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Stability of a wall jet

Notations

M. F. SCIBILIA and D. DUROX (MEUDON)

EXPERIMENTAL data were obtained for a plane laminar wall jet at very low velocities (Re > 90).
The velocity profiles gave good results as compared to the theoretical work of M. B. GLAUBRT
[2]. A calculation of the stability of a two-dimensional wall jet seemed necessary. There is
a previous work by CHUN and ScuwaRz [3] giving very few details on the method they used.
We have applied the Galerkin method to this problem. It was our aim to demonstrate that the
stability curve of a wall jet is easily obtained; one limit of Glauert’s curve is taken as infinite.
By decomposms lauert’s curve into two appropriate functions, no difficulty is encountered
in joining the two. The perturbation function is chosen in order to give simple integrations.
The accuracy was sufficient to determine the instability critical point and we find, for a given
profile , a critical Reynolds number slightly higher than the one obtained by Chun and Schwarz
(where Rej, = 57). An experimental determination of the maximum amplification point (Rej =
= 300 for a wave number o = 1.85) would be suitable.

Otrzymano dane eksperymentalne dotyczace plaskiego strumienia przysciennego przy bardzo
mah‘ch predkodciach (Re > 90). Otrzymane profile predkosci zgadzaja si¢ dobrze z teoretycz-
nymi wynikami GLAUERTA [2]. Stwierdzono konieczno$é anallzy statecznosci dwuwymiarowego
strumienia przysciennego. Istnieje wcze$niejsza praca CHUNA i SCHWARTZA [3], w ktorej podano
bardzo niewiele szczegdlow dotyczacych zastosowanej przez nich metody. Do zagadnienia za-
stosowali§my metode Galerkina. Naszym celem bylo wykazanie, ze krzywa statecznodci stru-
mienia przyiciennego mozna latwo otrzymac; jedna z granic krzywej Glauerta przyjeto za
nieskoficzona. Przy rozkladzie jej na dwie odpowiednie krzywe nie napotyka si¢ trudnodci
z ich polaczeniem. Wybrano funkeje¢ perturbacyjna w ten sposéb, by otrzymaé proste | calkowa—
nie. Dokladnos¢ byla dostateczna do okreslenia krytycznego punktu niestatecznodci i, dla da-
nego prol'nlu, krytyczna liczba Reynoldsa okazala si¢ nieco wyzsza niz warto$¢ otrzymana przez
Chuna i Schwartza (gdzie Rej, = 57). Byloby pozadane okreélenie doswiadczalne punktu
maksymalnego wzmocnienia (Rei = 300 dla liczby falowej @ = 1.85).

TlonyueHs! 9KCIEPHMEHTANBHBIC JAHHBIC, KacaiolMecd IUIOCKOTO IOrPAHHTHOIO TOTOKR
TIpH OueHE Manbix ckopoctax (Re = 90). [Tonyuennsle npodHH CKOPOCTH XOPOLIO COBIAJAIOT
c TeopeTHuecKHMu pesyibratamu [nayapra [2]. KoxcratHpoBama Heo6xomumocTh aHaM3a
YCTOHUMBOCTH ABYMEPHOrO NOrpaHHyHOro motoka. CymiectByer Gonee pammsa pabGora Xyxa
u llIsapua [3], B KaTopoii MpUBEEHO OYEHb HEMHOrO MOAPOGHOCTElH, KACAIOMIMXCA NPHMEHA-
emoro umy merona. B mpoGrneme npumenen meron anepkuna. Hamtelt nensio ABasAnocs noka-
33HKE, YTO KPHBYIO YCTONUMBOCTH NOTPAHMYHOrO IOTOKA MOMKHO JIETKO HOMYUMTH; OJHA H3
rpanuly Kpusoi [nayspra mpumara GecxoHeuwoit. Ilpu pasnocenuu ee Ha JBe COOTBeTc-
TBYIOLUME KPHBBIE HE BCTpeyaeTcA TpyAHOCTel ¢ ux coeguuenHem. IleprypGammonnas dym-
KuuA mofobpana TakuM o0pa3oMm, YToOBI MOJNIYUMTH MPOCTOE MHTerpHpoBaHue. TounocTs
Obla MOCTATOMHOH [UIA ONMpefeNIeHAA KPHTHYECKOH TOUKH HEYCTOWYMBOCTH H KpPHTH-
yeckoe uncio Pelinomsaca, Ans AaHHOrO MpoduIA, OKA3aI0Ch HEMHOTO Gonblle YeM 3HAUEHUE
nonyuernoe Xyuom 1 UIsapuom (rme Rej, = 57). ITonesnbim 6buto GBI 3KCIEPHMEHTATBEHOE
onpefieNieHe TOUKY MaKcumansHoro ycwreHusa (Rey = 300, ana soymoBoro wmcna a = 1,85).

