Arch, Mech. .32, 3, pp. 663674, Warzzawa 1980

Navier-Stokes analysis of the pumping plate flow field
B. GAMPERT and T. ABDELHAFEZ (ESSEN)

Tee rLow field past a pumping plate is investigated for the case when the plate is moving:with
the velocity u,, in a fluid initially at rest and for cases when the velocity of the free stream is
different from zero. First similarity solutions of the boundary layer equation are given. Then
for various .- and u.~ values the full time-dependent Navier-Stokes equations are integrated
numerically by applying an explicit finite difference scheme. Differences between Navier-Stokes
and boundary-layer-theory local skin friction results become smaller with increasing x-values
and, about one third of the plate length away from the leading edge, the difference approaches
zero. Largest differences are of about 15%. The Navier-Stokes analysis confirms the result
obtained from the boundary layer theory which states that for |ue —u.| fixed, the skin friction
coefficient is larger for w. > uy than for w. < uy. The difference between the two c,-values
reduces for smaller values of |ux —w.| being of about 309 for |we —uwl = 1 and being smaller
than 1% for |ue —tiw] = 0.1.

Rozwaza si¢ pole przeplywu woké! plyty napedzajacej w przypadku, gdy plyta porusza sie
z predkoécig v, w plynie o zerowej predkosci poczatkowej oraz w przypadkach, gdy predkoéc
strumienia swobodnego jest rdina od zera. Podano pierwsze rozwigzania podobieristwa dla
réwnania warstwy przyéciennej. Nastepnie scalkowano numerycznie pelne (zawierajace czion
czasowy) réwnania Naviera-Stokesa poslugujac sie¢ schematem rémic skonficzonych. Roimice
w tarciu powierzchniowym obliczanym z réwnaii Naviera-Stokesa oraz z teorii warstwy przy-
{ciennej zmniejszajq si¢ przy wzrofcie wartoéci x i w okolicy jednej trzeciej dtugoém plyty (liczac
od krawedzi natarcia) réimice te zmierzaja do zera. Najwicksze roéznice siggajg 15%,. Analiza
oparta na réwnaniach Naviera-Stokesa potwierdza wnioski otrzymane z teorii warstwy przy-
4ciennej stwierdzajace, Ze przy ustalonym |uy, —uw| wspOlczynnik tarcia powierzchniowego jest
wickszy dla u,, > ue niz dla ¥, < Me. Roznica migdzy wartociami ¢, zmniejsza si¢ przy ma-
lejqcyc& lwarloéciach oo —the] | wynosi okolo 30% dla |ue —uwl = 1 oraz ponizej 1% dla |ue —
Ul = 0,1,

PaccMaTpuBaeTcA mojie TEUCHHMsA BOKDPYI NPHBOMALIEH IUMTHLI, KOrAAa IUIMTAa JBMDKETCA €O
CHOPOCTBIO U, B MUIHKOCTH C HYNeBOH HadansHOH CHOPOCTEIO, a TaK)Ke B ciydasax, Horpa
CKOpOCTL CBOGOMHOIO MOTOKa OT/IMuHA OT HyA. IIpuBeeHE! nepBLie pelleHuA nogxobuA ans
YPABHCHHA NOTPAHHYHOTO COs. 3aTeM- NPOMHTErPHPOBAHBI YHCJICHHO nomHble (cofep-
JKaBINHME BpeMeHHON wieH) ypaBnemmsa Habbe-CToKCa, HDOCHYHHBASACH CXEMOH KOHEUHBIX
pasHocTeli. PasHMILI B MOBEPXHOCTHOM TPCHHH, PaCUHTaHHLIM K3 ypaBHenwit Hapbe-Crokca,
a TaKXKe M3 TEOPHE MOTPEHHYHOIO CII0A, YMCHBIIAKTCA NPH POCTe 3HAYMEHHA X, 8 B OKPeECT-
HOCTH 1/3 nymmb! maMTHl (CYUHTAA OT rPaHK aTaKH) 9TH PasHMUBI CTpeMATcH K Hyymo. Hau-
Gonmlme pasuwimsl AocTuraior 15%. Ananu3, omupaiomimiica Ha ypaBHenma Haspe-Crokca,
NOATBEPKAAcT BLIBOAL!I MOJYUYCHHLIE M3 TEODHM NOrPaHMUHOIO COA, KOTOpble KOHCTATH-
PYIOT, YTO HOpPH YCTAHOBNCHHOM Mo — Wy K03dDMIMERT moBepXHOCTHOIO TpeHHsA OCosmne
ANA Uy > U, HEM ONA Uy < Heo. Padimiiia MexkIy 3HAYEHMAMH yMeHbIIaeTCA npH yDniBa-
JOIMX IHAYCHHAX |Uoy —lw| M PaBHAETCA mprMepHO 309, mna |ue —uw| = 1 ¥ HKe 19, ann
e —itw] = 0,1,

