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On the Lagrange functional for dissipative processes(*) 

R. KOTOWSKI (WARSZAWA) 

THE CONDITIONS are given for the nonlinear potential in Schrodinger-like equations, describing 
the diffusion of point defects in crystals, to be self-adjoint. The conservation laws following 
from the constructed Lagrange functional and Noether theorem are discussed. The second 
variation is investigated, too. 

Podano warunki jakie musi spelniac nieJiniowy potencjal w r6wnaniach typu Schrodingera 
( opisuj<tce dyfuzj~ defekt6w punktowych w krysztalach), a by te r6wnania byly samosprz~zone. 
Przedyskutowano prawa zachowania wynikaj<tce ze skonstruowanego funkcjonalu Lagrange'a 
oraz z twierdzenia Noether. Zbadano r6wniez zachowanie si~ ctrugiej wariacji. 

llpHBe~eHhi ycJioBWI I<ai<HM ~oJimeH y~osJiernopHTh ueJIHHeHHhiH noTeHQHaJI B ypasueHHHX 
nma llipe~liurepa (onHChiBaiOll.(lie ~H<P<PY3iiiO TO"lleqHbiX ~e<Pei<Tos), "liT06hi 3Tli ypasHeHHH 
6hiJIH caMoconpHmeHHhiMH. PaccMaTpHBaJiliCb 3ai<OHhi nose~eHHH, BhiTei<aiOI.QHe :li3 no­
CTpoeuuoro <PYHI<QHOHaJia Jlarpauma, a Tai<me H3 TeopeMhi HeTep. HccJie~oBaJIOCh Tai<me 
nose~eHH:e BTopoii sapHaQHH. 

1. Introduction 

THE FACT that it is impossible to describe the irreversible processes with the help of Lagrange 
formalism is almost commonly accepted. Nevertheless, it is a fascinating idea to incorporate 
this class of processes into the general scheme of the Hamilton variational principle. The 
first attempt to construct a variational principle for the thermodynamics of irreversible 
processes was made by the Polish physicist W. NATANSON in 1986. His approach is very 
general and includes the variational principles constructed by I. GYARMATI (1969) and 
C. VOJTA (1967) for the linear Onsager thermodynamics of irreversible processes as special 
cases [1]. Recently, a new and very promising variational theory of dissipative processes 
has been proposed by K. -H. ANTHONY [2-5]. 

In order to be able to construct the proper Hamilton principle for the thermal con­
ductivity process, ANTHONY [2] introduced a scalar field of thermal excitations 

(1.1) 'lf(X, t) = }I T(x, t)eitp(x.t), 

where T = T(x, t) is the absolute temperature. The new variable, the phase cp(x, t) of the 
complex field 'lf(X, t), has not found satisfactory interpretation till now. In this paper 
we deal with diffusion of crystal lattice defects. Anthony has described diffusion with 
chemical reactions in [5] and he has introduced there the proper cp functions, too. The 

(*) This work was carried out within the framework of the cooperation program between the Depart­
ment of the Theory of Continuous Media at the Institute of Fundamental Technological Research of the 
Polish Academy of Sciences and the Faculty of Physics at the University Paderborn, FRG. 
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approach to diffusion in this paper is based on the nonlinear Schrodinger-like equation 
[7-9]. It occurs that the formal resemblance to the true Schrodinger equation, for which 
the Lagrange density function (Lagrangian) is well known, is not sufficient to build the 
Lagrangian for the Schrodinger-like equation. We discuss these two theories in certain 
aspects, and propose to interpret the phase q;(x, t) as a parameter describing the interaction 
of the system with the hidden degrees of freedom (the variables not explicitly taken into 
the description of the system). It allows to consider within the framework of Lagrange 
formalism the deviation of the system from equilibrium state. 

Let us very shortly recall the basic points of Lagrange formalism (for more details 
see the papers of ANTHONY [2]-[6] or elsewhere). 

