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Navier-Stoles analysis of the pumping plate · Oow fteld' 

B. GAMPERT and T. ABDELHAFEZ (ESSEN) 

THE PWW field past a pumping plate is ·investipted for the case· when the plaleis'mcmng·::.with 
the velocity u. in a ftuid initially at rest and for cases when the velocity of the free stream is 
different from zero. First similarity solutions of the boundary layer equation are given. Then 
for various u00- and u_.. values the full time-dependent Navier-Stokes equations are integrated 
numerically by applying an explicit finite difference scheme. Differences between Navier-Stokes 
and boundary-layer-theory local skin friction results become smaller with increasing x-values 
and, about one third of the plate length away from the leading edae, the difference approaches 
:la'O. Largest differences are of about 1 S%. The Navier-Stokes analysis confirms the result 
obtained from the boundary layer theory which states that for lu00 -u .. l fixed, the skin friction 
coefficient is larger for Uw > 1100 than for llw < ua:J. 1be difference between the two crvalues 
reduces for smaller values of luoo -u .. l being of about 3()1'/o for luoo- u .. l = 1 and being smaDer 
than 1% for luoo-uwl = 0.1. 

Rozwai:a s~ pole przeplywu wokOI plyty na~j~j w przypadku, gdy plyta porusza s~ 
z p~oSci' ""' w plynie o zerowej pr~ko5ci poc14tkowej oraz w przypadkach, gdy p~~ 
strumienia swobodnego jest r6ina od zera. Podano pierwsze ro~a podobielistwa dJa 
r6wnania warstwy przykiennej. NBSU;pnie scalkowano numerycznie pelne .(zawieraj~ czlon 
czasowy) r6wnania Naviera-Stokesa posluguj'c si~ schematem r62:nic skonczonycb. R6:Znice 
w tarciu powierzchniowym obliczanym z r6wnan Naviera-Stokesa oraz z teorii warstwy przy­
Sciennej zmniejszaj' sic; przy wzro5cie warto5ci x i w okolicy jednej trzeciej dlugo5ci plyty (lia4c 
od krawc;dzi natarcia) r62:nice te zmierzaj' do zera. Naj~ksze r6inice s~gaj' 15%. Analiza 
oparta na r6wnaniach Naviera-Stokesa potwierdza wnioski otrzymane z teorii warstwy przy­
kiennej stwierdzaj,ce, i.e przy ustalonym luoo -u.,l wsp61czynnik tarcia powierzchniowego jest 
~ dla u., > uoo niZ dla u,. < u00 • Romica mi~ warto5ciami c1 zmniejsza si~ przy ma­
lej~eh wartoSciach luoo-=u,..l i wynosi okolo 300/o dla luoo-uwl-= 1 oraz ponii.ej 1% d1a lu00 -

Uwl = 0,1. 

PaCCMaTpHBaeTCR DOJie TetteHWI BOKpyr npllBOAR~eii IIJDlTbl, KOr~ DJJH.Ta ,ABH>IreTCR CO 
CKOp<>CTI>IO u,. B >NRJn(OCnl -C HY11CBOH H3'l8JILHOH CKOp<>CTWO, a TaJOKe B CJIY'IIUIX, KOr):yl 
CKOpoCTL CBOOo,IJ;JIOl'O DOTOKa OTJIH'Dia OT JIYJVI. llpllBe~eHW DepBble pemeHWI DO~OOIUI ,lVVI 
ypaBHeHIUI DOrpBml'UIOl'O CJIOR. 3aTeM • DpoiUITCrpHpoB8Hb1 'IHCJICIDIO DOJIHI>Ie ( COAep· 
>KaBIIDle BpeMeHHOH 'IJICH) ypaBHCHWI HaBLe·CTOKCa, DOCJIY>KHB8RCL CXeMOH KOHeliHblX 
pll3HOCTeH:. P83HKin>I B noue_pXHOCTHOM TpeHHil, paC'UI1'aHHblM H3 ypauHemdt HaB~.e-CroKca, 
a TaJOKe H3 TeOPHH norpllHH'IHOro CJJOR, yMem.WaJOTCR DPil pocre 3Ha'leHHH x, a B OKpeCT· 
BOCTH 1/3 ,MlUibl IJJIIlTbi (C'IllTaR OT rpaHil 3Ta.KH) 3TH p83HIU.U>I crpeMRTCR K HyJIIO. HaH· 
6oJILIIIHe PI3Hilln>l ~OCTill'aJOT lSO/o. AH8Jill3, oDI{paroli.UiitCJI aa ypaBHeBHR HaBLe-OroKca, 
DOATBep>K,tU~eT BbiBOAbl DOJIY'ICBBLle 113 TeOPIUl DOrpaJIIl'lHOl'O CJIOR, KOTOpble KOHCTant­
pyJOT, 'ITO DpH yCTaHOBJleHHOM !uoo- Uw! KO~HlUlCHT DOBepXHOCTHOl'O TJ)eHWI 6om.we 
AJVI Uw > Uoo, 'leM AJVI Uw < Uoo. P~ MC>K,I(y 3B8'IeHilJIMH YMeBLUiaeTCJI IIPH y6blBa­
JOUUlX 3Ha'leHJU!X !uoo -u,l u paBWJeTCJI npHMepHo 300/o A1VI luoo -u .. ! = J H HH»<e 1% MR 
luoo -ltw! = 0,1. 