Let_ters with the tilde "~ “ indicate dimensional variables.

#,7 coordinates measured along and normal to surface,
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U horizontal velocity component,
Uwsxy maximum velocity in the jet at any section,
O
- U-'I i

u,v horizontal and vertical components of the disturbance velocity,

xb
constants,
transformed velocity component,

h =VF,
spreading of the jet where U=

n = B2~ transformed coordinate,
b

¥

Ve
2 ]
maximum limiting value of y for U, = 0,
value of y for U maximum,
kinematic viscosity,
matrix order,
_ @
i
wave number,
complex wave velocity.
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1. Introduction -

IN A PrREVIOUS work [1] we compared our low velocity experimental results with the the-
oretical work of M. B. GLAUERT [2]. As a continuation, we calculate here the stability
conditions of a plane wall jet.

A previous calculation by CHUN and ScuwaARrz [3] offers very few details on the method
employed. Galerkin’s method used quite successfully for similar problems seemed most
appropriate.

This work is theoretical; an experimental verification will follow.

2. Previous works

The considered plane wall jet is shown in Fig. 1. The distance X, is the length necessary
to establish the jet on a plane, this distance is equal to 10 H where H is the nozzle height.
M. B. Glauert has studied theoretically the velocity profiles of both plane and radial
laminar wall jets. Starting from the Navier-Stokes equations and with a stream function ¥,
he admits the existence of a self-preserving relation which depends only on the variable

y
n=B5
U = A%f'(n),

where U is the horizontal velocity component following the plate axis.
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Pane wall jet

0 2.

x:]

Xo(=107): length necessary fo establish the jet
Fic. 1.

With the boundary and initial conditions he obtains the velocity 'proﬁles:
U = A" f'(n)
a, b, A, B are constants.
He obtains the following equation:

2 s
N = Log'/—__h Fakd - }/3Arctg(—zﬁ :

. 1-h
where h? = f; hh' = f'[2
Glauert’s curve is shown in Fig. 2.
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3. Experimental work

We compared Glauert’s theoretical results to the experimental data obtained in a wind
tunnel with a continuous but low flow rate plane jet (Fig. 2). The velocity profiles were
measured with a hot wire anemometer. We started from a relatively low density (Re = 94)
and continued up to Re = 550. Our results agree well with the theoretical results of Glauert,
especially for the region near the wall.

4. Application of Galerkin’s method
4.1, Selected laminar profiles

Starting from Glauert’s results, we apply Galerkin’s method to the Orr-Sommerfeld
equation in order to determine the stability criteria. This equation requires U(y) (we
suppose an undimensional flow) to be known explicitly; this is not the case for Glauert’s
equation 7 = f(h). We were thus required to approximate the theoretical curve of the
velocity profiles by another simple curve () .We were forced to cut the curve (Fig. 2)
into two parts: the first part U, is homologous to a third degree profile of a laminar
boundary layer (from zero to the peak of the curve). For the second part U,, two dif-
ferent profiles are used in,order to approach Glauert’s curve with a maximum of precision.

We obtain two profiles:

profile 1 with U, = ay+by® = 2.708y—2.942y°,

(Fig. 3) U, = c+de™ +fe= = 89.79¢~3687 —100.71e~40487,
Uk
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profile 2 with U, = 2.708y—2.942y%,
(Fig. 4) U, = —0.054+10.4¢~2-767 —25.6¢~5-5%7,

This last profile agrees best with our experimental results.
We chose two profiles to study the influence of the upper boundary of the jet.