1. Introduction

THE CONCEPT of a continuously moving or pumping plate is illustrated in Fig. 1 which
shows a symmetrical arrangement of two belts each running over two pullies. The whole
arrangement is situated inside a box the sides of which are] two parallel moving regions
of the belt which are pumping fluid from the left to the right.
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FiG. 1. Pumping plate model. FiG. 2. Flow region and boundary conditions.

In the mathematical model we let the height / tend to zero, see Fig. 2. Thus we obtain
a flat plate which is moving while the fluid is initially at rest. Although this problem might
look just like the classical Blasius case with the boundary conditions exchanged, there
is no Galilean transformation combining the two cases as SAK1ADIs [1] first showed. This
is due to the plate’s special kind of motion. While the two belts of Fig. 1 are running, the
whole box does not move in space. Thus the region where the boundary condition of
non-zero wall velocity has to be applied is time-independent. In the laboratory system

"of coordinates we have to solve the steady equation of motion. In a system of coordinates
moving with the plate, we had to solve the unsteady equation- of motion for the boundary
condition of zero wall-velocity.

In the surrounding fluid initially at rest, a boundary layer develops past the pumping
plate, the thickness of which is increasing in the same direction as the plate is moving,
see Fig. 2. From the boundary layer theory one obtains the result that the skin friction
coefficient is about 30% higher than in the BLASIUS case [2].

An infinite plate moving in a cooling bath, a film of condensation running down a wall
and a filament extruded from an orifice in the melt spinning process are physical examples
where the flow situation presented appears in the field of practical application. From these
examples it can be seen that the pumping or continuously moving surface often is accom-
panied with blowing. Thus the general problem of a pumping plate moving with the velocity
u,, in a parallel free stream w,, is considered in the present paper.

In the literature for the pumping plate only solutions of the boundary-layer equation
are presented. SAKIADIS [I] and SPARROW et al. [3] solved the Blasius equation for the
pumping plate boundary conditions. In [4, 5] similarity solutions for the pumping plate
boundary-layer equation and finite difference solutions for the continuously moving
cylinder including the transverse curvature effect were presented.

KLemp and Acrivos [6] considered the problem of uniform flow past a pumping plate
whose surface has a constant velocity opposite in direction to that of main-stream for
large values of the Reynolds number Re. Basing on the numerical solution of the full
Navier-Stokes equations by LEAL and Acrivos [7], it was assumed that for-Re > 1 the
region of reverse flow remained within an 0 (Re™!/?) distance from the plate and the
problem was dealt with in terms of a moving-wall boundary-layer: with a zero pressure
gradient. Thus the numerical procedure applied integrated the boundary. layer equation.
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Several authors investigated the flow field past a flat plate at rest in a uniform free
stream by integrating the full Navier-Stokes equations. Our results for this case are compared
with those presented by Loer [8] and by FaAseL [9]. The results given by DENNiS and DuN-
woobDy [10] were obtained by first simplifying the Navier-Stokes equations in order to
reduce them to ordinary differential equations which afterwards were solved numerically.
Their drag coefficient is proportional to Re~!/2 in accordance with the boundary layer
theory but the actual calculated value of their coefficient is higher than the Blasius value,
whereas the integration of the full Eqgs. (3.6) and (3.7) shows the opposite result.

2. Similarity solutions of the boundary layer equation

Introducing the similarity coordinates (overbars represent dimensional quantities)

u,

2.1 =2V %
) = _"'L ’

(2.2) f(n o8
(2.3 u = ufu, = f'(n),
24) 0= / (—;— ;/W./?r) = nf'~f
with

(e i U > iy,
23) Y= iaw i H, > i,
we obtain the ordinary differential equation first presented by BLAsIUS [2]
(2.6) ; 2" +ff" = 0.

For the pumping plate moving in a fluid initially at rest, the boundary conditions in
similarity coordinates are
n= 0: f =1, f =0,

2.7
@7 n—oo: f'=0.