1. Introduction 

THE CONCEPT of a continuously moving or pumping plate is illustrated in Fig. 1 which 
shows a symmetr~l arrangement of two belts each running over two pullies. The whole 
arrangement is situated inside a box the sides of which arel two parallel moving regio.ns 
of the belt which are pumping fluid from the left to the right. 
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FIG. 1. Pumping plate model. 
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FIG. 2. Flow region and boundary conditions. 

In the mathemati~l model we let the height 11 tend to zero, see Fig. 2. Thus we obtain 
a flat plate which is moving while the fluid ·is initially at rest. Although this problem might 
look just like the classical Blasius case with the . boundary conditions exchanged, there 
is no Galilean transformation combining the two cases as SAKIADIS (I) first showed. This 
is due to the plate's special kind of motion. While the two belts of Fig. I · are running, the 
whole box does not move in space. Thus the region where the . boundary condition of 
-non-zero wall veloci~y has to be applied is time-independent. In the laboratory system 
· of c~ordinates we have to solve the steady equation of motion. In a system of coordinates 
moving with the plate, we had to solve t~e unsteady equation· of motion for the boundary 
condition of zero wall-velocity. 

In the surrounding fluid initially at rest,_ a boundary layer develops past the pumping 
plate, ·the thickness of whicq is increasing in the . sa.me direction as the plate is moving, 
see Fig. 2. From the boundary layer theory one obtains the result that the skin friction 
coefficient is about 30% higher than in the BLASIUS case [2]. 

An infinite plate moving in a cooling bath, a film of condensation running down a wall 
and a filament extruded from an orifice in the melt spinning process are physical examples 
where the flow situation presented appears in the field of practical application. From these 
examples it can be seen that the pumping or continuously moving surface often is accom­
p~mied with blowing. Thus the general problem of a pumping plate moving with the velocity 
u-w in a parallel free stream u00 is considered in the present paper. 

In the literature for the p.umping plate only solutions of the boundary-layer equation 
are presented. SAKIADIS [1] and SPARROW et al. [3] solved the Blasius equation for the 
pumping plate boundary conditions. In [4, 5] similarity solutions for the pumping plate 
boundary-layer equation and finite difference solutions for the continuously moving 
cylinder including the transverse curvature effect were presented. 

KLEMP ·and AcRIVOS [6] considered the problem of uniform flow past a pumping plate 
whose surface has a constant velocity opposite in direction to that of main-stream for 
large values . of the Reynolds number Re. Basing on the numerical solution of the full 
Navier-Stokes equations by LEAL and AcRIVOS (7], it was assumed that for Re ~ 1 the 
region of reverse flow remained within an 0 (Re- 1 ~ 2) distance from the plate and the 

. ·.problem was dealt with in terms of a moving-wall boundary-layer with a zero pressure 
gradient. Thus the numerical ·procedure applied integrated the :bolJndary·layer equation. 
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Several authors investigated the flow field past a flat plate at rest in a uniform free 
stream by integrating the full Navier-Stokes equations. Our results for this ~se are compared 
with those presented by LoER [8] and by F ASEL [9]. The results given by DEN'N'IS ~nd DUN­

WOODY [10] were obtained by first simplifying the Navier-Stokes equations in order to 
reduce them to ordinary differential equations which afterwards were solved numerically. 
Their drag coefficient is proportional to Re- 112 in accordance with the boundary layer 
theory but the actual calculated value of their coefficient is higher than the Blasius value, 
whereas the integration of the full Eqs. (3.6) and (3.7) shows the opposite result. 

