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A note on the instability of a vortex sheet leaving a semi-infinite plate 

A. MICHALKE and P. PLASCHKO (BERLIN) 

THE CONTROVERSIAL results pertaining to the inviscid instability of a vortex sheet leaving a semi
infinite plate derived previously by Orszag and Crow and by Bechert and Michel have been 
re-examined. While the former found a solution of the problem, which, however, does not 
satisfy the full Kutta condition, the latter stated that without excitation by sources, only the trivial 
solution exists. It is found that both different methods agree completely, but that the no-Kutta
condition solution of Orszag and Crow, in the sense of Bechert and Michel, reflects the existence 
of a vortex sheet excited by a special dipole sheet along the plate. Furthermore it is shown that 
for vortex sheet problems the use of the pressure instead of the velocity potential is more con
venient. Finally, it is proved that the Wiener-Hopf equation cf the present problem corresponds 
to the differential equation for the vortex sheet displacement derived by Bechert and Michel. 

Przeanalizowano powt6rnie kontrowersyjne wyniki dotyczqce niescisliwej niestatecznosci 
warstwy wirowej opuszczajqcej plyt~ p6lnieskoil.czonq uzyskane przez Orszaga i Crowa oraz 
Becherta i Michela. Pierwsze z wymienionych rozwiqzail nie spelniajq pelnych warunk6w Kutty, 
w drugim zas przypadku stwierdzono, ii: bez wzbudzeil. zr6dtowych istniejq wylqcznie rozwiqzania. 
trywialne. Ustalono pelnq zgodnosc obu metod z tym, i:e rozwiqzanie Orszaga-Crowa niespelnia
jqce warunk6w Kutty w sensie Becherta-Michela odpowiada istnieniu warstwy wirowej wzbu
dzonej przez specjalnq warstw~ dipolowq rozloi:onq wzdlui: plyty. Pokazano ponadto, i:e przy 
rozwai:aniu zagadnieil. warstwy wirowej wygodniej jest korzystac raczej z cisnienia· nii: z potenc
jalu pr~dkosci. Wykazano wreszcie, i:e r6wnanie Wienera-Hopfa omawianego problemu odpo
wiada r6wnaniu r6i:niczkowemu przemieszczeil. warstwy wirowej wyprowadzonemu przez 
Becherta i Michela. 

IloBTOpHO rrpoaHaJIH3Hp;)BaHbl CriOpHble pe3yJihTaTbi, KaCaiOI.QHeCH HeC>KHMaeMOH HeyCTOH
'lllfBOCTit Bltxpesoro cnoH onycKaiOI.Qero nony6ecKoHe'liHYIO nJIHTY, nony'lleHHhie OprnaroM 
It KpoyoM, a TaKme BexepToM H MHxeneM. IlepBbie H3 nepe'liHCJieHHhiX perneHHH He y.n;osneT
BOpHeT rroJIHhiM ycnoBHHM KyTTa, so jHopoM me cny'llae I<oHcTaTHposaHo, 'liTo 6e3 ltCTO'liHI1KoB 
B036y>K.n;eHHH Cyi.QeCTByiOT HCKJIIO'liHTeJihHO TpHBI-laJibHhie perneHHH. Y CTaHOBJieHO IIOJIHOe 
cosna.n;eHae o6oHX 3THX MeTo.n;os, c TeM, 'liTO perneHHe Oprnara-Kpoya, Hey.n;osneTBOpHIOI.Qee 
ycnoBHHM KyTTa B CMbiCJie BexepTa-MrrxenH, oTseqaeT cyi.QeCTBosaHHIO BHxpesoro cnoH, 
Bo36ym~eHHoro cneqHaJihHhiM ,n:HnOJihHhiM cnoeM, pacrrpe,n:eneHHhiM s.n:ono IIJIHThi. KpoMe 
:noro noKa3aHo, 'liTo rrpH paccMoTpeHI-llt 3a,n:a'll BHxpesoro cnoH Bhiro)l;Hee HCIIOJib3oBaTb 
.n;asneHHe, 'lleM rroTeHqHaJI CKopoCTH. HaKoHeq, noi<a3aHo, 'liTo ypaBHeHHe BHHepa-Xoncpa 
o6cym~aeMoi1 3a.n;a'liH, oTseqaeT .n;HcpcpepeHqHaJihHc5My ypasHeHmo rrepeMei.QeHIJH. BHXpesoro 
cnoH, BhiBe.n;eHHOMY BexepToM H MHxeneM. 

1. Introduction 

HELMHOLTZ [1] studied the hydrodynamic instability of an infinitely extended vortex 
sheet as a simple model of a free shear layer in an inviscid, incompressible fluid and found 
instability for all frequencies. 0RSZAG and CRow [2], in the following abbreviated by 
0 and C, extended the theory to a vortex sheet leaving an infinitely thin and semi-infinitely 
long plate in an in viscid, incompressible fluid by application of the Wiener-Hopf technique. 
They found a solution which had, however, some unphysical properties. For instance, 
the vertical displacement h(x, t) of the vortex sheet for periodic time dependence behaved 
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close to the trailing edge (x = 0) like h = O(x 112
). This "no-Kutta" condition had led to 

many discussions about the importance and relevance of the "full-Kutta" condition ohjox ---+ 
---+ 0 for x ---+ 0 for this problem. 0 and C discussed also modified solutions leading to a full 
and a rectified Kutta condition and considered the latter one most reasonable. Using 
a completely different method, BECHERT and MICHEL [3], in the following abbreviated by B 
and M, obtained the controversial result which states that a time-periodic solution to the 
problem does not exist except in the case when an external source excites the vortex sheet. 
However, the reason for the discrepancy with the Wiener-Hopf solution of 0 and C 
remained open, although Band M noted that the 0 and C-solution corresponds to a vortex 
sheet excited by a dipole at the trailing edge of the plate. Unfortunately, this important 
result has been widely ignored. 