4.2. On the Sommerfeld equation
For a plane wall jet, from the Navier-Stokes equations and the continmty equation

using the hypothesns U = U(y), we obtain

v 6;0 ov B’U 1 (v)

T 2|~ @x 0y’ Rej ax’ + o7 6y ’
v is the vertical component of the perturbaﬁon velocity. The stream function is given by
Tollmien Schlichting,

P(x,y) = p(y)e*=-,
where

u=—5; and 0=I-—3';‘-:

« is the wave number, @(y) is the perturbation function, c is the complex wave velocity,
cis decomposed into ¢, +ic;, ¢, is the wave velocity, ac; is the attenuation or amplification
of the wave with time.

10 Arch. Mech. Stos. nc 5/30
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The Orr-Sommerfeld equation is
(U=c) (D*~a?) (¢(»))-D?U - g(y) =

The boundary conditions are
U=0, u=v=0, 90 =0, ¢@©) =0 a y=0,
U=0, u=9v=0, ¢(0)=0, ¢(@0)=0 at y-— 0.

1
iaReg

(D*—a?)(¢(»)).

4.3. The Galerkin method

The function ¢(y) is approximated by a series 5, a,;, where @, are given functions
k=1

of y. From Sommerfeld’s equation, we substitute
F = (D*—o?*)?—iaRej [(U—-c) (D*—a?)—-D?*U].

It is not possible to assure that & = 0 by replacing ¢ by its approximation. However, we
can resolve the system

j%(ga.%) dy = 0.

We obtain » equations with » unknowns a,, a, ... a,. & is a linear opcrdtor.
We can write

D of @ (g)dy = 0,

k=1
F =%+ciH,
with
% = (D?-«?)?—iaRes[U(D*—a?)—D?U],
and '
X = iaRe;(D?—a?).
The system becomes

Za. [f wﬁ(%)dny w#’(w.)]dy = 0.
0 ~ (1]

k=1
We named [4,] and [B,] matrices such that

[Aul = [ o@(@)dy,
0

Bul = - [ g (@)dy.
0

The system has the following simplified form:

n

D) a(Au—cBy) = 0.

ke]
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This system has a non-zero solution only if
det([Ay]—=c[Bu)) =0 if [By)#0
we can write
det([Au]* [Bul™'—c(I)) = 0.

This equation determines the eigenvalues of the matrix product [A4] [Bu]~!. At least,
n complex values satisfying this condition exist. If ¢; is negative, the flow is stable; if
one of these values is positive, the flow is unstable. If one of these values is zero while
all the others are negative, the flow has a neutral stability.

Galerkin’s method is quite accurate, convergence depends on the choice of the per-
turbation functions ¢ .

The term A, is split into 5 parts:

Ay = Iy+iaRes[—IH— I+ 15 +1j)
with
o0 o0

= [ a0~ (@)dy = [ p(D*p—202D2g,+a*p)dy,
0 1]

L= [ aU,0)(D*p— a*g)dy,
0
By= f i U2(y) (D*gu— o’pi)dy,

5= [ aD*(U,())pdy,

Bi= | @D*(U.()pdy.

The term B, is
Bﬂ = faRej' l:j
with
15 = [ p(D*q—a2q)dy,
1]

s = value of y for the peak value of U.

5. Results

Calculations are performed on a IBM 360/168 computer using double precision. The
object consists in observing the variation of the imaginary parts of the eigenvalues of
the product [4]). [Bi]~* as a function of the Reynolds number Re5 evolution for a given a.
This method permits us to detect rapidly the negative to positive transition of an imaginary

10*
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part, and to locate the curve «, Rej;, corresponding to ¢; = 0, in other words, the stability
curve. .