The Hamilton principle says that complete information about the physical system is 
contained in the Lagrange density function 

(1.2) 

a 
where VJ;(x, t) are (in general) complex field process variables, i = 1, ... , Nand o1 = at, 

oa. = a~a. , (X = 1 , 2, 3, and also that the true process causes the Lagrange functional 

(called also an action integral) to have an extremum. This fact is mathematically expressed 
as vanishing of the first variation of the integral 

12 

(1.3) b1J = b1 J dt J dV(x)l(VJi(x , t), o1VJ;(x, t), Da."Pi(x, t)) = 0, 
It fl' 

for arbitrary, free variations of the field variables 'f/J;(x, t) at the time interval [t 1 , t 2], 

keeping fixed the field variables at the end points of the time interval, i.e. bVJ;(x, t 1) = 

= bVJ;(x, t 2) = 0. Here f!JJ is the space volume of integration. 
As a result of applying the Hamilton principle to J, one obtains the set of N Euler­

. Lagrange equations(!) 

(1.4) i = 1, ... , N. 

These are the equations of evolution (of motion) of the physical system. 
A very important feature of the Lagrangian is its invariance with respect to various 

continuous groups of transformations. The most important role is played by the space­
time coordinate transformations (e.g., the Galilean or Lorentz transformations), which 
assume the homogeneity and isotropy of the Universe- the physical laws do not depend 
on the translations and rotations of the physical system in the space-time. The prominent 
Noether theorem assures that a conservation law corresponds to each invariance group 
parameter c, namely 

3 

(1.5) ore+ )""", oa.la. = 0, 
(t) ~. (t) 

(1) We use here the symbols of the total derivative d, (with x = const) and da. (with t = const) rather 
than the partial derivarives or and or:x, because the latter can cause misunderstandings, see e.g. [12]. 
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ON THE LAGRANGE FUNCTIONAL FOR DISSIPATIVE PROCESSES 573 

where e and la. are, respectively, the density and flux of the conserved quantity. We give 
(e) (e) 

here some examples of the conservation laws. 

1.1. Conservation of energy 

One obtains the law of conservation of energy (the first law of thermodynamics) by 
studying the invariance of the Lagrangian with respect to the time translations - the 
result of any experiment does not depend on the choice of the instant of time. In this case 
one has 

the energy density 

(1.6) 

the energy flux density 

(1.7) 

N 

\:1 
E=~ 

i=l 

1.2. Conservation of linear momentum 

The law of conservation of the linear momentum (the second Newton law) follows 
from the in variance of the Lagrangian on the space translations - the result of any experi­
ment does not depend on the point of the Universe. In this case one has 

density vector of linear momentum 

(1.8) 

density tensor of flux of linear momentum (stress) 

(1.9) 

N 

Ga.p=- 2 
i=l 

1.3. Conservation of mass-like observables 

This type of conservation laws follows from the invariance . of the Lagrangian with 
respect to the change of the variables. For the complex field variables one introduces the 
so-called gauge transformations 

(1.10) 

(1.11) 

Vi(x, t) = 1p(x, t)eiAe, 

1p*(x, t) = 1p*(x, t)e- 111•, 
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574 

and, as a result, one obtains the following expressions for the 
mass-like density: 

(1.12) - . [ 8/ 81 *] e- zA 8(8t"P)VJ- -8(8t"P*) "P ' 

mass-like flux density function 

(I.) 3) 

R. KOTOWSKI 

In the case of the Schrodinger wave function 1p(x, t), one obtains the conservation 
of mass or conservation of the electric charge laws in dependence on the choice of the 
gauge factor A. 

2. Diffusion and Nelson-Brown process 

Diffusion is one of the most interesting processes which proceeds on the microlevel 
and gives very important macroeffects. Modern electronics and nuclear energetics are 
the most spectacular examples where the diffusion plays the pivotal part. 