More complicated problems have been solved on the basis of the 0 and C-method, 
for instance, the compressible analogue with excitation by a simple point source by CRIGH
TON and LEPPINGTON [4] and the axisymmetric jet problem by CRIGHTON [5], to mention 
only a few. 

In the meantime, BECHERT [6] extended the theory with respect to certain flow par
ameters and to flow-field calculations. Later BECHERT and STAHL [7] were able to verify 
excellently the theoretical results for the excited vortex sheet by experiments. Hence, there 
is no doubt that the results of B and M are correct, but the question remains open what 
relation exists between both results of 0 and C and B and M. 

The aim of the present note is to compare both methods and to find out the reasons 
for the (apparent) discrepancies of their results. It will become clear that both methods 
are correct and lead to identical results, but that the 0 and C-solution can be interpreted 
as a forced solution with the vortex sheet being excited by a special dipole sheet along the 
plate. Furthermore it will be mentioned that the use of the velocity potential for the disturb
ance velocity in both regions outside the vortex sheet can be misleading. As opposed to 
this, the pressure disturbance is found to be a more convenient variable. Finally, the 
comparison of both methods will show quite clearly the nonuniqueness of the Wiener
Hop[ technique and the equivalence of the Wiener-Hopf equation of 0 and C with the 
differential equation derived by B and C. 

In§ 2 the governing equations of the inviscid, incompressible problem are derived with 
emphasis laid on the fact that the vortex sheet has to be considered as the limit case of a 
continuous, finitely thick shear layer. Following the method of B and M in Sect. 3, the 
pressure-displacement equation is solved by means of Poisson's integral. In Sect. 4 the 
problem is, following the method of 0 and C, solved by means of the Wiener-Hopf tech
nique applied to the pressure field. Finally, in Sect. 5, both methods and their results are 
compared. In all cases, it is found that in the strict absence of any "source", a nontrivial 
solution of the problem does not exist. 

2. Governing equations 

Since we want to treat the vortex sheet as the limit of a shear layer of finite, but vanishing 
thickness, we consider a parallel basic shear flow with an x-velocity component U(y) 
in an in viscid, incompressible fluid. For small disturbance velocity u', v' and pressure p' 
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the linearized Euler and continuity equation in the presence of incompressible sources 
become 

(2.1) 

(2.2) 

(2.3) 

where e is the constant density, f~ and fY are dipole-type source distributions and q is a 
simple source distribution. Furthermore the vertical particle displacement hp(x, y, t) 
is introduced, which is related to the v' -velocity by 

(2.4) 

If we take the x-derivative of Eq. (2.1) and the y-derivative of Eq. (2.2), we get with Eq. 
(2.3) 

a2p' o2p' du ov' [ a - a l ofx of y 
(2.5) ox2 + oy2 = -2e dy ox -e at + U a; q+ Tx-+ oy . 

Equations (2.6) and (2. 7) constitute a system for the unknowns p' and hp for given basic 

velocity U(y) and sources q,fx ,JY. 
In the following only the case of a discontinuous shear layer is treated by assuming 

(2.8) iJ(y ) = UH(y) , ~~ = U ~; = Uc5(y), 

where H(y) is the Heaviside unit-step function with H(y > 0) = 1 and H(y < 0) = 0. 

c5(y) = dHfdy is the Dirac delta function with c5(y =f. 0) = 0 and c5(y = 0) = oo. For 
those who are not familiar with the functions H(y) and c5(y), some relations which are used 

in the following are given in the Appendix 1. 
Equation (2.8) implies that at y = 0 there is a vortex sheet with the vorticity Q = 

= -dUfdy = - Uc5(y) in the fluid. A semi-infinitely long and infinitely thin, rigid plate is 

assumed at y = 0, x ~ 0. With Eq. (2.8), the pressure-displacement equations (2.6) and 
(2. 7) become 

o
2
p' o

2
p' [ a a ] [ ohp ] ofx ofy 

(2.9) ox2 + oy2 = -e at + UH(y) ax _2Vc5(y) ox +q. + ox +a:y, 

(2.10) [ 
a a ]2 

op' 
e a~ + VH(y) ax hp = - -ay +fy· 

9* 
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As boundary condition we have to require that op' fox and op' joy--+ 0 for IYI -+ oo 
and for x --+ - oo far upstream save for the case when sources are there. Furthermore, 
the particle displacement hp(x, y, t) has to be continuous across the vortex sheet at y = 0 
for physical reasons. Then h(x, t) = hp(x, 0, t) is the displacement of the vortex sheet. 
Along the plate (y = 0, x ~ 0) the normal velocity component v' and hence the displace
ment must be zero: h(x, t) = 0 for x ~ 0. In addition, · if there is no source along the 
vortex sheet at y = 0, then the pressure must be continuous across y = 0. One can derive 
a patching condition from Eqs. (2.9) and (2.10) which requires that Eq. (2.10) be satisfied 
for y --+ ±0. Finally, from physical reasons it f-ollows that the displacement h has to be 
continuous along the vortex sheet and therefore h -+ 0 for x --+ 0. 

