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Axisymmetric Stokes flow about a body made· of iotenectioo 
of two spherical ·surfaces 

S. WAKIY A (NIIGATA) 

ON 1111! BASIS of a-bipolar coordinate solution due to Payne and Pell, the fine structure of Stokes 
flows about a ereseent-type body and a snowman-type body is considered. Only for crescent­
type bodies a wake reJion can exist in the concavity, depending on the relative configuration 

. of inner and outer surfaces. The drag formula is also presented, which is applicable for general 
bodies from a disk to two spheres in contact. 

Poslup~c s~ dwubieaunowym ro~niem Payne'a i Pella rozwaiono strulc.tu~ przeplywu 
Stokesa wok6J profilu sierpowego i profilu «sniegowego balwanw>. Slad aerodynamiczny 
powstac moi:e jedynie w wy<lrcli.eniu przekroju sierpowego, w zaleZno5ci od wz~nej kon­
figuracji powierzchni zew~trznej i we~trznej. Przedstawiono rl>wnie'i wz6r na op6r, kt6ry 
stosowat moma dla dowolnych konfiguracji cial od tarczy ai do dw6ch stykaj-cych s~ kul. 

lloCJIY>KHBlUia. .xtByxD01110CHLIM peweiUleM lleiiua ll lleJIJia, pacCMoTpeua crpyi<Typa TelleHRJI 
CroKca BoKpyr cepuoBJW~oro DJX><I»WVI ll ~WVI ,CHC)I(BIUI 6a6a". A3po~ 
CJJeA, MO)I(eT BOSBHI<H}"''b TOJibKO B yrny6JieHilH cepiiOBJPniOl'O ceqeJIW[, B 3&BilCilMOCTH OT 
OTHOCBTeJIJdiOH JCOHclmrypaJ.UUl BHeUDieH ll BuyTpeHHeH DOBepXHOCTeit. llp~neua 
TO)I(e cl>opMyJia ,JVlJI CODpOTHBJleHRJI, KOTOPYIO l\\O)I(HO npllMCIDITI. Amr npoH3BOJU.HLIX KOH­
cllhrypamdt TeJI: OT ABYX l!JlOCKOCTeH' BDJIOTL JJ.O JJ,Byx KaC8lOIJ.UD[CJI etl»eP. 

1. lntrododioo 

THERE have been some studies [1, 2] on axisymmetric Stokes flow about a spherical cap. 
Among those, DoRREPAAL et al. (2] have considered the fine structure of the flow and found 
a wake region within the can's concavity. For the general lens-shaped body, a similar 
feature of flow near its sharp rim has recently been shown by MJCHAEL and O'NEIL (3]. 
However, as their treatment was only local and qualitative, details of the flow separation 
seem to be still left to examine. Meanwhile, the two-sphere problem has been solved for 
separated and touching spheres already. In particular, DAVIS et al. [4] have studied the 
behaviour of flow in the neighbourhood of the spheres. 

In order to obtain the solution for axisymmetric Stokes flow about a spherical lens, 
PAYNE and PELL [5) introduced bipolar coordinates (~, 'TJ) in a plane of cylindrical coordi­
nates (x, r) through 

x = hsin7J, r = hsh~, 
where 

s = chE, t-= cos7J and h = cf(s-t), 

c being a constant. The body is formed by revolving two arcs TJ = TJ1 and TJ2(m > TJ 2 > 
> 1]1 > 0) about the x-axis. The exterior to that is then given by 'Tf2 < 17 < rJ1 +2n and 
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810 S. WAKIYA 

0 ~ E < oo. In case 7J1 < n, say, either for 1}2 < nor 7J2 > n, bodies may be classified into 
two types: type I having convex and concave surfaces and type 11 with two surfaces both 
convex. Payne and Pell's solution thus allows us to deal with such bodies all together. 

The body of type I is crescent-like, having a spherical cap ~s a limit. Further details 
for these bodies are to be examined, based on a modified form of their solution. For -r = 
= 172-711 = n, we have a sphere. Hence for -r > n, bodies of type 11 are snowman-like 
and of particular interest from the view-point of the general two-sphere problem. When 
the angle of intersection of two arcs is less than 146.3°, there exists an infinite sequence 
of ring vortexes surrounding the intersection line. The drag acting on the body wiU be 
given in an explicit expression which makes the drag formula for two spheres complete, 
together with the known equations for separated and touching spheres [6, 7]. 

