh(adn)cosAn}(achan, siny, +shan, cosm}] ,
whe;‘c 3
H,(a) = sh(2an,)+asin2y, .-

In case of contour integration, », does not appear. Thus, for £ large, E(§) is -approximated

with a small error of order exp(—2£), as
L

sing, _ I'(3/2—ip,[29,) pysh(p,/2) ]
2.13 E(8) ~ 11 ,-3¢2R, gludizn |
(2.13) © 4|/;‘. 7 € e I'(1—ip,[2,) chp,+k

for u, with a non-zero real part, where E(§) = 0 has an infinite number of roots.
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3. Crescent-type bodies

A crescent-type body is named for a body of type I. In what follows the case x > 5, >
> 7, > 0 is considered for 2z > 5 > 7n,. On the x-axis the velocity of flow is

Gy o= —(v.>a,o=(—,,—';%§e = 21RY(1- ) ‘,‘}(‘f)‘ G(, MK (Dda.
=0 Fy

For a small value of 4, this equation tends to

32) 0x ~ Y2U(1—1)"2 {e, (0)sin7, +e5(0) ksinn, } ()™,

Since k < 0 for bodies of type I, it is clear that a back current (v, < 0) opposite to the
direction of the main stream is possible to occur only for the crescent configuration where
712 < 7. When the back flow streams near the concave surface, a point 7, at which v, =0
must exist on the x-axis and a stream surface through this point separates the external
flow from a sort of wake region within the concavity. Some values of 7, obtained from

% [{d@} | ,
21'{.' - 02515'0
01=30°
180 1 1 I L
0 30 60 % 720 Y
01 or 0z (deg) .
150 L

Fic. 2. The change of 7, vs. 0, for #, = 150° and vs. 5; for n, = 30°

Table 1. Separation stream lines for crescent-type bodles.

vx(n,) =0 E¢) =0
71(deg) na2(deg) x[c N4(deg) xle s rje
30 30 3732 197.9 —-0.157 0
30 60 1.732 196.8 —0.148
30 20 1 193.1 —0.115 10.0 1
30 120 0.333 183.8 -—0.033 J
30 150 0.268 161.7 0.161 3.06 0.921
60 60 211.1 —0.278 <]
60 150 185.1 —0.045 4.16 0.922
20 90 219.1 —0.355 e}
20 120 213.5 -0.301
20 150 199.7 —0.174 6.44 0.997
90 170  0.087 “179.4 0.005 3.35 0.944
120 120 220.4 —0.368 00
120 150 208.0 —0.249 15.4 1
150 - 150 211.7 -0.284 0

13 Arch. Mech. Stosow. nr 5/80
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Eq. (3.1) are exemplified in Table 1 and Fig. 2. Since 7, is unique for a given configuration,
the fluid within the wake is in a ring motion as a whole.
Limit values of %, and 7, for which the separation begins to appear is given from

(3.3) E(0) = e,(0)sinn, +e,(0)ksinn, = 0,

the next term of order (4%)3 in v, then being positive. As 5, = 0,
o afa. 1)than .
(3.9 E@©)~ —n} | a?la’+ -] —— (shzcosn,+achzsinn,)da,
P 4] H(2)

80 1, = 1. > 7/2 in order that E(0) = 0 is satisfied for the plane with a spherical trough.
The value of 7, is estimated to be about 140.3°. In conclusion we can state that for 7, > n
no wake appears, for 7, < 7. the wake always exists in any value of 5, (< 7,) and for
7 > 7, > 7. the existence of wake depends still on the value of %, . Their functional re-
lation is shown in Fig. 3 on the curve E(0) = 0.

M (deg)
180

m -
Mefdeg
FiG. 3. The relation of n, and n; for which E(0) = 0.

For £ large, by eigenvalue expansion we have

4 1 . .

~sin(1 — o)y sinn, YCo [ L, oo) et 4 —ca';’n'_—k

x(sino|v, |siny, +sin(1 — a)|»,|sinn, } Co (2:11’:'1- , oo) e-llr.luzu-r)] .