It should be mentioned that without mean flow ( U = 0), a nontrivial solution of Eqs. 
(2. 9) and (2.1 0) satisfying the boundary conditions exists only in the presence of sources. 
Furthermore, if we assume, e.g., a simple point source q = q0 (t) b(x-xs) b(y-Ys) at 
Xs, Ys, the boundary condition along the plate requires additionally a dipole distribution 
fy = Fq(x, t)b(y) for x ~ 0. As a consequence of Eq. (2.10) with hP = 0 for y = 0 and 
x ~ 0, we have a pressure difference across the plate: 

(2.11) L1p = lim[p'(x, + s, t)-p'(x, - s, t)] = Fq(x, t) for x ~ 0. 
e-->0 

This can be obtained by integration of Eq. (2.10) over - s ~ y ~ s for s -+ 0. Some 
examples of solutions for U = 0 are given in Appendix 2 by means of conformal mapping. 

In order to solve Eqs. (2.9) and (2.10), different approaches have been used by 0 & C 
and by B & M. Instead of the pressure p', 0 & C used the potential function (/J which 
is related to the pressure p' by 

(2.12) p' = - (! [ !____ + UH(y) _!___] (/J. 
ot ax 

For y i= 0, (/J is the velocity potential. Since p' is continuous along the free vortex sheet, 
it follows that (/J must have a jump at y = 0 and that (}(/>I oy is not bounded but will contain 
a b(y)-term. This is very inconvenient as compared with the pressure p', especially if the 
limits of o(/Jjoy for y-+ ±0 are needed. These limits make sense only if they are interpreted 
as y--+ ±s with 0 < s ~ 1. Notwithstanding, 0 & C applied the Wiener-Hopf technique 
to the problem to derive the solution for (/J. Instead, B & M derived a differential equation 
for the vortex sheet displacement h(x, t) which has been derived from Eqs. (2.9) and 
(2.10) by means of symmetry conditions for the pressure p'. 

In both methods the Helmholtz solution p0 , h0 for the infinitely extended vortex sheet 
without plate has been separated by assuming 

(2.13) p' = Po+Po h = ho+hc. 

For periodic time dependence, p0 and h0 are the Helmholtz solution, growing exponentially 
in the x-direction, of Eqs. (2.9) and (2.10) which satisfies the boundary conditions at 
IYI --+ oo and the patching conditions at y = 0. The vortex sheet displacement h0 is then 

(2.14) h0 (x,. t) = C0 exp( -ip,1 x-iwt), 

where C0 is an arbitrary constant amplitude, w is the real cyclic frequency and p, 1 is the 
complex eigenvalue of the Helmholtz problem: 

(2.15) p,1 = -(1-i)wjU. 
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There is an additional eigenvalue p,2 which is the conjugate complex value of p,1 • This 
corresponds to a disturbance decaying exponentially for x -+ oo. An analysis of the 
Helmholtz solution for the disturbed free vortex sheet shows that, as required, the displace
ment of the vortex sheet and the pressure is continuous across the vortex sheet, but that 
the y-velocity component v has a jump and, as a consequence of the continuity equation, 
the x-velocity component u has a Dirac contribution. Since h0 # 0 for x ~ 0 along the 
plate, a compensating field Pc, he is necessary to satisfy h = h0 +he = 0 for x ~ 0. he and 
the gradients of Pc are assumed to vanish for Jxl -+ oo. 

In order to compare the different methods of 0 & C and B & M and their results, both 
methods will be re-examined in the following sections. To simplify the analysis, we restrict 
ourselves to a simple point source at (xs, Ys) with 

(2.16) 

for Ys < 0, i.e., the source is located in the fluid at rest. Furthermore we assume .fx = 0 
and restrict the dipole distribution fY to a dipole sheet along the plate with a separate 
contribution Fq(x, t) £5(y) belonging to the simple source, as mentioned above. Hence 
we have 

(2.17) j~ = [Fq{x, t)+Fix, t)]£5(y) 

which vanishes for x > 0. 
Furthermore, since hp(x, y, t} has to be continuous at y = 0, we put the displacement 

of the vortex sheet hp(x, 0, t) = h(x, t). Then, according to Appendix 1, we have 
£5(y)hp(x, y, t) = £5.(y)h(x, t). Finally, the Helmholtz solution p0 , h0 satisfies Eqs. (2.9) 
and (2.10) for q = fx = fY = 0. Hence we obtain from Eq. (2.9) an equation for Pe: 

(2.18) (Jlpc + a2
Pc = [ a a ] ah -2eU£5(y) - + UH(y) - __ c 

~ ~ & ~ ~ 

The first patching condition for y-+ ±0 and all x is due to Eq. (2.10): 

(2.19) ~~ ( t; -<F.+F,)6<y>] = -e(:1 + u :x)\. 
(2.20) }~~oFt; -(F.+F,)6(y)] = -e a;t~'. 
The limits on the left-hand sides of Eqs. (2.19) and (2.20) remain bounded since in Eq. 
(2.1 0} the left-hand side is bounded because of the continuity of hP and the finite jump by 
H(y). Thus, in the presence of a dipole sheet (Fq+Fd # 0) along the plate x < 0, opefoy 
must contain a £5(y)-term which cancels the corresponding Dirac function in Eqs. (2.19) 
and (2.20). By adding both Eqs. (2.19) and (2.20), we obtain a differential equation for he: 

(2.21) e{{:t + U :xr + :
1

2

2 }h, = - [ t- (F9 +F,)O(y)] -[ ~;- (F9 +F,) 6(y)] . 
y-+ +0 y-+ -0 
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The second patching condition is given by the pressure continuity across the free vortex 

sheet for x > 0 : 

(2.22) Pc(X, +0, t) = Pc(X, -0, t) 

while the condition h = 0 along the rigid plate for x < 0 requires 

(2 .23) hc(x, t) = -h0 (x , t). 

In the next section the solution of the problem is derived by a method similar to that 

of B& M. 