In the papers [7]-[9] a new approach is proposed to describe the diffusion of point 
defects in a crystal lattice. Here we give the outline of the main results only. 

The process of diffusion is described by the so-called Nelson relation 

(2.1) m(8,v+(vV)v-(uV)u+DLiu) = -Cb+F, 

where m is the mass of the diffusing defect, 

(2.2) ( ) 
__ D Vp(x, t) 

U X, t - ( ) , p X, t 

is the osmotic velocity, D is the . diffusion coefficient and p(x, t) is the probability density 
of observing at the instant of time t > 0 a diffusing defect in the neighborhood of a point x 
within a volume dV(x). The probability density p(x, t) satisfies Eq. (2.1) and the Fokker­
Planck equation 

(2.3) 8cP = DLip-div(pb). 

The quantity b(x, t) is the so-called forward velocity with which the particle starts from 
the point x. The peculiar velocity v is connected with b and u by the formula 

(2.4) o = v-b. 

The number n(x, t) of diffusing crystal defects on the unit of volume is connected 
with the probability density p(x, t) in the following way: 

(2.5) ( ) 
_ n(x, t) 

p X, t - N ' 

where N is the number of all diffusing particles. On the other hand, the mass density of 
defects is given by the formula 

(2.6) e(x, t) = mn(x, t), 

http://rcin.org.pl



ON THE LAGRANGE FID-!CIIONAL FOR DISSIPATIVE PROCESSES 575 

and it follows that 

(2.7) ( ) 
_ e(x, t) _ e(x, t) 

p x, t - · mN - M ' 

where M is the total mass of diffusing matter. 
It follows from Eq. (2.1) that in the asymptotic case for the kinetic relaxation time 

(2.8) 

with~ = const, the total force acting on the diffusing particle is given by the Stokes relation 

(2.9) F = ~b, 

where 1 / ~ is called the mobility of the defect, and the diffusion process can be considered 
as a throttled process. 

In the general case, the Stokes relation is not valid, the total force is given by the for­
mula 

(2.10) K(x, t) = - ~b(x, t) + F(x, t) =I= 0, 

and then the diffusion should be described by the Nelson relation (2.1). Following the lines 
of the stochastic quantization method of NELSON [10], it is assumed that the peculiar 
velocity v(x, t) and the external force F(x, t) are the potential fields 

(2.11) 
v(x, t) = 2DVS(x, t), 

F(x, t) = - VU(x, t), 

The osmotic velocity u(x, t) is potential from the very beginning; 

(2.12) u(x, t) = -2DV R(x, t), 

where 

(2.13) R( ) 
= __!_ 1 p(x, t) x, t 

2 
n . 

Po 

In these variables the Nelson relation (2.1) takes the form 

(2.14) 

where 

(2.15) 
2Dm 

V= U+--(R+S+C(t)). 
T 

Here C(t) is a certain integration constant. 
If one introduces the new variable 

(2.16) 

then Eq. (2.1) together with the continuity equation 

{2.17) otp + div(pv) = 0, 
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(for more details, see [7]) give 

(2.18) 

where 

(2.19) 

and 

(2.20) h = 2Dm. 

Equation (2.18) is a Schrodinger-like equation only. It is not a true Schrodinger equation 
because the potential Vis a nonlinear one and the constant h cannot reach the value of the 
reduced Planck constant hj2n. This is easy to see because the temperatures calculated from 
Eq. (2.20) and the Arrhenius formula 

(2.21) D = D(T) = D0 exp[- :~]. 

with the assumption 2nh = h, the experimental data of D0 

(2.22) 

and the activation energy Ea for various metals, are much greater then the corresponding 
melting temperatures. 