For this case SAKIADIS [1] obtained the skin friction coefficient (first number in brackets
gives the wall velocity, second number gives the velocity at the outer edge of the boundary
layer, both in dimensionless coordinates)

(28) C/(1.0; 0.0) = 7,/(gis2) = 0.444/}/Re,

with

2.9 Re, = u,.- X/v.

This value is 33% larger than the result presented by Blasius for the classical flow case
(2.10) C;(0.0; 1.0) = 7,,/(g2) = 0.332/ /Re,

4 Arch, Mech. Stos. or 5/80
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with
2.11) Re, = i1, x[7.
We now regard the solutions of Eq. (2.6) for cases when the velocity of the plate and the
velocity of the fluid are different from zero simultaneously.

Figure 3 shows the skin friction coefficient plotted against the velocity difference between
free stream and plate. The velocities are non-dimensionalized according to Egs. (2.3)
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Fic. 3. Skin friction coefficient ¢, J/ Re, as function of |ue—u,|. Similarity solutions from the boundary
layer theory. ;
Ur = oy if Uop > T, Ur = Uy if Ty < Uw.

and (2.5). The upper curve refers to the case when the plate’s velocity is larger than the
free stream velocity while the lower curve shows results for the opposite case.

For |u, —u,,| fixed the skin friction coefficient is larger for u,, > u,, than for u,, < u,.
For |u,—u,| = 0.8 e.g. we obtain ¢; /Re, = 0.38 with u,/u, = 5.0 and ¢,/ Re, =
= 0.314 with u,/u,, = 0.2. The ¢, value for a given Re number not only depends on the
velocity difference |u,, — u,,| but on the parameter u,,/u,,, too [4, 5]. The difference between
the two ¢, values decreases for decreasing values of |u,, —u,| being about 309 for |u,—
—u,| = 1 and being smaller than 1% for v, —u,| = 0.1.

In Fig. 4 the forward velocity component u and the normal velocity component v
are shown as functions of the similarity coordinate  for four different cases. In each pair
of two cases 4, B and C, D the velocity differences |u,,—u,| are the same, 1.0 and 0.7,
respectively.

Case A represents the classical flat plate problem, case B the pumping plate. The
solution of case B is shown in Fig. 4A as a dotted line in such a way that the velocity
gradients at the wall for the two cases 4 and B can be compared. The velocity profile
u = 1—u (1.0, 0.0) is of the same character as that for a flat plate at rest with suction.
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FiG. 4. Velocity profiles. Similarity solutions from the boundary layer theory.
A — Blasius case, B — Sakiadis case.

For the pumping plate, case B, the velocity component v is negative, the fluid is sucked
towards the plate. In the classical and the pumping plate case the value of the normal
velocity component v is zero at the wall and increases with increasing distance from the
wall. In the case of a pumping plate the assumption of the boundary layer theory v < u
is not fulfilled at the outer edge of the boundary Iayer as there the u-component tends to
zero while the v-component remains finite.

In the classical case outside the boundary layer the disturbances resulting from the
plate become small as compared with the velocity values of the uniform free stream. Thus
the flow. field is known there. As in the case of the pumping plate the fluid initially is at
rest and even small velocity changes now mean a significant difference as compared to
the original situation. Thus the whole flow field is unknown and the outer field can be
calculated only by integrating the Navier-Stokes equations numerically.

3. Nuomerical integration of the Navier-Stokes equation for the pumping plate flow field

Some of the difficulties connected with the numerical solution of the steady Navier-
Stokes equations can be avoided if the steady flow is considered as an asymptotic form
of a time-dependent flow, thus profiting from the techniques available for the numerical
solution of the initial value problems. This is so since the full time-dependent Navier-
Stokes equations are parabolic in time. Altough the numerical procedure can imitate the
natural development to the final steady flow, in our case this part of the calculation is
merely fulfilling the function of an iteration procedure.

4*
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Starting from the Navier-Stokes equation written as a vorticity transport equation,
one obtains after defining non-dimensionalized quantities

3.1 x* = %/L,

(3.2) = y/L,

(3.3) t = ti,/L,

(3.4) u=ufd,

(3.5 v = o/d,

the equation

G4 T+ e o s ys ) = Rle,, (aa:f; ® ::f;)
with the vorticity w and the Reynolds number Re,

3.7 = % - % ,

(3.8) Re, = @,L[v.