3. Solution of the pressure-displacement equation by means of the Poisson integral 

B & M considered only time-periodic solutions of Eq. (2.18) and split Pc into an 

instability field P; and a source field Ps: 

(3.1) Pc = Pt+Ps· 

For the moment being we retain arbitrary time dependence. The instability field Pi has to 

comply with 

(3 a
2
Pt a

2
Pt [ a a ] ahc 

.2) ax2 - + ay2 =-2e Ul5(y) at +UH(y) ax ax =L(x,y, t) 

while the source field is defined with U = 0 and determined by 

(3.3) a
2
Ps a

2
Ps dqo ~ ~ ( ) ~ '( ) 

ax2 + ay2- = -e dt- u(x - xs)u(y - ys)+ Fq+Fd u y. 

For special cases the solution to this equation can be obtained by conformal mapping 

as shown in Appendix 2. The solution Ps is related to its y-velocity component V 5 by Eq. 

(2.2) which yields with U = 0 

(3.4) avs aps ( ) ~ ( ) e --at. = - ay + Fe,+ Fd u y . 

Here vs(x , 0, t) = 0 for x < 0, and V 5 is continuous at y = 0, x > 0. 
B & M concluded from Eq. (3.2) and from the boundary conditions for y --+ ± oo 

that Pi has to be a symmetric function with respect toy. We shall show this more strictly 

by using the Poisson integral. If we treat Eq. (3.2) as a Poisson equation for Pi and assume 

that he vanishes for x --+ ± oo , then the Poisson integral yields the solution of Eq. (3.2): 

oo rn 

(3.5) p;(x, y, t) = }n J d~ J dr;L(~ , r; , t)ln[(x -~) 2 +(y -r;) 2], 
- 00 - 00 

where L(x, y, t) is defined by Eq. (3.2). The integration with respect tor; can be performed 

if we take the properties of the Dirac function l5(r;) into acount (see Appendix 1). Then 

we get with Eq. (3.2) 

00 

(3 6) ( ) - e J [ 2 a2hc a2hc ] 1 [( t)2 . 2] . Pi x,y, t -- 4n d~ u a~2 +2U a~ at n X- '> ;- y . 
- 00 
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It is obvious from Eq. (3.6) that Pi is, in fact, a symmetric function of y. Hence the condition 
(2.22) is satisfied for all x. For y =1- 0 we can interchange the differentiation with respect 
to X or y with the integration over r Then it follows that opdox and opdoy vanish for 
IYI ---+ oo. Especially, we obtain 

(3.7) 

The last factor in the integrand of Eq. (3.7) tends for y---+ ±0 to a Dirac function (see 
Appendix 1). Thus we· find 

The integral/(x) cannot be evaluated unless the term in the square brackets is continuous 
for all r Nevertheless, by introducing Eqs. (3.8) and (3.4) into Eq. (2.21), we note that 
l(x) drops out. Since the Helmholtz solution h0 satisfies the homogeneous part of Eq. 
(2.21 ), we get for the vortex sheet dis placement h = h0 +he: 

(3.9) \[~- u ~}_J
2 

~}h - ovs(x, +0, t) ovs(x, -0, t)- 2 ovs(x, 0, t) 
at+ ax + ot 2 - __ a_t __ + at - _ _ a_t _ _ · 

The required boundary condition is h(x , t) = 0 for x ~ 0. The exciting velocity Vs of the 
sources is unequal to zero only for x :;?: 0. 

The homogeneous equation (3.9) has already been given by HowE [8], while the in
homogeneous equation (3. 9) and its solution has been discussed by MICHALKE [9]. Here 
we shall restrict ourselves to the case of periodic time dependence of vs and h proportional 
to exp(- iwt) where w is the real frequency. Without changing the symbol for the vor
tex sheet displacement (h(x, t) : = h(x)exp(- iwt)) and putting V5 (X, 0, t) = Vs(x) H(x) 

x exp(- iwt), we obtain from Eq. (3.9) 

(3.10) 2 d2h 2' dh 2h ( U - - zwU - -2w = -2iwVs x)H(x). 
dx2 dx 

Eq. (3.10) corresponds to the equation derived by B & M. Its solution satisfying h = 0 
for x < 0 is easily found to be: 

(3.11) 

X 

h(x) = U2 (-
2

iw ) Jd;Vs(;)H(;)[exp[i,u2 (;-x)]-exp[i,ul(;-x)l]. 
ftl + ft2 

- 00 

Here ,u 1 is the Helmholtz eigenvalue (2.15) and ,u2 its conjugate complex value. The solution 
(3.1 1) yields h(x) = 0 for x ~ 0 and tends for x ---+ oo to the exponentially growing Helm
holtz solution with the amplitude being completely determined by the exciting velocity Vs. 

From this equation (3.11), B & M concluded that a nontrival solution does not exist 
without excitation (Vs = 0). B & M calculated the displacement h for excitation by a point 
source q0 =1- 0 leading to Vs = O(x- 112

). The solution (3.11) then satisfied the full Kutta 
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condition h = O(x312
). This can easily be seen by considering the expansion of Eq. (3.11) 

close to the trailing edge of the plate for x ~ + 0: 

X 

(3.12) 2w(fl1- #2) J h(x) = U2( --) d;Vs(;)H(;)(x-;)+ .... 
#1 + flz 

-00 

Excellent agreement of theoretical results with experimental ones has been found byBECHERT 
and STAHL [7] in the range of validity of the vortex sheet approximation. 