3. Lagrange function for the nonlinear Schrodinger-like equation 

Not every N equations for N field process variables make it possible to build up the 
Lagrange function. It is known from the theory of the so-called inverse Lagrange problem 
(see, e.g., [12]) that this set of equations should possess the property of being self-adjoint. 
The conditions to be satisfied so that the set of equations 

N 3 

(3.1) lk = ,2; ,2; (A~1(x, 1p, 01f!)OaOp1pi+Bk(x, 1p, 01p)) = 0 
i=l -x,{J=O 

is self-adjoint are given by K. -H. ANTHONY [11], and this theorem (without proof) is 
quoted in Appendix(2). 

Let us try to find the Lagrange function for our nonlinear Schrodinger-like equation 
(2.18) (we put for the time being C(t) = 0 as not essential to our prospective consi­
derations). We see that in Eq. (2.18) there are two field variables 1p 1 = 1p(x, t) and 
1p2 = 1p*(x, t)(1p*(x, t) is complex conjugated to 1p(x, t). Therefore additionally to Eq. 

(2) For the other formulations of this theorem compare, e.g., the book of SANTILLI [12] or the paper· 
[13]. 
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(2.18) we need one more equation as to get a self-adjoint set of field equation. Using 
the statements of the Appendix we find that 

(3.2)1 11 = ;ha, 'P*- :~ a. a. 'I'*+ U(x)'P* + 2: [In('P'P*)+ ;(In ( ~·}-2)] 'P*, 

and 

(3.2), 12 = -iha,1p- ;~ a. a. 'I'+ U(x)'P+ ;.r(In('P'P*)+iln( ~·)]'I'· 
These two equations are self-adjoint and using Eq. (1.4) they can be formally obtained 
as the Euler-Lagrange equations of the Lagrange functional with the Lagrange density 

(3.3) 
ih h2 

I= 2(1p*0,1p-1p0r"P*)-
2

m Orx'ljJOrx1p*-U(x)1p1p*-M(1p, 1p*)tp1p*, 

where 

(3.4) 

The last term of the function M(1p, tp*) is purely imaginary and that is not admissible 
from our point of view. A Lagrangian of the form like Eqs. (3.3) and (3.4) can be found 
in the literature [15], however its imaginariness is not commented upone). 

The obtained result forces to look for the most general form of the potential depending 
on 1p and 1p* and admissible by Lagrange formalism. The possibility of applying the other 
form of the nonlinear potential to describe the process of diffusion, as considered in this 
paper, is discussed in [9]. 

The requirement of reality of the Lagrange density 

(3.5) l(tp, tp*, a1p, o1p*) = l*(tp, "P*, otp, otp*), 

gives additional constraints on the Euler-Lagrange equations 

(3.6) 

az az az 
11 = d, o(oJp)+drx o(orx"P) otp' 

az az az 
12 = dr o(or"P*) + drx o(orxVJ*) otp* ' 

and it follows that 

(3.7) 

because of Eq. (3.5) 

(3.8) 
al(VJ, 1p*, otp, o1p*) = ol*(VJ, 1p*, 01p, o1p*) = [ ol(VJ, 1p*, otp, o1p*) ]*. 

01p* 01p* 01p 

e) Complex potentials are considered in quantum mechanics [14] to describe, e.g., the inelastic 
scattering of neutrons. We make use of the theorems of the theory of the calculus of variations valid 
for the real functionals. 
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578 R. KOTOWSKI 

A similar argument holds also for the terms oljo(or"P*) a·nd oljo(oa."P*). 
TP.e conditions (3.5) and (3.7) are not fulfilled for Eqs. (3.3) and (3.2). 
We rewrite now Eqs. (3.2) in a more general form 

(3.9) 

where 

(3.10) 

/1 = {fzat"P*+HVJ*+Gl(VJ, "P*)"P* = o, 
l2 = -/izat"P+HVJ+G2(VJ, "P*)"P = o, 

The condition (3.7) holds if 

(3.11) 

From now on we omit the indices of the function Gi(VJ, 1p*) and put 

(3.12) 
G1(1p, 1p*) = G*(VJ, 1p*), 

G2(1p, "P*) = G(1p, 1p*). 