The stream function due to Payne and Pell for a lens-shaped body in a uniform stream 
Uis 

00 Url{ . . (s-t)1f2 12J .. ' } 
(1.1) 'P = 2 1- [s-cos(7J-7Jo)]lf2 -(s-t) I F(a, 1J)K«(s)da ; 

. 0 

where 7Jo is a value of 1J such that 7J1 < 1Jo < 1]2 and can generally be chosen 1Jo = (711 + 
+1]2)/2; as adopted all over the present study. ~(s) = dKa,(s)fds, where Ka,(s) = P1~:~._ 112 (s), 
the Legendre function of complex degree. The function F(a., 71) was determined so as 
to satisfy the no-slip; conditions 'P = 0 and 01JJ/01] = 0 on 1J = '1} 1 and 1]2 • To do this, 

. the integral representation 

(1.2) 
00 

(s-t)- 112 - [s-cos(7J-7Jo)]-112 = J f(a, 1J)K~(s)da 
0 

was used. However, their solution is a lengthy expression and appears, unfortunately, to 
have some algebraic errors. To give corrected expressions to the major equations involved 
becomes part of our purpose. 

2. Expression near the body of the solution 

In order to analyse the flow behaviour near the body, it is suitable to write 1p in the 
for~ ' 

00 

(2.1) .. 1- J than 'P = t' 2Ur2(s-t)
112 H(z) G(a, 1J)K~(s)da. 

0 

For 2n > 1J > fJo, say, G(rt, 7J) can be given as follows: 
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AxlsYMNETRIC STODS FLOW ABOUT A. JIODY 811 

where 

(2.3) g1 (z) = s~zshO'~sin 1}2 + kzsh(l- O')zsin 1}1 , 

(2.4) g2(z) = shz(achO'zsinTJ2 -shO'zcoSTJ2)+kz {ach(l-O')zsinTJ1 +sh(I-O')zcost'lt}, 

(2.5) H(z) = sh2z-k2z2 , k = sin(2n--r)/(2n--r), 

and 

L1TJ = TJ-TJ2 , z = a(2n--r), 0' = TJ 1 /(2n-T). 

This expression for G(a, TJ) is the basis of our analyses which follow. For sufficiently small 
values of L1TJ, we asymptotically have 

(2.6) G( fl, 1J) ~ fl { g 1 (z)- -} Ll1J g2(z)} (Ll1J)2 + O(Ll1J•). 

Near E = oo, the intersection line of two arcs, we can have the representation 

(2.7) 
; 2i 

Kcx(chE) = y'n {C(a, E)+C( -a, E)}, 

where 

(2.8) C(a, E)= C0 (a, E)cthwte<i«- 3/2~, 

(2.9) ( 
1!\ F(3/2-ia) F ( 3 3 . 1 . -2e) 

Co a,"·' = F(1-ia) 2' 2 -J<X, -J<X, e · ' 

r being a Gamma function and F a hypergeometric function. Using this expression for 
K~ (s), we alternatively have 

( )

1/2 00 . 

(2.10) 'P = 2 ; Ur2(s-t)112 J iC0 (a, E) G~~~~) e<1«- 312>eda. 
-oo 

The above integral may be evaluated by a contour integration in the upper half of the 
complex a-plane, where the respective roots 1-'n and "" of shz ± kz = 0 ·are all poles of 
the integrand, except that a = 0 and a = i. 

In Ref. [8] the first five (in order of increasing imaginary part) of the eigenvalues have 
been evaluated for various k values, in which generally Im{p,) < lm(P,). Referring to 
those data, we can see immediately that when 2n- -r is Jess than about 146.3°, Moffatt's 
angle, solutions to H(z) = 0 all have a non-zero real part and therefore for such bodies 
of type 11 an infinite sequence of eddies must exist near the line of intersectio~ of . two 
arcs. When 2n-T is greater than the above critical value and a-T < n, the bodies 
are still snowman-like and at least the first root 1-'t is purely imaginary. For a- -r > n, 
1-'1 and P1 are purely ima~nary at least. They are surveyed in Fig. 1. 

The separation point ·~* of flow on the surface, if any, ~ is found from (fJ2VJfaTJ 2),=,a = 
= 0, which yields the equation 

00 

(2.11) E(E) = e1 (~)sinTJ2 +e2("E)ksinTJ1 = 2 J ~~;~ athcxnK~(s)da = 0 . . 
0 
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FIG. 1. The first roots 1-'1 and v1 of shz± kz = 0, which ar~ purely imaginary when 2:-r- r > n. 