For the physical understanding it is necessary to emphasize that, by excitation (q0 =1 0), 
also a dipole distribution Fq =I 0 along the plate exists which, due to Eq. (2.11 ), corresponds 
to a pressure difference Lip across the plate (see Appendix 2). Due to Eq. (3.3) a pressure 
difference Lip can also be generated for q0 = Fq = 0 by a dipole sheet Fd alone along the 
plate for x < 0. In this particular case the solution to Eq. (3.3) with the Poisson integral 
for periodic time dependence is given by 

0 

(3.13) p,(x,y) = :y[ 4~ f dU.(;)!n[(x-~)2 +y2]] = aa;. 
-00 

Furthermore, since the function W satisfies the equation 

(3.14) 
o2 W o2 W 

-ox2 + 8;2 = Fd(x) c5(y)' 

we get from Eqs. (3.4), (3.13) and (3.14) with q = Fq = 0: 

(3.15) 
. ops ~ o2W 

-lWf]Vs = - oy +Fdu(y) = - iJx2 · 

Hence the inhomogeneous part of the differential equation (3.10) becomes 

(3.16) -2iwVs(x)H(x) = 2lim 
0~
2

~ . 
(2 y-+0 uX 

With Eq. (3.13) and with ; = - C we find 

where z = x+ iy and f1l means "real part of". 
Since the left-hand side of Eq. (3.16) vanishes identically for x < 0, the question is 

whether dipole distributions Fd of this type do exist. Let us try: 

(3.18) Fd(x) = G( -xy-1, x < 0, G = constant. 

Then the integral (3.17) can be evaluated (see GRADSHTEYN and RYZHIK [10], formula 
3.194.6): 

(3.19) 
(1-v)nzv- 2 

sin(vn) 
0 < 'V < 2. 
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The branch cut of z"- 2 is located in the negative real axis. Jlt follows from Eqs. (3.15) 
to (3.19) with z = x+iy = rexp{hp): 

-iw v (x ) = _ (1 ~v)G ~[z"- 2] = _ (1 ~v)G _ cos((v-2)<p). 
(3·20) (! s 'y 2sm(vn) 2sm(vn) r 2 _, 

For q; ~ ±n, vs has to vanish for y ~ ±0, x < 0. Hence admissible values of v are either 
v = 1 /2 leading to 

G G 
(3.21) evs(x,y) = -4-----:- ~[z-

312]; (!V5 (X > 0) = -
4

. x- 312 

lW lW 

or v = 3/2 leading to 

( ) _ G mJ[ -t/2] (3.22) (!V5 X, Y - -
4

. <:n Z , 
lW 

It follows with Eq. (3.12) from Eqs. (3.22) and (3.18) that a dipole sheet with Fd "' (- x) 112 

leads to the full-Kutta-condition solution with h = O(x312
), while Fd "' (- x)- 112 with 

Eqs. (3.21) yields the no-Kutta-condition solution h = O(x112
) derived by 0 & C. In 

the latter case it is necessary in evaluating Eq. (3.12) to replace ~- 312 H(~) due to Eqs. 
(3.21) by ~[(~+iy)- 3 1 2 ] and taking the limit y ~ +0 after the integration. Hence it is 
proved that the no-Kutta-condition solution of 0 & C can be obtained by the method 
of B & M, if only a dipole source distribution along the plate is assumed with Fd oc 
( -x)- 112 leading to V5 oc x- 312 • 

Before discussing both dipole sheet solutions in more detail, let us re-examine the method 
of 0 & C in the next section. 

4. Solution by means of the Wiener-Hopf technique 

As already mentioned in Sect. 2 0 & C used the velocity potential (/> in their calculation. 
For the reasons already mentioned we prefer to use the pressure Pc for the solution by 
means of the Wiener-Hopf technique. Analogously to 0 & C, we denote 

[ 
Pc1 (x, y)exp( -iwt) y > 0, 

(4.l) Pc= Pc
2
(x,y)exp(-iwt) y<O. 

From Eq. (2.18) we see that for y i= 0 and q0 = 0 both functions are solutions of the 
Laplace equation. In order to avoid problems with the asymptotic behaviour of the func
tions for IYI ~ oo, the Laplace equation is replaced by 

(4.2) 
[Jlpci (Jlpci 2 
~ + - ay2 = e Pc1 i = 1, 2. 

Here e is a real positive constant which is set zero later. The boundary conditions require 
Pet ~ 0 for y ~ + oo, and Pc2 ~ 0 for y ~ - oo. The first patching condition at y = 0 
valid for all x is given by Eqs. (2.19) and (2.20). These yield for the "bounded" part of 

opcdoy 

(4.3) apcl I 

ay -n[UJ_-iw]
2

h · 
I:: ax c' 

I 

I 
y--+ +0 y--+-0 
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Finally, the second patching condition along the free vortex sheet and along the rigid plate 

are given by Eqs. (2.22) and (2.23). 

In order to solve the problem, a Fourier transform with respect to x is introduced: 

J) 

(4.4) P1 (y, A)= (2n)- 1
/
2 J dxpc 1(x,y)exp(iAx) 

- 00 

and corresponding expressions for P2 (y, A) and C{A) as Fourier transforms of Pc 2 and h0 · 

respectively. 
The solutions of Eq. (4.2) satisfying the boundary conditions for IYI --+ oo lead to 

(4.5) 
P 1 (y, A) = A(A)exp[- (A 2 + s2 )

112y], 

where the branch cuts for (A 2 + s2
)

112 as function of A are chosen in a way that the real 

part is positive for all complex A (see 0 & C). Then in the strip - s < 9'(A) < s both 

functions are analytic. The Fourier transform of the first patching condition (4.3) yields 

(4.6) 

With Eqs. (4.5) it follows 

(4.7) A(A) = -e(UA+w)2 (A 2 +s2
)-

112 C(A), B(A) = ew 2 (A 2 +s2
)-

112 C(A). 

To satisfy the second set of the patching conditions (2.22) and (2.23), half-range Fourier 

transforms will be used as defined by 

0 

(4.8) c_ = (2n)-lfl f dxhc(x)ei).x, 
-00 

00 

c+ = (2n)-l fl J dxhc(x)ei).x. 
0 

It is obvious that C = C++ C_. Analogous relations hold for P 1 and P 2 • Then Eqs. 