In our case, the only non-trivial identity (A.5) from the theorem results in the following 
condition for G 

o(VJ*G*(VJ, "P*)) a(VJG(VJ, "P*)) 
01p* - 01p 

(3.13) 

which has to be fulfilled in order to get self-adjoint set of Eqs. (3.9). 
We see that the Lagrange density function for the system of equations (3.9) has the 

form 

(3.14) I=_!~ (VJ*OrVJ-"POt"P*)- ;~ Oa.VJOa.VJ*- U(x)"P"P*-L(VJ, "P*)"P"P*· 

It follows from Eq. (3.5) that L(1p, 1p*) is real. The Euler-Lagrange equations for this 
Lagrangian read 

- h2 oL(VJ "P*) 
11 = ihor"P*-

2
m oa.oa."P*+U(x)"P*+L(VJ,VJ*)"P*+ 0~ "P"P* = 0, 

I .h- ~ h2 ~ ~ U( ) L( *) oL( "P, "P*) * 0 
2 = -l Ut1p- 2m Ua,Ua.'l/)+ X 1p+ "/), "/) "/)+ 01p* "/)"/) = • 

(3.15) 

Comparison of Eqs. (3.15) and (3.9), with taking into account Eq. (3.12) gives 

(3.16) 

what implies that G(1p, 1p*) is real, too. When we put, for example, 

(3.17) 

then 

(3.18) 

L(1p, 1p*) = A(ln(VJ"P*)-1), 

G(1p, 1p*) = Aln(VJ"P*). 
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The application of the Noether theorem to the Lagrangian (3.14) gives us the following 
results: 
l. Conservation of energy 

the energy density 

(3.19) 

the energy flux density 

(3.20) 

and the conservation law gives us the known Euler-Lagrange equations (3.15) again. 

2. Conservation of linear momentum 

density vector of the linear momentum 

(3.21) _ iiz ( *o a *) Prx- -2 "P rx"P-"P rx"P ' 

density tensor of the flux of the linear momentum (stress) 

(3.22) arx{J = ;~ (Orx1p*Of31p+Orx"P0f3"P*)+lbrx{J· 

Momentum balance is due, of course, to a vanishing external force 

(3.23) F(x, t) = -VU(x, t) = 0. 

3. Conservation of mass 

mass-like density 

(3.24) 

mass-like flux density 

(3.25) 

When we put 

(3.26) eo 
---;;;-' 

h 

then 

(3.27) 

The conservation law gives the law of the mass conservation (the continuity equation) 

(3.28) 
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where 

(3.29) v. = ;: { :. a.'!'*-~ a. 'I')= ;: a. In ( ~) = 2DO.S(x, t). 

To complete our analysis we rewrite the rest of densities and fluxes as expressed in 

the old system of variables: 
energy 

(3.30) 

momentum 

eo E = e( ~ m(u2 +v2)+ U(x)+L(1p, '!'*)), 
f.!olrx = -e2mD2(VrxOrS(x, t)-urxOrR(x, t)), 

(3.31) 
f.!oPrx = emvrx, 

e0 a.p = -e~.p ( 2mDO,S + ~ m(u2 +v2
) + U+L) +me(u.up+v.vp). 

4. The second variation 

We use in our analysis the tools applicable in the calculus of variations. It is known 

from the ordinary theory of maxima and minima that the necessary condition for the 

functional to have an extremum is the vanishing of its first variation (what is ensured 

by the Euler-Lagrange equations) and that its second variation for the solutions of the 

Euler-Lagrange equations should be [16] 

(4.1) (FJ = I
~ 0 for the minimum, 

~ 0 for the maximum. 

Let us assume the following form of the variation of the process [12] 

(4.2) ~VJ 1 (x, t) = c'YJi(x, t), i = 1, ... ~ N, 

where 

(4.3) ( ) _ OVJ1(x, t, c) I 
'YJi x, t - a , 

E e=O 
i = 1, ... , N, 

and 1p1(x, t, c) is the one-parameter family of real processes, such that 

(4.4) "Pi(x,t,O)= 1p1(x,t). 