2. Similarity solations of tbe boaadary layer eqaatioa 

Introducing the similarity coordinates (overbars represent dimensional quantities) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

with 

(2.5) 

- u, v'
-

TJ=Y =, . vx 

'P 
/(f]) = .. !--- ' 

f vxu, 

" = ufU, = f'(tJ), . 
v = V/ { ~ Ji'vu,rx) = 11!' -! 

if U00 > Uw, 

if iiw > Uoo,-

we obtain the ordinary differential equation first presented by BLASIUS [2] 

(2.6) 2/"' + !!" = o. 
For the pumping plate moving in a fluid initially at rest, the boundary conditions in 

similarity coordinates are 

(2.7) 
7J = 0: f' = 1' f = 0, 

7J-+ 00: f' = 0. 

For this case SAKIADIS [1] obtained the skin friction coefficient (first number in brackets 
gives the wall velocity, second number gives the velocity at the outer edge of the boundary 
layer, both in dimensionless. coordinates) 

(2.8) c,(I.O; 0.0) = Tw/((ju;,) = 0.444/'v'Rex 

with 

(2.9) 

This value is 33% larger than the result presented by Blasius for the classical flow case 

(2.10) 

4 Arch. Mech. Stos. ar S/80 
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with 

(2.11) R~x = ii00 • x{v. 
We now regard the solutions of Eq. (2.6) for cases when the velocity of the plate and the 
velocity of the fluid are different from zero simultaneously. 

Figure 3 shows the skin friction coefficient plotted against the velocity difference between 
free stream and plate. The velocities are non-dimensionalized according to Eqs. (2.3) 

c;~•0.332 

0.3 

0.2 

0.1 

0.0 0.2 0.4 0.6 0.8 1.0 IUm -Uwl 

f'Jo. 3. Skin friction coefficient c1 yReL as function of luoo -u,.l. Similarity solutions from the boundary 
layer theory. 

Ur = Uoo if Uoo > u,., Ur = U,. if Uoo < U...,. 

and (2.5). The upper curve refers to the case when the plate's velocity is larger than the 
free stream velocity while the lower curve shows results for the opposi_te case. 

For luoo- uwl fixed the skin friction coefficient is larger for Uw > U00 than for Uw < U00 • 

For luoo- uwl = 0.8 e.g. we obtain c1 J! ReL = 0.38 with uwfuoo = 5.0 and c, Y ReL = 
= 0.314 with uwfuoo = 0.2. The c1 value for a given Re number not only depends on the 
velocity difference luoo- uwl but on the parameter uwfuoo, too [4, 5]. The difference between 
the two c1 values decreases for decreasing values ~f luoo- uwl being about 30% for luoo­
- Uw I = 1 and being smaller than 1% for I U00 - uwl = 0.1. 

In Fig. 4 the forward velocity component ~~and the normal velocity component v 
are shown as functions of the similarity coordinate 'YJ for four different cases. In each pair 
of two cases A, Band C, D the velocity differences luoo -uwl are the same, 1.0 and 0.7, 
respectively. 

Case A represents the classical flat plate problem, case B the pumping plate. The 
solution of case B is shown in Fig. 4A as a dotted line in such a way that the velocity 
gradients at the wall for the two cases A and B can be compared. The velocity profile 
u = 1-u (1.0, 0.0) ~s of the same character as that for a flat plate at rest with suction. 
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Fro. 4. Velocity profiles. Similarity solutions from the boundary layer theory. 
A - Blasius ease, B - Sakiadis case. 
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For the pumping plate, case B, the velocity component vis negative, the fluid is sucked 
towards the plate. In the classical and the pumping plate case the value of the normal 
velocity component vis zero at the wall and increases with increasing distance-from the 
wall. In the case of a pumping plate the assumption of the boundary layer theory v ~ u 
is not fulfilled at the outer edge of the boundary layer as there the u-component tends to 
zero while the v-component remains finite. 