(2.22) and (2.23) yield with the half-range Fourier transform of Eq. (2.14) 

(4.9) A+ = B+, C_ = iC0 (2n)- 112 (A-,u1)-
1

. 

Furthermore, from Eq. (4.7), it follows 

(4.10) 
A++A_ = -e(UA+w)2 (A 2 +s2

)-
112 (C++C_), 

With Eqs. (4.9) we find from Eqs. (4.10) 

) _ [(UA+w)
2 
+w

2
] [ • ( 2 )-1/2( ~ _ )-1] 

(4.11 (B_- A_)fe - (A 2 + s2 ) 112 C++ tCo n 11. flt . 

By means of the Helmholtz eigenvalues ,u 1 and ,u2 given by Eq. (2.15) it follows that 

(4.12) (UA+w) 2 +w2 = U2 A2 +2wUA+2w2 = U 2 (A-,u1 )(A-,u2 ). 

Then we can split Eq. (4.11) in a function F_ defined by 

(4.13) F_ = -(A-ic)112 (A_-B_)feU 2 

and a function F+ defined by 

(4.14) F+ = [(A-,u1)(A-,u2)C+ +iC0 (2n)_ 1 ,
2 (A-,u2)](A+is)_ 1

,
2

, 
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F_ is analytic in - oo < Y'(A) < t:, F+ is analytic in - c < Y'(A) < + oo. Both functions 
are analytic in the common strip of overlap - c < 9' (A) < c and there Eq. ( 4.11) requires 
that F+ .= F_. 

The functions F + and F _ agree with those derived by 0 & C by means of the velocity 
potential (/>. From the asymptotic behaviour of the Wiener-Hopf equation F+ = F _ for 
1 AI - oo , 0 & C concluded that F+ = F_ = E = constant. Then: 

(4.15) C+ = [(A-,u1)(A-,u2)]-
1 [{A+it:) 112£-iC0 (2n)- 112 (J, -,u2)]. 

Since C+ has to be regular at A = ,u 1 (,u 1 is located in the upper half-plane), it follows: 

(4.16) (,u1 +it:)112E = iC0 (2n)- 112 (,u1 -,u2). 

This equation relates both constants E and C0 • Furthermore we have 

(4.17) 

With Eqs. (4.9) the results follows: 

(4.18) C().) = C++C_ = [(A-,u1)(A-,u2)]-
1E(A+is) 112 

and 

(4.19) 

which, together with Eqs. (4.7) and (4.5), determines P 1 and P 2 • 

We note from Eqs. (4.5) and (4.19) that A -B is the Fourier transform of the pressure 
difference Llp(x) = Pc(x, + 0)-Pc(x, - 0) across the plate. Hence E -=1 0 implies that 
according to Eq. (2.11) a dipole sheet is present along the plate. The inverse Fourier trans
form of Eq. (4.19) yields (see LIGHTHILL (11]): 

(4.20) 

<Y:) 

Llp(x) = ;-~ -~ J dA[A(A)-B(A)]e-ih = -eU2E(2i/-x) 112 H(-x)eex. 
1 2n 

- 00 

We see that Eq. (4.20) indicates the presence of a dipole sheet with Fd = Lip corresponding 
for c = 0 to that of Eq. (3.18) with v = 1/2. The inverse Fourier transform of C(A) given 
by Eq. (4.18) yields he. For c ~ 0, 0 & C found the no-Kutta-condition solution h = h0 + 
+he = O(x112

). However, if there is no dipole sheet along the plate (£ = 0), only the 
trivial solution h = 0 would exist. 

Finally, it should be mentioned that 0 & C noted that "by adding a periodic, irrotational 
surging around the edge of the plate" a full-Kutta condition solution with h = O(x312

) 

can be obtained. This "added" flow corresponds to the "folded" parallel flow discussed in 
Appendix 2 and yields a dipole sheet like that of Eq. (3.18) with v = 3/2. 

5. Comparison and discussion of both methods 

We shall now compare the results of 0 & C with that of the method used by B & M. 
lt is obvious that the no-Kutta-condition solution of 0 & C corresponds to that which 
is obtained by the method of B & M, when a dipole sheet (3.18) with v = I /2 along the 
plate is assumed. This is equivalent to a pressure difference across the plate. The correspond-
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ing flow field is generated by a "folded" dipole, as can be seen by comparing Eqs. (3.21) 
and (A2.11). 

The full-Kutta-condition solution also mentioned by 0 & C requires a dipole sheet 
along the plate, too. Its distribution Fd is given by Eq. (3.18) with v = 3/2. The correspond
ing flow field is generated by a "folded" parallel flow, as follows from the comparison 
of Eqs. (3.22) and (A2.17). Hence it is obvious that the type of the Kutta condition which 
is found depends on the exciting source type applied, or more precisely, on the transverse 
velocity V5 (X, 0, t) exciti~g the free vortex sheet, as can be seen from Eq. (3.9) or from 
Eqs. (3.11) and (3.12). In the absence of any source generating a nonzero v5 (x, 0, t) and, 
equivalently, a pressure difference LJp across the plate, then no instability wave can exist. 
This confirms the statemeot of B & M. The conclusion can also be drawn from the results 
of 0 & C (case E = 0). 

