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An accurate algorithm for Dirichlet boundary coaclitioas 
ia hyperbolic flows 

K. F0RSTER (~GARn 

1'HB USUAL explicit finite difference approach for the computation of boundary values is crit· 
ically reviewed~ an improved philosophy is sugcsted and tested using Ringlcb's solution as 
a test rig. 

Pruanalizowano krytycznie standardowe podejkie do obliczania wart® brzegowych za po­
moc=t r6inic skonczonych sugeruj~ pewne ulepszenia, kt6re sprawdzono traktu~ rozwi~nie 
Ringleba jako sprawdzian metody. 

KpHTH"tleCKR l!p08H8JDl3HpoBaH ~ DO.z:tXO~ 1< pacqery rpaJIII'IIILIX :maqemdt DpH 
UOMOmH JCOHCliHbl'X pa:mOCTeii, npe~Onarasl HCKOTOpWe Y.11}"1WeHHfl, KOTOpble IIpOPCpellbl 
Tp8J<TYR peiDeHKc PIUII'ne6a KIK uposepJ<Y MCTO~. 

1. Introduction 

THE ACCURACY of explicit finite difference solving procedures for the hyperbolic flow 
equations is usually ~und by the quality of the boundary algorithm. Whereas the accuracy 
potential of a common second-order field-point algorithm is, by and large, about I0- 4 

for a reasonably well-behaved problem (and thus surprisingly close to that of a similar 
scheme for ordinary differential equations) most commonly used boundary algorithms 
depress this figure by a factor well over 10. Thus it was felt necessary to review critically 
the usual procedure and eventually look for a better one. 

2. The usual computation procedure 

To set forth the philosophy we use the problem of two-dimensional, steady, supersonic 
potential flow between rigid walls, and we assume the very important basic step of in­
troducing contour-aligned coordinates E, TJ to be already performed. Then for the Cartesian 
velocity components u, f) we have the differential equations 

ue = b11 u,+b12v,, 

'De= b21u,+b22v,, 

F10. 1. 
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where 

c speed of sound. 
We call u, v von Neumann variables because at the boundaries there exists for .. them 

a von Neumann type boundary condition 

(t = tanO, 0 direction of streamline, index b means boundary). The above form o(the 
differenti-al equations lends itself directly to an explicit solving procedure which we sketch 
here only in its simplest first-order form: inside the domain, truncated · Taylor series are 
used to advance the solution from one line of grid points~ = corist (denoted by an upper 
index n) to a new line ~+Lt~ = const (uppet index n+l): 

u7+ 1 = ui+(ue)7LJ~, 

vi+ 1 = v'l + (vf)TLJ~' 

the ~-derivatives are calculated from some discretized form of the pde's right hand sides. 
At the boundaries, however, there is the boundary condition as a third equation, and 

the wh~le set would be overdetermined. The simplest and wid~ly used way out is to drop 
one differential equation, say that for v, calculate u as inside the field (with obvious mo­
difications in discretizing the 17-derivatives) and use the boundary conditiqn for the com­
putation of v: 

This procedure is quite unsatisfactory. First, there is the arbitrariness of which equation 
to drop. Second, and ·worse: the shape of the boundary downstream of~' especially its 
curvature t~, does not enter the calculation but post festum; it is ignored completely in 
the calculation of z4+ 1• This is not only true for the sketched one-step scheme but also 
for the particular steps in multistep schemes of higher order of accuracy. 

This situation is not altered basically if one introduces other dependent variables. 
A widely used set is P, t (P = lnp, p pressure )whose differential equations read 

with 

w2 -c2 c2 
a..2I = - u2-c2 xu2 1],, 

(w2 = u2 +v2 , x ratio of specific heats), and we call P, t Dirichlet variables because the 
boundary conditions are of the Dirichlet type: t = t(E) r~pectively P = P(E) are prescribed 
functions along rigid walls, respectively free-jet boundaries. 
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The explicit solving procedure is quite similar to the one above: inside the domain, 
P and tare advanced ___ as described for u and v and at the boundaries only the relevant differ-
ential equation is retained, so in our case we have 

pg+• =PC+ (P~);LJ~, 

tg+t = t,(~ + J~). 
Though here the arbitrariness is removed, there still remains the fact that pg+ 1 is computed 
ignoring completely t~. 

Of course in this case the theoretically sound method of characteristics or one of 
its many variants could be used (whi<?h in fact is frequently done) but experience shows 
that mixing two such different method.s very often results in unexpectedly low accuracy 
and, furthermore, the computer program is considerably lengthened by the extra code 
needed. 

3. A new approach 

We will once more copsider the differential equations 

PE= a11 P,+a12 t.,, 

tE = a21 P.,+a11 t.,. 

At a rigid wall only (Pt), is needed whereas (tE), is known, so why not use the second 
equation to eliminate one of the ?]-derivatives from the first one? By linear combination 
we easily get 

either 

but because of (a11), "' t, this form is singular for t, = 0 (a very likely value to occur) 

or PE= att tE+ (all- aft )'t.,. 
· a21 a21 

The latter equation is very well suited for advancing P along the boundary (so we may 
call it the differential boundary equation) and it contains tE ! 