For symmetrical bodies with 1]1 +1]2 = .2n (1]0 = n); the general expressions are greatly 
simplified. In Eq. (2.1), -

(2.12) G(a, 1]) 1 [ h(-· A ) • A h . . 
H(z) = - H

1 
(a) s ru.J'f] StnL.J'f]S ar]I Sin 1]1 

- ,.• ~I {IX eh( iXLI'})SinLI'}-'Sh(iXLI'})CoSLI'J }(1XChiX7J1 sin 'it +sh IX7J 1 COS7J1)]. . 
where 

H1 (a) = sh(2a1J1)+ asin21J1 • · 

In case of contour integration, ,, does not appear. Thus, for ~ large, E(~) is approximated 
}Vith a s~all error of order exp(- 2~), as 

(2.13) . E(~)"" 4 yn __ sin1Jt e-3Ef2Re [F(3f2-_ip,tf21Jt) /JtSh(p.t/2) e'lltE/2'1t], 
1Ji · F(l-Jp,1 /2'f/t) ch,u1 +k 

for p,1 with a non-zero real part, where E(E) = . 0 has an infinite num~r of roots. 
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AxiSYMMETRIC STOICES FLOW ABOur A BODY 813 

3. Crescent-type bottles 

A crescent-type body is named for a body of type I. In what follows the case n > f/1 > 
> 1J1 > 0 is considered for 2n > fJ > fJz. On the x-axis the velocity of ftow is 

CIO 

(3.1) "• = - ( v,)taO = ( h~ ~ L. = 2'12 U(l- 1)112 J z;:; G( .. ' 1J)K~ (I )dor. 
0 

For a small val~e of L1TJ, this equation tends to 

(3.2) Vx "J y'2U(1- t)112 {e1 (O)sin fJ 2 + e2(0)ksinfJ1 }(L11J)2• 

Since k < 0 for bo<,ties of type I, it is clear that a back current (vx < 0) opposite to the 
direction of the main stream is possible to occur only for the crescent configuration where 
TJz. < n. When the back ftow streams near the concave surface, a point TJ* at which Vx = 0 
must exist on the x-axis and a stream surface through this point separates the external 
flow from a sort of wake region within the concavity. Some values of 11. obtained front 

q,ddeg) 

210 

'71 or Qz (deg) 
150 

Fro. 2. The change of 11. vs. 1J 1 for 7Jz = 150° and vs. 7]1 for 7]1 = 30°. 

Table 1. Seperadoa stream Unes ror cresceat-type bodies. 

1/t(deg) 1Jz(deg) xfc 1J.(deg) xfc ~. rfc 
30 30 3.732 197.9 -0.157 00 

30 60 1.732 196.8 -0.148 
30 90 1 193.1 -0.115 10.0 1 
30 120 0.333 183.8 -0.033 
30 150 0.268 161.7 0.161 3.06 0.921 
60 60 211.1 -0.278 00 

60 150 185.1 -0.045 4.16 0.922 
90 90 219.1 -0.355 00 

90 120 213.5 -0.301 
90 150 199.7 -0.174 6.44 0.991 
90 170 0.087 -179.4 0.005 3.35 0.944 

120 120 220.4 -0.368 00 

120 150 208.0 -0.249 15.4 1 
150 150 211.7 -0.284 00 

ll Arch. Mccb. Stolow. nr S/80 
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814 s. WAOYA 

Eq. (3.1) are exemplified in Table 1 and Fig. 2. Since fJ* is unique for a given configuration, 
the fluid within the wake js in a ring motion as a whole. · 

Limit values of 1]1 and 1]2 for which the separation begins to appear is given from 

(3.3) 

the next term of order (L11])3 in Vx then being positive. As '71 -+ 0, · 

' (3.4) 

so t'J2 = t'Jc > n/2 in order that E(O) = 0 is satisfied for the plane with a spherical trough. 
The value of 1Jc is estimated to be about 14Q.3°. In conclusion we can state that for 1}2 > n 
no wake appears, for 1J2 < 'le the wake always exists in any value of f1 1 ( < 1]2) and for 
n ~ f/2 > 'I'Jc the existence of wake depends still on the value of t'J 1 • Their functional re­
lation is shown in Fig. 3 on the curve E(O) = 0. 

FIG. 3. The relation of f'J1 and '12 for w&ich £(0) = 0. 

For E large, by eigenvalue expansion we have 

(3.5) E( z:) 4y'i -3fJ2[ l,utl {' I 1 . 
~~t "'~("'--)2 e I I k sma ,Ut SID'f}2 

~,_- T COS ,U1 + 

-sin(l-a)l,u !sin~ -r-e ( il,utl oo) e-fll'alf<2n-">+ lvtl 
1 '11 1' 0 2n-T' coslv11-k 

x{sinal•1 lsin7]2 +sin( I- a)l•1 lsin7J1}C0 (~':~\, oo) e-fi••ll<••-•>]. 
For the crescent configuration p.1 .and v1 are both purely imaginary and therefore E(E) = 0 
has, if any, a unique solution. As E -+ oo, the first term, say E1 , dominates in Eq. (3.5). 
A careful examination reveals that E1 > 0 always for bodies of type I. Hence, if the flow 
separates, the point E* C?f separation is to be found ~n the surface '72 (if E1 < 0, we would 
have E. at the rim). In most situations, however, numerical calculation yields E sufficiently 
arge (Tabl~ 1 ). 
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.AxlsYMMETRIC SroJCP.S FLOW ABOUT A BODY 81S 