In the classical case outside the boundary layer the disturbances resulting from the 
plate become small as compared with the velocity values of the uniforin free stre~m. Thus 
the flow. field is known there. As in the case of the pumping plate the fl~id initially is at 
rest and even small velocity changes now mean a significant difference as compared to 
the original situation. Thus the whole flow field is unknown and the outer field can be 
calculated only by integrating the Navier-Stokes equations numerically. 

3.. Numerical integration of the Navier-Stokes equation for the pumping plate flow field 

Some of the difficulties connected with the numerical solution of the steady Navier­
Stokes equations can be avoided if the steady flow is considered as an asymptotic form 
of a time-dependent flow, thus profiting from the techniques available for the numerical 
solution of the initial value problems. This is so since the full time-dependent Navier­
Stokes equations. are parabolic in time. Altough the numerical procedure can imitate the 
natural development to the final steady flow, in our case this part of the calculation is 
merely fulfilling the function of an iteration procedure. 

4* 
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Starting from the Navier-Stokes equation written as a vorticity transport equation, 
one obtains after defining non-dimensionalized quantities 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

the equation 

(3.6) 

x* = x(i, 
y* = yfL, 

t = tu,/L, 
u = ii{ii, 

v = v/u, 

with the vorticity w and the Reynolds number ReL 

00 au 
(3. 7) m = iJx* - oy* , 

(3.8) 

The overbars again represent dimensional quantities. We have v -kinematic viscosity, 
u,- reference velocity, see Eq. (2.5). We fulfill the continuity ~quation identically by 
introducing the stream function 1p 

(3.9) 

(3.10) 

u = iJVJf oy*, 

v = - OVJ/fJx*. 

· From Eqs. (3. 7), (3.9) and (3.10), the Poisson equation for the stream function results: 

(3.11) 
iJ2'P iJ2tp . 
ox*2 + oy*l = -w ; 

The conditions imposed on the boundaries are 

y* = 0, -oo ~ x* < 0: w=O , 

y* = 0, 0 ~ x* ~ 1: u = u..,, 

(3.12) y* = 0, 1 <x*~ +oo: Cl)= 0, 

0 < y* ~ Y!u, x* ~ -oo: Cl)= 0, 

y* = Y:u, -oo ~ x* ~ +oo: Cl) =0, 

0 < y* ~ Y:u,_ x* = :+- CX): w=O, 

· We apply the transformation of coordinates given in [1]: 

(3.13) 
x = tanh(a.Kx*), 

y = tanh(a,y*). 

'P = 0, 

'P = 0, 

"P = 0, 

'P = UooY, 

otpfox = o, 
1p=Uoo'Y· 

This hyperbolic transformation maps the infinite flow region into a finite one 

(3.14) -1 ~ X ~ 1, 0 ~ Y ~ Ymu • 
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This · makes possible the straifghtforward application · of the relevant boundary conditions 
at very large distances from the plate and at the same time allows to concentrate the grid 
points of · the finite difference scheme near the fiat plate where the gradients are large, 
so that the accuracy in this region is increased._ 

·The upper boundary condition was applied at a finite but sufficiently large distance 
from the plate, Ymax > IO~L' greater than ten times the boundary layer thickness at the 
trailing edge. ·The value of ay is chosen such that the boundary layer is expanded to occupy 
at least one third· of the number of grid points in the y-direction. The origin of coordinates 
is chosen at the plate's leading edge. 

Applying the transformation ofEq. (3.13), we obtaill_ from Eqs. (3.9), (3.10), (3.6) and 
(3.11) 

(3.15) 

(3.16) . 

(3. 1 7) 

(3.18) 

with 

(3.19) 

u = F2(y)oVJfoy, 

v = -F1 (x)oVJfox, 

aw a a 
-,..- +F1 (x)~ (uw)+F2(y)~ (vw) 

ot ux uy 

I [ o
2
w o2

w ow ow] 
= ReL F3(x) ox2 +F4(Y) oy2 +Fs(x) ox +F6(Y)-ay ' 

021Jl o21p OVJ 01p 
F3(x) ox2 +F4 (y) oy2 +F5(x) ox +F6(Y)Ty = -w 

F1 (x) = ax(1-x2
), 

F 3 (x) = [F1 (x)]2
, 

F2(y) = a,(1-y2
), 

F 4(y) = [F 2(y)]2, , 

F 5(x) = . -2ax · x · F1 (x), F6 (y) = -2ay · y · F2(y). 