Before proceeding we should remark that one could treat the case of the von Neumann 
variables in a very similar manner: differentiating the boundary conditions for a rigid 
wall gives ve == tuE + utE which can be used to yield the differentiaf equations 

uE = b11 u.,+b12 v.,, 

tuE = b21 u.,+b22 v.,-ut~ . 

Linear combination again gives one equation which is singular for t, = 0 and one useful 
boundary equation. This procedure bears a faint relationship to the implicit BVLR-scheme 
[1]. As it is felt, however, that Dirichlet variables are more convenient to use, we return· 
to these. 

The boundary equation is closely related to the domain equations and so we can dis-­
cretize it in quite the same manner as has been chosen for the latter. For example, in the: 
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case of the Lax-Wendroff-Richtmyer scheme we extrapolate linearly P'+l/2 from inside 
the field, issue a CALL for a11 , au, a:n and calculate P1 after the boundary equation 
approximating t,. by a one-sided quadratic with t:+'l 2 and'the already (for the first field 
point) computed values t:,+,.112 and t;tz1' 2• Thus the coding expense is very low and the 
computation time for a boundary point becomes distinctly smaller than for a field point. 

4. A IIGIIIerical test 

As a test rig we have chosen the well-known Ringleb flow [ 2] which is an exact solution 
of Tchapligin's hodograph equation and can be computed very conveniently with the 
help of some previously published subprograms [3]. From the first Riemann surface of 
this solution we picked the two channels indicated by heavier lines in Fig. 2 between the 

X 

FIG. 2. Streamlines and isobars of Ringleb Flow (part of first Riemann Surface). Olosen examples of 
channel flow shown by heavy lines. · 

streamlines 0. 7 ~ tp ~ 0.8 (high speed channel) and 0.9 ~ tp ~ 1.0 (lower speed channel). 
They are located symmetrically to the symmetry line of the flow pattern and therefore 
feature first an expansion and then a recompression which is physically and computa­
tionally more sensitive than the former. The computations presented below were based 
on the polar frame indicated in Fig. 2; the Cartesian frame yielded practically identical 
_results. The following diagrams show lines of constant error-in-pressure· 104, the grid 
had 10 meshes across the width of the channel. 

The first case, Fig. 3a, is a null-test using the conventional Lax-Wendroff-Richtmyer 
scheme for the field points and the exact values in boundary points. The result confirms 
what has been said in the introduction about the accuracy level of a second-order scheme. 
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a c e 
FIG. 3. High speed channel; lines of comtant error-in-pressure times 10" for d.itrercot computatioaal 
methods: a) LWR +exact boundary values, b) LWR+extrapolation of Pe, c) same as b)+c:omctioa 

-after de Neef, d) Pandolfi and Zannetti, e) L WR +boundary equation algorithm. 

The second experiment, Fig. 3b, was done using the crude method outlined above: 
we just extrapolated (Pe)'H 1' 2 from inside the domain to the 'wall. The res•lt clearly in­
dicates the large increase of the errors mainly in the recompression zone. 

In the next run, Fig. 3c, we tried to improve the calculation by adding a correction 
after de NEEF'S paper [4] which in a theoretically very clever way uses the characteristic 

a 
Fto. 4. Lower speed channel; lines of constant error-in-pressure times 10" for a) LWR+exact boundary 

values, b) LWR+boundary equation algorithm. 
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compatibility equation _to compute and correct the error in P. The results ar~ somewhat 
disappointing and thus provide a good example for what has been said ab6ut mixing 
different computing philosophies: the error in the expansion flow is a bit overcorri.Pensated 
for and increases sharply towards the end of the recompression. . 

The fourth example, Fig. 3d, has been done by PANOOLFI and ZANNETTI [5] ·using 
MacCormack's scheme in the field and a boundary algorithm based on the compatibility 
equation but expressing the characteristic derivatives in derivatives after ~ arid 'YJ· The 
accumulation of errors in the recompression zone is quite clearly marked in this case. 

In contrast to all these examP,Ies the computation using the boundary equation, Fig. 3e, 
exhibits not only a markedly lower error level but also no accumulation of ~rrors at all 
which can be seen from a certain "touch" of symmetry between expansion and recompres­
sion. Both features are still more marked in · the case of the lower speed cha~n~l, Fig. 4b. 
Figure 4a is the null-test for this case. 

S. Further remarks 

During the actual computations the new algorithm was found to be remarkably stable. 
By accident, one boundary value ib was grossly miscalculated and thus ·a large error impulse 
introduced. The boundary algorithm swallowed this impulse wiggl~less within three steps 
.d~, though of course the error was propagated through the field and reflected at the op­
posite wall due to the hyperbolic nature of the problem. 

Further, we found it necessary to code sensitive parts of the program in doubl~ precision 
since a common minicomputer's accuracy (nominally 24 bits of mantissa, depressed by 
hexadecimal normalization to 21 bits) proved to be too low. Even on. a UNIVAC 1108 
the results could be improved sligthly by partly double precision coding . . 

6. Conclusion 

An algorithm for the computation of boundary values in two-dimensional hyperbolic 
flow has been developed using as a basis the differential boundary eqilation. Thus the 
new procedure is theoretically satisfying, its discretization easily made consistent with 
that chosen for the field point algorithm, simple to code; reasonably fast, and computa­
tionally stable. It yields results superior to other widely used methods especially in re­
compression regions. The principle can be extended to free jet boundaries and, so we 
hope, to multi-dimensional problems. 
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