For the crescent configuration p, and », are both purely imaginary and therefore E(§) = 0
has, if any, a unique solution. As & — o0, the first term, say E,, dominates in Eq. (3.5).
A careful examination reveals that E, > 0 always for bodies of type I. Hence, if the flow
separates, the point £, of separation is to be found on the surface 5, (if E; < 0, we would
have £, at the rim). In most situations, however, numerical calculation yields £ sufficiently

arge (Table 1).
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.The spherical cap, 7, = 7, = 7o, is a limit of the crescent-type body and for this
degenerated case all the integral expressions can be obtined in closed form. For instance,
on the x-axis Eq. (3.1) becomes

_ 1/2 [ ! .
3.6) v, =—-—U1-1)" W@ =137 {(4n—mo)—sin(dn—mno)}

sin? [(47 +17,)/2] 2 .
" (Wl‘ )“ Sialdn—no)] (A1) sin(dn = n0)}

+ ;m—[-(jg;%,—f] {(An+mno)+sin(dn+ -q,;)}] )

Since k = 0, Eq. (3.3) gives o = = and for 7, < n Eq. (2.11) is only satisfied by §, =
= co. Sufficiently near this point, the contour integration leads to

BN y~ 1—: V/ 2Ur?(s—1)"12e~ 2sin?(n,/2)sin?(47/2)

x {% sin(yo/2)sin(dn/2) - coswoﬁ)costéﬂﬂ)},

as shown by Dorrepaal et al.

4. Drag of the body

The force D acting on the body may be obtained from the formula due to Payne and
Pell, though they did not show that in general form. Since K,(1) = —(a?+1/4)/2, we
have

D. . [Ur? 1 [s+t cU 1
@ =) () - G g )
where

3 o +l)‘4

42 F, = f

0

[ {asin?n, (sh[2(1 — 0)z] + asin27),)

+ a’sin’qz(sh [202]— asin27,) + a(sh?(1 — 0)zsin 2y, —sh?ozsin27,)

do

-Zshzsho'zsh(l—a)z}shom-i-H(z)chm}H( SR

a2+1/4

43) F,= - f “BF {ash[a(m—n,)]sinne +ch[a(x— no)]cosno}
6

chm

The above is the result produced directly from Payne and Pell’s solution.. However,
the integral for F, can be obtained in closed form by a contour integration in the upper
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half of the complex a-plane, in which poles of the integrand are & = iand i(n+1/2), 1, 2,....
As a result,

3.1
8" sin(o/2)’

4.4 F, =
then we may have

4.5 D = 4nucU (in-i-Fl),

8

& being the coefficient of viscosity.
Application to the special case of spherical cap will serve as a test of validity for the
result, For the cap,

4.6) Fp= f m——[uslnqo {asinnoch[2a(z—7,)]
o
+c087o8h [2a(z — o)} +ch?[a(7 —1o)]] =5— ch,
The integral can be obtained in closed form, giving

D
@7 o

{(4—cosnq)sinmno+3(m—1no)} .

As a = c¢fsinn,, the radius of the base sphere, it is essentially the same as the drag form
given by CoLLINS [1], though Payne and Pell failed for a hemispherical cup.

Equation (4.5) is regarded as a generalization of the drag forms for two spheres which
have been known already. For comparison we shall consider the simpler case of equal
spheres. For this symmetrical body,

(48) F,= f ﬂ{(a + 1)shar+sh[a(2y, — 7))
0

— a(ash awcos 2y, —chaxsin2y,)} H_fig%lﬁ;

In the particular case of n, = =/2, this becomes

3 3
9 Fi =f(°‘ +—)( “Fﬂ)m="z‘"§”“’

and for n, = =,

~ 2
Fl=fc+l{4 da 4 3

(4.10) a*+1 ch?an  # 8
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Clearly these results produce the drag for a sphere and for a disk, respectively. For 5, — 0,
taking 7, « = f and ¢ = a sinn,, we have

D (., sh2B—p*
@1 dagial =of (I_ sh2B+28 “'ﬂ

This is just the form given by FAXeN [7] for a doublet of equal spheres (with radius a) in
contact. Sample cases are shown in Table 2,

Table 2. Drag coefficients for symmetrical bodles, ¢ = a sin #,.

1, (deg) D,f(ﬁapUc) D|(6nplUa) 11 (deg) D(6zpulc) D/(16uUc)
i
0 | (due to Faxen) 1.290 % 1 1.178
15 4.956 1.283 105 0.9237 1.088
30 2.517 1.258 120 0.8810 1.038
45 1.723 1.218 135 0.8599 1.013
1.342 1.162 150 0.8514 1.003
75 1.128 1.089 165 0.8491 1.000
1 1 180 0.8488 1
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