It should, however, be mentioned that the expressions "source" and "excitation" 
may be a little bit ambiguous. It may be a question of philosophy to denote the necessary 
pressure difference across the plate as the cause for the instability wave to develop ("excita
tion by a dipole source sheet") or to mention the instability wave to be the cause for the 
pressure difference across the plate. In the latter case of interpretation it is, however, 
difficult to explain why such quite different pressure distributions across the plate should 
be generated by the instability wave of the vortex sheet having always the same asymptotic 
behaviour. Furthermore, note from Eq. (A2.9) that the pressure of the ''folded" dipole 
has an infinitely large pressure jump at the trailing edge between x ~ -:-0 and x ~ + 0, 
which is physically quite unrealistic if the presence of a source is excluded. 

A dipole sheet along the plate corresponds to the inhomogeneous term fy = Fd(x) t5(y) 
of the linearized Euler equation which has to be a given quantity. Its existence is a necessary 
condition to generate a fluctuating flow around the trailing edge of the plate in absence 
of any other source. Since only in this way an instability wave is generated, it seems to be 
reasonable to denote the inhomogeneous term in the Euler equation as a "source" . As 
already mentioned, a simple point source placed in the stagnant fluid requires also a dipole 
sheet along the plate, as was shown in Appendix 2. BECHERT [6] discussed the effect of the 
source position Z3 = Xs +irs on the excitation of the vortex sheet. He found that the excita
tion become ineffective if the simple source is placed downstream of the trailing edge of 
the plate right at the vortex sheet. In this case the dipole sheet along the plate vanishes, 
as can be ·seen from Eq. (A2.3) for a source position Z5 = X 5 > 0. Hence we can conclude 
that the existence of a dipole sheet along the plate inducing a flow around the trailing edge 
of the plate is the necessary condition for the existence of an amplified instability wave 
past the trailing edge of the plate. This seems to be reasonable since for U = 0 only the 
inhomogeneous equations have a nontrivial solution satisfying all boundary conditions, 
i.e., if sources are present (at least, Fd =1= 0). The same is obviously true even for U =I= 0. 

It can be shown by means of Eq. (3.9) that even a gound wave coming from the upstream 
stagnant fluid will generate a v 5 (x, 0, t)-distribution along the free vortex sheet which 
leads to an amplified instability wave. The same is true for flow disturbances in the potential 
flow. Assume a potential vortex upstream of the trailing edge convected in the potential 
flow parallel to the plate. If the vortex approaches and passes the trailing edge of the plate, 
a transient instability wave is excited, as can be derived from Eq. (3.9). Again in this case, 
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the vortex requires a dipole sheet along the plate in order to admit only a tangential velocity 
component at the plate. In both cases the full Kutta condition is satisfied. 

Finally, it remains to be shown that the results of the Wiener-Hopf technique applied 
by 0 & C are identical with those of B & M. The Wiener-Hopf equation F+ = F_ yields 
with Eqs. ( 4.9), ( 4.13) and ( 4.14) 

(5.1) 

Here C is the Fourier transform of he and 

(5.2) A-B = lim P1 (y, A)- lim P2 (y, A)= LIP(A) 
y-++0 y-+-0 

is the Fourier transform of the pressure difference Lip across the plate corresponding to a 
dipole sheet with strength Fd = Lip, as already mentioned. The left-hand side of Eq. (5.1) 
is the Fourier transform of a differential equation for he. With Eq. ( 4.12) the inverse Fourier 
transform of Eq. (5.1) yields 

(5.3) 2 d
2
he . dhe 2 2h ( )/ u dx 2 -21wU -dx- w e = R x e, 

where 

00 

(5.4) R(x) = (2n)- 112 J dA(A2 +t:2
)

112LJP(A)exp(-iAx). 
-OC' 

It is obvious that the left-hand side of Eq. (5.3) is identical with that of Eq. (3.10) derived 
by B & M if we take into account the fact that the Helmholtz solution h0 satisfies the 
homogeneous equation (5.3). Hence we should have R(x)/e = - 2iwV5 (x) H(x) if both 
methods are to be equivalent. Moreover, we know from Eqs. (3.10) and (3.11) that a solu
tion h = h0 +he complying with the condition h = 0 for x :::;; 0 requires R(x) = 0 for 
X:::;; 0. 

To interpret the function R(x) of Eq. (5.4), we note that we obtain with Eqs. (5.2) 
and (4.5) 

(5.5) 

From this and Eq. (5.4) we find that 

(5.6) R( ) I
. ope 

1
. ope 

X=- 1m - - 1m - . 
y-++oOY y-+-oOY 

This corresponds to the right-hand side of Eq. (2.21) if, in the presence of dipole sheets, 
only the "bounded" contribution of opefoy is taken. Hence R(x) -=f. 0 for x > 0 requires 
that Pe has an antisymmetric contribution at y = 0. 

In the case that we admit only a dipole sheet along the plate at x < 0 as source, it 
follows from Eqs. (3.10), (3.16) and (5.3) that we must have the identity 

. o2 W 
R(x) = 2hm~, 

y-+0 uX 
(5.7) 
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where W is defined by Eq. (3.13). To show this Eq. (5.4) is re-written as 
00 

(5.8) R(x) = (2n)- 112 J dl(.F + s2) LIP(l)[l2 + s2
]-

112exp(- ilx) 
- 00 

00 

~ !~0.: [ e2
- : : 2 ]{ (2n)-112 I dALI P(A)(A 2 + e2)- 112exp[- ih- (.1.2 + e2)112y]}. 

- 00 

On the other hand, we have with Eqs . (2.11) and (2.17) 
00 0 

(5.9) LI P( A) = (2n)- 112 J d~ Llp(~)eiM = (2n)- 112 J d~ Fi~) eiM . 
- 00 

With Eq. (5 .9) we obtain from Eq. (5.8) 

(5.10) R(x) = 

The inner integral of Eq. (5 .1 0) can be expressed by twice the modified Bessel function 

K 0 (z1 ) where 

(5.11) Zt = c[(~- x )2 + y 2]lf2 

(see GRADSHTEYN and RYZHIK [10], formula 3.961.2). Hence Eq. (5.10) becomes 
0 

(5.12) R(x ) ~ ~id e2
- : : 2 ]{! I dU.(~)K0( E((~- x)2 + y 2JI I2)}. 