The partial differential equations are approximated by an explicit space-centered finite 
difference scheme, with a fourth-order accurate difference formula for the vorticity genera­
ted at the plate surface. The finite approximation of the vorticity transport equation 
reads, in conservative form (i refers to the x- and j to the y- direction), 

(3.20) -F (i) (uw)l+ 1 ,1 - (uw)t-t.J -F ( ') (vw).!_J+t- (vw)1,1_ 1 
1 2L1x 2 1 2L1y 

+_I_ {F (i)w1+ 1 ,1+w1-1.1-2w1,1 +F
4
U) Wt,J+t +w1,1_ 1 - 2w1,1 

ReL 3 L1x2 L1y2 

+Fs(i) w,.,,~:•-t.J +F.(j)-w,,J+~;•·J-t }· 

From Eq. (3.20) we obtain the new w-value which is called wni.i· The finite difference ap­
proximation of the Poisson equation is 

(3.21) w,,1 = F 3(i}[1p~+t,J+VJnt~l.1 - 2VJntYJ/L1x2 +F4U) [VJf.J+ 1 +VJntj~ 1- 2VJnt'~ 1]/L1yl 

+Fs(i) [V'~+t,J-VJnt~l.J1/(2L1x)+F6U) [VJf.J+t-VJnJ.t!l]/(2L1y). 
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Solving Eq. (3.21) by the Gauss-Seidel procedure with ·k being the index of iteration, we 
obtain the new value for the stream function vm1•1• The velocity components are calculated 
by means of the following finite difference approximations of Eqs. (3.16), (3.17): 

(3.22) u,,J =-·F zU) (tp,,J+ 1 -1p,,J-t1/(2Liy), 

(3.23) 

The number of grid points was 129 in the x-direction and 33 in they-direction. Thus we 
had 4257 uniformly-spaced grid points in the field. The a:&- and . a,-values c~osen in Eq. 
(3.13) were ax = 0.5 and a1 = 2.0, 4.0, 0.62. 

4. otse.sioa of the resalts 

For all Navier-Stokes results presented in this paper the Reynolds number is Re£ == 
= 1000. -

Y. 

Ua, ::10 ---+-----t----1 

Uw =00 Re::1000 

0.0 1D 20 3.0 

P1o. S. Field of streamlines. Flat plate at rest in a uniform free stream <•• = 0, "«) = 1.0). 

y 

u(l)::1.0 I 
Uw ::03 - Re::1000 

~ - --- 1Jf:O.l450 

--
V ---- 1Jr::iQ1120 ._...._ ......._ 

.......- -- 1Jr:Q0790 ......___ 

V ----....._ 
~ ----1---. 1Jr=0.0473 ------
V yr:Q0157 ...... 

0.0 1.0 2.0 10 

FIG. 6. Field of streamlines. Movina ftat plate iD a uniform free stream (u. = 0.3 Uao - J .0). 
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In Fig. 5 the field of streamlines is shown for the classical case of a tlat plate beinJ 
at rest in a uniform free stream. The solution is in good agreement with the results shown 
in the literature [8). The displacement effect of the plate is demonstrated. There is no strong 
upstream inftuence shown by a ~ingle plate. The streamlines are deflected away from the 
plate only a small distance upstream from the leading edge. At about the trailing edge 
the streamlines start to return gradually to their original y-position which they reach 
several ftat plate lengths downstream. 

For a given tp-value the maximum y-value reached by a streamline is smaller in tbo 
case of u.., = 0.3 as compared with the case of uw = 0, see Figs. S and 6. If the ftat plate 

y Uw=tO 
u_:O.l Re=1000 

tpQ0764 

"- I 
\IC.=(l053 9 ~---~ V ~::0.0334 

./ 
tp:QOI41 "'- ~ io"""" 

'- -~ 
-tO 1.0 2.0 lO 

1!-oo 
4.0 

FIG. 7. Field of streamlines. Moving ftat plate in a uniform free stream (u.,. = 1.0, u!X) = 0.3). 

is pumping with a velocity s~ler than the free stream velocity, the displacement is reduced. 
But now larger x-values are needed until the streamlines have returned to their original 
position; there are crossing points between the two systems of streamlines. 