The overbars again represent dimensional quantities. We have v — kinematic viscosity,
u, — reference velocity, see Eq. (2.5). We fulfill the continuity equation identically by
introducing the stream function y

(9) u = Oy/dy*,
(3.10) v = —Oyp/ox*.
From Egs. (3.7), (3.9) and (3.10), the Poisson equation for the stream function results:
@.10) e
The conditions imposed on the boundaries are
y*=0, -0 € x* < 0: w=0, =0,
y*=0, 0 x*<1: U=, v=0,
(3.12) y*=0, l<x*< +0: =0, v=0,
0 < y* < yiao x*< —0: =0, ¥ =Ugy,
y* =y, —0<x*< +0: =0, Jdy/dx=0,
0 < y* < yius x*=40: w0=0, Y=1uy,"y
We apply the transformation of coordinates given in [1]:
x = tanh(a,x*),
(3.13) .
y = tanh(a,y*).

This hyperbolic transformation maps the infinite flow region into a finite one

(3.19) —1€x<1, 0<y< Yau:
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This makes possible the straifghtforward application of the relevant boundary conditions
at very large distances from the plate and at the same time allows to concentrate the grid
points of the finite difference scheme near the flat plate where the gradients are large,
so that the accuracy in this region is increased.

The upper boundary condition was applied at a finite but sufficiently large distance
from the plate, Ymax > 108,, greater than ten times the boundary layer thickness at the
trailing edge. The value of a, is chosen such that the boundary layer is expanded to occupy
at least one third of the number of grid points in the y-direction. The origin of coordinates
is chosen at the plate’s leading edge.

Applying the transformation of Eq. (3.13), we obtain from Egs. (3.9), (3.10), (3.6) and
(3.11)

(3.15) _ u = Fy(y)oy/dy,
(3.16) v = —F,(x)dy/ox,

a1 2R @ () + Fa0) 5 ()

1 Pw *w dw dw
== [Fa(x) ¥l +F4(J’)—6.}'z— +Fs(x) Tx +Fe(y) *5;] s

Re,
g 0% d
(318) F) Gy +Fa0) b +Fu(8) G +Fo) g = =0
with :
Fy(x) = ax(1-x7), Fy(y) = a,(1-y?),
(3.19) Fy(®) = [F, (1, F0) = (RO,

Fs(x) = —2a,-x*F\(x), Fe(y)= —2a, y Fi(y).

The partial differential equations are approximated by an explicit space-centered finite
difference scheme, with a fourth-order accurate difference formula for the vorticity genera-
ted at the plate surface. The finite approximation of the vorticity transport equation
reads, in conservative form (i refers to the x- and j to the y- direction),

Ony j =@ 5 g (UW)y4g,;— UO)—y 4 _ . @)i.;n-(m)u—i
(320) PRLECLS o ) L By SR

1 Wpyy j+O_y,;— 20, ; o Wi gy T o1 — 20y,
+ RCL {Fﬂ(i) sz +F4(J) Ayz

py Lre1.— D O g — W e
+F4() PR L E () _u_nMyu 1}_

From Eq. (3.20) we obtain the new w-value which is called wn; ;. The finite difference ap-
proximation of the Poisson equation is

(321) @,y = F3() [k, s, s+ pnfrl ;= 29n 5 1/Ax* + Fo() [9hs4 1 +ynksl —2ynth1]/dy?
+Fs(i) [yfy1,~wnit! )/QAx)+Fs(j) [wh 4« —vnj1211/(24y).
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Solving Eq. (3.21) by the Gauss-Seidel procedure with k being the index of iteration, we
obtain the new value for the stream function yn, ;. The velocity components are calculated
by means of the following finite difference approximations of Egs. (3.16), (3.17):

(322 uy,; = Fa(J) [Pr,541 "%.J—t]/(_zdy),
(3.23) O,y = =Fy() [Pre1,s=Pi-1.0/(24%).

The number of grid points was 129 in the x-direction and 33 in the y-direction. Thus we
had 4257 uniformly-spaced grid points in the field. The a.- and a,-values chosen in Eq.
(3.13) were a, = 0.5 and @, = 2.0, 4.0, 0.62.

4. Discussion of the results

For all Navier-Stokes results presented in this paper the Reynolds number is Rey, =
= 1000. '

U, =10
u, =00  [Re=1000
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FiG. 5. Field of streamlines. Flat plate at rest in & uniform frec stream (i = 0, oo = 1.0).
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FiG. 6. Field of streamlines. Moving flat plate in a uniform free stream (4w = 0.3 we = 1.0).
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In Fig. 5 the field of streamlines is shown for the classical case of a flat plate being
at rest in a uniform free stream. The solution is in good agreement with the results shown
in the literature [8]. The displacement effect of the plate is demonstrated. There is no strong
upstream influence shown by a single plate. The streamlines are deflected away from the
plate only a small distance upstream from the leading edge. At about the trailing edge
the streamlines start to return gradually to their original y-position which they reach
several flat plate lengths downstream.