The spherical cap, 'YJ2 = 'YJt = 'YJ0 , is a limit of the crescent-type body and for this 
degenerated case all the integral expressions can be obtined in closed form. For instance, 
on the x-axis Eq. (3.1) becomes 

(3.6) v, = ~;· U(l- 1)
1

'
2

[ sin[(A:-'Io)/2] {(A'I-'Io)-sin(A'I-'Io)) 

(
sin2 [(L1'YJ+'YJo)/2] ) 2 . 

x sin2 [(L1'YJ-'YJo)/2] ~ 1 - sin[(L11]-7]o)/2] {(L1'YJ-'YJo)+sm(.::1'YJ-1]o)} 

+ sin [(,1'1
2
+ 'lo)/2) {(A 'I+ 'I oH sin(A'I + '10')}]. 

Since k = 0, Eq. (3.3) gives 1]o = nand for 'YJo < n Eq. (2.11) is only satisfied by~. = 
= oo. ~ufficiently near this point, the contour integration leads to 

(3.7) 

x {-} sin( 'lo/2)sin(LI'I/2)- cos( 'lo/2)cos(LI'I/2)}, 

as shown by Dorrepaal et al. 

4. Drag of tbe body 

The force D acting on the body may be obtained from the formula due to Payne and 
Pell, though they did not show that"in general form. Since K~(l) = - {rx.2 + 1/4)/2, we 
have 

(4.1) D . . ( Ur
2 

) 1 (s+t)
111 

cU { 1 } -8- = hm -2- -'P 2 - = -2 . ( /2) +(Ft +F2) ' np, E•O r s- t sm 1Jo 
71=2n 

where 

Cl() 

(4.2) F1 = J · cx~:}i4 [ {cx2sin2 7]1 (sh[2(1- u)z] + cuin27]2 ) 

0 

(4.3) 

+ cx2sin27Jish [2az]- ex sin 27]t} + cx(sh2(l- u)zsin27]1 ...;..sh
2 azsin21J2 ) 

drx. 
-2shzshazsh(1-u)z }shcxn+H(z)chcxn] H(z)ch«n, 

The above is the r~sult produced directly from Payne and Pell's solution.: However, 
the integral for F2 can be obtained in closed form by a contour integration in_ the_ :upper 
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half of the complex a:-plane, in which poles of the integrand are oc = i and i(n + l/2), l , 2, .... 
As a result, 

(4.4) 
3 l 

F 2 = g-n- sin(7J
0
/2)' 

then we may have 

(4.5) D = 4"pcU ( : "+F1), 

p being the coefficient of viscosity. 
Application to the special case of spherical cap will serve as a test of validity for tho 

result. For the cap, 

10 

(4.6) Fe= J oc;::i4 
(asin7J0 {«sin7J0 ch[2a(n-7J0 )] 

0 

The integral can be obtained in closed form, giving .., 

(4.7) DU = ~ {(4-cOS7J0)sin7J0 +3(n-7Jo)}. 
p Sin 7Jo 

As a = c/sin 'lo; the radius of the base sphere, it is essentially the same as the drag form 
given by CoLLu~s [l], though Payne and Pell failed for a hemispherical cup. 

Equation (4.5) is regarded as a generalization of the drag forms for two spheres which 
have been known already. For comparison we shall consider the simpler case of equal 
spheres. For this symmetrical body, 

In the particular case of f/ 1 = n/2, this becomes 

(4.9) F1 = J
00

(«2 +_!._)(2--
1 )~ = 2.-~n 4 «2 + l eh an 2 8 ' 

0 . 

and for 711 = n, 

(4.10) 
da 4 3 ------·n ch2an- n 8 · 
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Clearly these results produce the drag for a sphere and for a disk, respectively. For YJ 1 .--. 0, 
taking YJ 1 IX= P and c = a sinYJ 1 , we have 

4n~au = j (1- 2 ::~~~~; )ap. 
0 

(4.11) 

This is just the form given by FAXEN [7] for a doublet of equal spheres (with radius a) in 
contact. Sample cases are shown in Table 2. 

Table l. Drag coeftieients for symmetrical bodies, c =a sin 'I•· 

~~<d~:~ ____ I_DJ(6~p~~--- ~---~/(6npU~-- ~- 7JI(deg!_---'-_D(_6_n_~'_u_c> _ _;___D_I<_16_~-t_u_c_>_ 
0 

15 
30 
45 
60 
75 
90 
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