When the plate moves faster than the free stream, the pumping effect becomes very 
obvious, see Fig. 7. Ne,r the leading edge the streamlines are sucked towards the plate, 
that is the plate receives ftuid from the ftow field and then pumps it back with an increased 
velocity as can be seen from the convergence of streamlines. The field of streamlines for 
the case of a pumping plate moving in a ftuid initially at rest shows that all ftuid particles 

FtG. 8. Pumping plate in a fluid initially at rest (u.,. = 1.0, uoo = 0.0). 

http://rcin.org.pl



672 B. GAMPDT AND T . . A8D£UIAFEZ 

are set in motion, see Fig. 8. The lowest values of the stream function belong to streamlines 
near the flat plate. Since the -streamlines do not intersect and are closed lines, the fluid 
particles_ on these streamlines reach the largest distances from the plate. Along a streamline 
we have 1f' = const. Thus it can be seen from Eq. (3.6) that the vel~ity or the :fluid particles 
on a given streamline is much larger near the plate than in the region far away from it 
zand approaches zero for y-+ ao. Using our Navier-Stokes.results we try to answer the 
question how far the boundary layer theory gives a good approximation for the flow 
-field past a pumping plate .. With Vw = 0 and O:ufO:x!w = 0 we obtain at the wall from the 
Navier-Stokes equation the relationship 

(4.1) -~- ~~1 =-v ~~I· e ux w uy w 

According to the first-order boundary layer theory, the forward pressure gradient is zero . 
·in the whole flow field in the flat plate case. Then the normal vorticity gradient at the wall 
is zero, too, and _all vorticity necessary ~ build up the flow field at the. plate comes from 
the leading edge where o2ufox2 'I= 0 so that O:wfoy :/: 0. On the basis of the Navier-Stokes 
equation we cannot assume O:pfO:xlw = 0 and we expect normal vorticity gradients dif­
ferent from zero. The vorticity gradient at the wall O:wfO:ylw shows whether the assumptions 
of the boundary layer th<?ory are fulfilled. ' 

In Fig. 9 vorticity profiles obtained by numerical integration of the Navier-Stokes 
equati~n are shown. Near the leading edge values for O:wfO:ylw are rather large. Only . 

y 

Uw ::1.0 
'\ lf:O.S78 u.., .::O.O 

:~ <1.379 Re=1000 

~k 0.125 
\ v-OD31 

~ 
~ ~ 

" ............. --0 ) 20 30 40 50 lwl 
Fig. 9. Vorticity profiles. Pumping plate in a fluid initially at rest (uw = 1.0, Uoo = 0.0). 

about one third of the plate tength away from the leading edge the normal vorticity gradient 
at the plate becomes zero approximately. Therefore, especially near the leading edge we 
expect larger differences between boundary layer and Navier-Stokes results. 

This is confirmed by Fig. 10 showing the local skin friction coefficient along the flat 
plate for cases when the plate moves faster than the fluid obtained by the Navier-Stokes 
and boundary layer theory. The local skin friction coefficient calculated from the Navier­
Stokes solution, is higher than that calculated from the boundary layer theory, the largest 
differences being of about 15%~ These differences are of the same order of magnitude 
as those obtained for the classical -~se, see [8, 9]. But in the classical case the Navier­
Stokes solutions are smaller. This result should be related to the fact that the boundary 
layer theory neglects pressure gradients normal to the wall and that the moving plate 
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0 • 0.1 0.5 1.0 

FIG. 10. Pumping plate skin friction coefficient. 
Navier-Stokes solutions compared with the boundary 

layer theory. 
---Boundary layer theory,-- Navier­

Stokes solutions. 

2..0+--t--11-------+- Bfb:=l.O ·. 
Re:1000 

---=-=o-Uw=I.O 
5+\--t---'i'~-------lr- ~ 1.0 

0 Ql 05 x•=i/[ 1.0 

FIG. 11. Pumping plate skin friction coefficient 
as function of the parameter uwfu00 , Navier­

Stokes solutions. 

is sucking fluid from the flow field towards the plate, while in the classical case fluid is 
pushed away from the plate. 

The Navi~r-Stokes solutions qualitatively confirm the results obtained from the 
boundary layer theory which show that for the velocity differences between plate and 
free stream being constant, higher velocity values of the plate, that is higher values of 
the parameter iiwfiioo, give higher values of the friction coefficient, see Fig. 11. 
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