It follows that 

(4.5) 

If we admit that the action functional is twice differentiable, we can write 

(4.6) 

where now 

{4.7) 
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(4.8) lim tJ = 0, 
~tp-+0 

' t2 

d'J = •I :. J l,~o = f dt j dV(x)( :~, dvH a(::'P,) d(a.'P;)), (4.9) 

( 4.1 0) 
E2 ! d2 I 

()2J = - --1- J 
2 I dt: 2 

,e=O 

12 

1 f f ( ()2[ ()2[ 
= 2 dt "" dV(x) OVJi 0"P

1 
OVJi OVJ1 + 2 OVJi o( orx "Pi) OVJi o( orx 1p1) 

,, ;r 

()2[ ) 
+ o(orx"Pt) o(op"Pt) o(orx"Pi) o(opVJJ) . 

In the calculus of variations the study of the second variation is called the accessory extremal 
problem and is considered as the variational problem per se. One can attach to every differ­
ential equation its variational equation. The variational equations of the Euler-Lagrange 
Equations (1.4) are the Jacobi equations 

(4.11) i =I, ... , N. 

The kernel Q bas the form 

Here x 0 = t, x 1 = x, x 2 = y, x 3 = z. The variations rJ;(x, t) are the solutions of the 
Jacobi equations. 

Making use of the Euler formula for the homogeneous function of the second degree 
and of the Jacobi equations ( 4.11 ), one can obtain the non-homogeneous balance equations 
[2] 

(4.13) Ors+divJ=a, 
(e) (e) (e) 

where density s, flux J and production rate density a are given by the following formulae: 

density 

(4.14) 

flux 

(4.15) 

w w w 

lex 
(s) 
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production rate density 

(4.16) 

or, equivalently, 

(4.17) 

where 

(4.18) 

(J = 2Q, 
(e) 

a1 
J= ~. -----
(e) ' a( a a. "Pi) ' 

R. KOTOWSKI 

fJ = ] ' 2, 3. 

ANTHONY [2] calls the quantity ·s "entropy" if the perturbation 'YJ are assumed in the 
(e) 

form 

(4.19) 

which is due to the gauge invariance of the Lagrangian. 
For our Lagrange density (3. 1 4) and the gauge transformation ( 1.1 0) of the function tp 

and Eq. (1.11) of the function tp*, the kernel Q has the following form 

(4.20) 
ih h2 

Q = 2('YJ*at'YJ-'YJat'YJ*) --
2
m aa.'Y/aa.'YJ*- U(x)'YJ'YJ* -L(tp, "P*)'YJ'YJ*-N, 

ex = 1, 2, 3, 
where 

N ( aL * aL * a
2 
L \ * 

(4.21 ) = "P a"P -+"P av;* +"P"P a"Pa"P*) 'YJ'YJ 

+H ~·(~ ~: +2 ~~) ~2 +~k :;;2 +2 ::.) ~.,l 
It is obtained from Eqs. (4.14) and (4.15) that 

(4.22) s = 0, 

(4.23) 

The balance equation (4. I 3) gives the following condition for the potential L(tp, tp*) 

(4.24) * aL aL 2 a
2
L *2 a

2
L 2 * a

2
L _ 0 "P a"P* +VJ -a"P +VJ 8~2 +tp -atp* 2 - "P"P a"Pa"P* -

or 

(4.25) ( a a )
2 

"P a;;; - "P* a"P* L = o. 