For a given y-value the maximum y-value reached by a streamline is smaller in the
case of u,, = 0.3 as compared with the case of u,, = 0, see Figs. 5 and 6. If the flat plate

d Uy =10

u =03 Re=1000

w=00334 \ \\//
w=00141 / e
B '._'_,-'-'_
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FiG. 7. Field of streamlines. Moving flat plate in a uniform free stream (u. = 1.0, uep = 0.3).

is pumping with a velocity smaller than the free stream velocity, the displacement is reduced.
But now larger x-values are needed until the streamlines have returned to their original
position; there are crossing points between the two systems of streamlines.

When the plate moves faster than the free stream, the pumping effect becomes very
obvious, see Fig. 7. Near the leading edge the streamlines are sucked towards the plate,
that is the plate receives fluid from the flow field and then pumps it back with an increased
velocity as can be seen from the convergence of streamlines. The field of streamlines for
the case of a pumping plate moving in a fluid initially at rest shows that all fluid particles
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Fic. 8. Pumping plate in a fluid initially at rest (4w = 1.0, ue = 0.0).
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are set in motion, see Fig. 8. The lowest values of the stream function belong to streamlines
near the flat plate. Since the streamlines do not intersect and are closed lines, the fluid
particles on these streamlines reach the largest distances from the plate. Along a streamline
we have y = const. Thus it can be seen from Eq. (3.6) that the velocity of the fluid particles
on a given streamline is much larger near the plate than in the region far away from it
‘and approaches zero for y — co. Using our Navier-Stokes.results we try to answer the
question how far the boundary layer theory gives a good approximation for the flow
field past a pumping plate. With v,, = 0 and du/dx|,, = 0 we obtain at the wall from the
Navier-Stokes equation the relationship

1 dp - o
According to the first-order boundary layer theory, the forward pressure gradient is zero
in the whole flow field in the flat plate case. Then the normal vorticity gradient at the wall
is zero, too, and all vorticity necessary to build up the flow field at the plate comes from
the leading edge where 0%u/dx? # 0 so that dw/dy # 0. On the basis of the Navier-Stokes
equation we cannot assume dp/dx|, = 0 and we expect normal vorticity gradients dif-
ferent from zero. The vorticity gradient at the wall dw/dy|, shows whether the assumptions

of the boundary layer theory are fulfilled.
In Fig. 9 vorticity profiles obtained by numerical integration of the Navier-Stokes
equation are shown. Near the leading edge values for dw/dy|, are rather large. Only

w

,.
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\ 05 ug <00
ada7e Re=1000
125
003
.-.‘-"--—_ o
R ——
0 0 0 30 %0 50 (o]

Fig. 9. Vorticity profiles. Pumping plate in a fluid initially at rest (4, = 1.0, e = 0.0).

about one third of the plate length away from the leading edge the normal vorticity gradient
at the plate becomes zero approximately. Therefore, especially near the leading edge we
expect larger differences between boundary layer and Navier-Stokes results.

This is confirmed by Fig. 10 showing the local skin friction coefficient along the flat
plate for cases when the plate moves faster than the fluid obtained by the Navier-Stokes
and boundary layer theory. The local skin friction coefficient calculated from the Navier-
Stokes solution, is higher than that calculated from the boundary layer theory, the largest
differences being of about 15%. These differences are of the same order of magnitude
as those obtained for the classical case, see [8, 9]. But in the classical case the Navier-
Stokes solutions are smaller. This result should be related to the fact that the boundary
layer theory neglects pressure gradients normal to the wall and that the moving plate
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Fic. 10. Pumping plate skin friction coefficient. Fic. 11. Pumping plate skin friction coefficient
Navier-Stokes solutions compared with the boundary as function of the parameter w./uy,, Navier-
layer theory. Stokes solutions.
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is sucking fluid from the flow field towards the plate, while in the classical case fluid is
pushed away from the plate.

The Navier-Stokes solutions qualitatively confirm the results obtained from the
boundary layer theory which show that for the velocity differences between plate and
free stream being constant, higher velocity values of the plate, that is higher values of
the parameter #,,/u,, , give higher values of the friction coefficient, see Fig. 11.
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