a) We first choose the function ¢i(y) = y%e~*. It satisfies the boundary condition
and, when associated with the functions of the two curve parts similar to the one of Glauert,
permits easy integration.
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To verify our program, we tested the stability of a plane front by feeding appropriate
parameters. This profile is always stable (@ = 0,0 =0,c=1,d=0,f=0,s = 0). The
imaginary parts of the eigenvalues of [4y). [Bi,'] are always negative and the real parts
are equal to 1. This check was done for « = 1, Rez = 10 and 10 000 for square matrices
up to the 9th order; errors appear for higher order approximations. A convergence test
on the stability for profile one Fig. 5 was then made; this figure shows the Reynolds number
as a function of the matrix order for a given «. For « = 1, the curve seems to converge
correctly up to order 10; for « = 2, convergence is not good for n = 10. We show the
stability curves of the two velocity profiles chosen up to order 9 as well as the curve of
Chun and Schwarz (Fig. 6). The critical Reynolds number for the first profile is 73.

b) We tried to find an orthogonal function for ¢,(y) to obtain better results. The La-
guerre polynomials do not lead towards well-conditioned matrices and thus we opt for
a function with orthogonal derivatives,

. 5 km
70) = sin? =2,

m corresponds to the maximum value of y for which U(y) is zero (Fig. 2). So, instead
of integrating from s to co, we integrate from s to m. This function, though it does not
rigorously satisfy the boundary conditions, offers several advantages and thus calculations
are simplified.

For profile 1 (Fig. 3), we consider by extrapolating Glauert’s curve that U(y) = 0
for m between 1.9 and 2.1. Thus the influence of the three limits m = 1.9; m = 2 and
m = 2.1 is investigated. '

For profile 2 (Fig. 4) the limit is m = 1.9 since U(y) = 0 for this value of y.

For m = 2.1 as a maximum value of y, calculation of the percentage of U(y) for y = 2.1
in connection with the maximum value of U(y) for y = 0.554 (peak) is 1.2%, that is sat-
isfactory.

* The test on the stability of a plane front is excellent; for a matrix of order 20 we obtain
a real part equal to 1. The convergence test for the profile 1 gives excellent results. In

Resl The convergence fest
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Fig. 7, Rejy is plotted versus the matrix order for m = 1.9 and « = 1.2. We can see the
great advantage of the new choice for ¢(y). The curves of neutral stability (c; = 0) give
a critical Reynolds number of Rez, = 77 for « = 1.3 for the profile 1; for the profile 2
Rej. = 73 for a = 1.32 for n = 17. These two profiles represent Glauert's profile well
and give results close to each other (Fig. 8).

Profile 1~ m=2.1 «s-see-- Reg.=62 and a=135
Profile1 m=2 -—-—- Reg =68 and o =135
Profile2 m=19 Reg, =73 and o=132
«f Profile1 m=19 ———— Reg =77 and a=130
2 -
1
I I | 1 —
4 50 100 150 200 Rej

The difference between our results and the previous ones (Chun and Schwarz) and
(Yutaka Tsuji) can be explained as follows: Chung and Schwarz give (Rej). = 57 for
o = 1.18. They use a different mathematical method and the velocity profile chosen
for U is unknown.

Yutaka Tsusn and Yoshinobu MoORIKAWA [4] obtain some differences because the
chosen profile for U,,, is probably experimental and deviates appreciably from Glauert's
curve (second part of the curve).

We still have to chose between profiles one and two. A comparison with our previous
experimental results and with thoose of BAJURA[S] leads us to choose profile 2. This profile
gives critical values of & = 1.32 for Rez, = 73.

2kmy
m

The function ¢; = sin is kept.

6. Conclusion

We set out to prove that it is possible without much difficulty to determine the stability
curve of a plane wall jet by Galerkin’s method. The decomposition of Glauert's curve
into 2 parts and the matching at the top was no problem mathematically. After inital
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calculation with a perturbation function satisfying perfectly the boundary conditions
but with mediocre results concerning the convergence, a second function whose derivatives
are orthogonal was used most successfully.

We can see that the influence of m is very important. We may conclude that it is necessary

: : ol )
to limit the effect of mathematic perturbation ¢i(y) = sin® %yat the main part of the

jet.
The precision of our results is sufficient for the critical instability values and we opt
for profile 2 because of experimental considerations: Rez, = 73 for ., = 1.32 and ¢, =

=sin2EE-}—'.
m

An experimental study which is in progress will follow this theoretical study.
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