Thus, as it follows from Eq. (3.16), Eq. (4.25) gives us no new information about L(!p, tp*). 
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It is worth mentioning that the non-vanishing density s, following from Eq. (4.14), 
in ANTHONY's paper [2] is due to the "divergent" term 

(4.26) 2~~.- ln( tp;o*) a,(tptp*), 

in his Lagrangian for the heat conduction. The non-homogeneous balance equation (4.13) 
gives the Fourier heat conductivity equation 

(4.27) catr-J..a.f1aa.opT = o, 
the already known Euler-Lagrange equation. The quantities s, la. and a written in the 
variables ( cp, T) equal zero from the very beginning. A very similar situation can be observed 
also in our case. Equation (4.13) with 'YJ and 'YJ* defined by Eq. (4.19) gives in fact the 
following equation 

( 4.28) tp* (-iii a, 'P - ;~ a. a. 'P + U(x) 'P + G( 'P. tp*) 'P) 

+ 'P (;iia, tp*- {~a. a. tp* + U(x)tp+ G(tp, tp*)tp*) 

-tptp*(tp -:tp -tp* a!• r L(tp, tp*) = 0. 

We already know that all three terms equal zero because of the Euler-Lagrange 
equations and on the basis of the condition (3.16), respectively. It is easy to see, however, 
that one can rearrange Eq. (4.28) to Anthony's "entropy" balance equation (4.13) with 

s = - ihln(-~*), 

(4.29) T - iz2 1 ( * ~ ~ *) Ja. - -
2 

--* 1p ua.1p+1pua.1p , 
m "P"P 

u = -;~ (tp~*)2 (tp*' a~ tpa. 'P + tp2 a. tp* a. tp*)- 2( U(x) + G(tp. tp*)), 

or, in the old system of variables, 

s = 2mDS(x, t), 

(4.30) la. = mDua.(x, t) = -2mD2 oa.R(x, t), 

m . 
a= - 2 (v2 -u2

)- U(x)-G(1p, 1p*) = -2mD2((VS)2 -(VR)2)- U-G. 

We have found that the potential G(1p, 1p*), (compare Eqs. (3.9), (3.12) and (3.l6)) 
admissible from the Lagrange formalism point of view had a form 

(4.31) 
h 

G(1ptp*) = lr ln{tptp*) 

and that the term 

(4.32) iln ( ~·) 

http://rcin.org.pl



584 R. KOTOWSKI 

in our potential (2.19) should vanish. This means that the peculiar velocity 

(4.33) /iz ( 1p*) l'(x, t) = 
2
m V In -:;p , 

vanishes too. This situation corresponds to the stationary case, e = e(x) which is character­

istic for the dissipative structures (compare the discussion in [7] and [9]). It follows from 

Eqs. (2.11)1 and (2.19) that the potential S(x, t) can be represented as 

(4.34) 

If we accept that 

(4. 35) 

S = C(t). 

C(t) = 2Ft/h, 
U(x, t) = U0 (x), 

then our wave function has the form of a stationary solution 

(4.36) 

iFt 

1p(x, t) = </J(x)e ii . 

¢2(x) = e(x) ' 
eo 

and our Schrodinger-like equation takes the following form 

(4.37) 
¢In¢ 1 

DLJ¢ = --+~ (U0 -F)¢. 
i h 

Let us have a look at the notion of the entropy from the phenomenological point 

of view. With the measurable function p(x), called density, such that 

(4.38) J p(x)dV(x) = I, 
R3 

is connected the statistical entropy of the density p(x) defined as follows [17] 

(4.39) 

where 

(4.40) 

and 

(4.41) 

f/(p) = J df/(p(x)), 
R3 

d9'(p(x)) =Po 'I( p~:)) dV(x), 

{ 
-kalna 

rJ(a) = 0 
for 

for 

a> 0, 

a= 0. 

Because of the correspondence 

(4.42) 
p(x) 

Po 

e(x) 

(!o 

http://rcin.org.pl



ON THE LAGRANGE FUNCTIONAL FOR DISSIPATIVE PROCESSES 585 

we can rewrite Eq. (4.39) as 

(4.43) 9'(e) = -k f e(x) In ( e(x) )dV(x) = -k < In ( e(x)) >. 
R3 Qo Qo 

We use here the following notation for the mean value of a function f(x) as 

(4.44) (f(x)) = J f(x)e(x)dV(x). 
R 3 

The rate of the mean value is given by the formula 

(4.45) d(f) = J( of e+f!__g_)dv(x) =I of +vVf) 
dt ot ot \ ot ' 

R 3 

where we have made use of the continuity equation (2.17). 

It is obtained for f = k ln(e/eo) that 

(4.46) d:;e) = k .f gVvdV(x) = 2kD(LlS). 
R 3 

In the stationary case ore = 0, and if we make use of Eq. (2.17) once again, we ob_tain 
that 

(4.47) d9' I 1 ,.. dt = D J uvdV(x). 
st R3 

It follows that one can hardly interpret Eq. (4.30) as being directly connected with 
the entropy. It is seen, on the other hand, that Eqs. ( 4.13) and ( 4.34) give 

(4.48) 

This is a very important result from the methodological point of view. We see that 
studying the second variation enables to find the proper form of the Lagrangian. This 
fact is already recognized in the inverse problem of the calculus of variations. 

5. Conclusions 

In the paper we tried to incorporate the process of diffusion of crystal lattice defects 
described by the nonlinear equation of motion into Lagrange formalism. The approach 
has been only partially successful: the obtained Lagrangian merely describes the stationary 
distributions of defects. 

It was hoped that the form of the equation of motion would be a full success. It was the 
nonlinear Schrodinger-like equation and it was known that for the Schrodinger equation 
the Lagrangian exists. Why then did our procedure fail? To answer this question, one has 
to find the interpretation of the variable cp(x, t) in the papers of ANTHONY [2-5]. It is 
seen, especially from the paper [5], that one can interpret cp as the parameter describing 
the distance from the equilibrium state. In our case we also have a quantity which describes 
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the departure from the equilibrium-this is the drift velocity b(x, t} = v(x, t)-u(x, t). 
But the parameter cp has one more meaning: it embodies explicitly the influence of all 
parameters not included into the main equation of motion, environment inclusively. In 
this sense it "closes" the system. The idea is to incorporate the irreversible (dissipative) 
processes into the Lagrange formalism. The dissipation takes place in an ·enormous number 
of ways, but we can always say that it occurs as the transfer of the energy from the one to 
other degrees of freedom of the system. It follows that the definition of the regarded system 
is very important. The process is irreversible if there is no way to restore both the system 
and its environment to their respective initial states [18]. That is why the environment 
in the wide sense should be included into future investigations. 
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Appendix 

THEOREM [ 1 I]. The set of N functions 

N 3 

lk = _}; }; (A~f(x, 1p, a1p) arx ap"P; +Bk(x, 1p, a"P)), k = 1, .. . , N, 
i=l rx,{J=O 

is then and only then self-adjoint when the folloH:ing identities are fulfilled: 

(A. I) Arti] = o, 
I, !p, O!p 

(A.2) aA~f! I aA~: j 

a(ayl~k) (ik)I,~(}!p a(apl~f , (rx{J)' 

(A.3) (, a2 

Aif 
1 

i ) = ( a: ACI j ! ) ' 
a( a/.4 v/') a( aV 1p ) (t~V) (ikj I, !p, i}!p a( arT. 1p) a( ap"P ) . ! (rxfJ) [ikj 

(A.4) _aBt k- ~ = (~p- +ap"Pj~)Aif, 
a( arT. 1p ) (ik) I, !p, i}!p axe X a"PJ 

(A.5) 2 aB! I = (___;_-+ arx "Pj _?_;)- aB~ 'I . 

a1p [ikj I, !p, (}!p axe X a1pJ a( a rx 1p ) [ikj 

Here "Pi' i = I, ... , N are functions of independent variables xa, (X = 0, l, 2, 3, (x0 = 
= t, x1 = X, x 2 = y, x3 = z). By a;ax~x the explicit differentiation is understood. 
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