- 00 

Since for s-+ +0 K0 (z1)-+ -ln(z1 /2), Eq. (5.12) becomes in the limit s -+ +0 with 

Eqs. (3.13) and (3.14) 
0 

(5.13) 
02 [ I j' ] 02 W R(x) = 2lim-~ -

4 
d~Fi~)1n[(~-x)2 +y2 ] = 2lim~- . 

y-+ 0 u X n y-+0 u X 
- 00 

Hence Eq. (5.7) is proven. This means that the Wiener-Hopf equation F+ = F_ of 0 & C 

is equivalent to the differential equation (3.10) of B & M. The result indicates the well

known fact that the Wiener-Hopf technique cannot yield a unique solution. In the present 

case, F+ = F_ only constitutes a differential equation which relates the vortex sheet 

displacement to the dipole sheet along the plate or, more precisely, to the normal velocity 

distribution along the free vortex sheet induced by that dipole sheet. 

As a consequence of these results, the equivalence of both methods of 0 & C and 

B & M is verified. 

6. Conclusion 

The comparison of the different methods applied to the instability problem of a vortex 

sheet past a semi-infinite plate has shown that both methods are completely equivalent. 

The Wiener-Hopf equation of 0 & Cis essentially the Fourier transform of the different ial 
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equation derived by B & M relating the vortex sheet displacement to the exciting transverse 
velocity along the free vortex sheet. It is proved that a nontrivial solution of the problem 
only exists if any kind of sources is present which leads to inhomogeneous terms in the 
original differential equations. These sources require, in the presence of the half-infinite 
long plate, an additional dipole sheet along the plate which generates a pressure difference 
across the plate and, as a consequence, a flow around the trailing edge of the plate. Sound 
waves or flow disturbances in the potential flow can also excite the vortex sheet. In the case 
of Orszag and Crow, only a special dipole sheet along the plate is the exciting source. 

Appendix 1. Some properties of the Heaviside and Dirac functions 

We consider the Heaviside function H(x) and the Dirac function ~(x) = dHfdx as 
limits of continuous functions, e.g.: 

(Al.1) 

(Al.2) 

H(x) = lim[_!_± _! _arctan(x/s)] = [1~~, 
8-+±0 2 n 

1 , 

X< 0, 
X= 0, 

X> 0, 

~(x) = lim_ _!_ ---\± s\ = [0, x =F 0, 
a-+ -.!:On X +s oo, x=O. 

The properties of the Dirac function lead to the following result: 

X 

(A1.3) f d; F(;) ~(;) = H(x)F(O) 

provided F(x) is bounded and continuous at x = 0. Especially, for F(x) = 1 we have 

X 

(A1.4) J d~ ~(;) = H(x) 
- 00 

which is equal to unity for x > 0. Hence we have equivalently F(x) ~(x) = F(O) ~(x). 
From Eqs. (A1.2) and for F(x) = x", n ~ 1 it follows from Eq. (A1.3) that 

(A1.5) x"o(x) = 0. 

Furthermore, if G = G(H(x)) is a function discontinuous at x = 0 according to its argu
ment H(x), then we have 

00 00 1 

(Al.6) I= f dxF(x)G(H(x)~(x) = F(O) f dxG(H(x))dH/dx = F(O) f dHG(H). 
-co -co 0 

Especially for G = H(x), Eq. (A1.6) yields I= F(0)/2. 
The function 2H(x)-l is identical with the function sgn(x). Hence we have 

(Al.7) 
d d 
dx [sgn(x)] = dx [2H(x) -1] = 2~(x). 
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Appendix 2. Source fields in the presence of a plate 

Solutions of Eq. (3.3) can be obtained by conformal mapping of simple flow fields. 
We consider the complex z-plane (z = x+ iy) with the half-infinite plate at y = 0, 

x < 0. This can be conformally mapped in the upper half-plane of the Z-plane (Z =X+ 

+iY) by 

(A2.1) Z = iz112
• 

The whole X-axis then corresponds to the "up-folded" plate. 
A simple point source at Zs = Xs + iYs, Ys > 0 with its mirror image in the Z-plane 

has the complex potential: 

(A2.2) w(Z) = [Q(t)/2n][ln(Z-Zs)+ln(Z-Z5)], 

where Q(t) is the source strength and the overbar indicates the complex conjugate. It is 
obvious that for Z = X= real w is also real. Then the X-axis is a streamline. If we go back 
to the z-plane, Eq. (A2.2) can be written with (A2.1): 

(A2.3) w(z) = [Q(t)/2n] [In(z- Zs)+ln[( y' z+ l/ zs)/(vz+ v zs)] +In( -I)]. 
Here the first part is the source at z = zs in the z-plane, while the other part takes the effect 
of the half-infinite plate into account. The complex velocity is 

(A2.4) u-iv = dwjdz 

and the pressure is due to the linearized Bernoulli equation 

(A2.5) p = -e9l[8wf8t], 

where "91!" means: "real part of". The expressions for these quantities will not be given 
here. They have been used previously by B & M. However, it can be found that along the 
plate at y = 0, x < 0 there is a u-velocity jump, which corresponds to a vortex sheet, 
and a presssure jump, which corresponds to a dipole sheet with Fq as defined by Eq. (2.11). 

We now consider an X-dipole G;t the origin of the Z-plane. Its complex potential is given 
by 

(A.2.6) w(Z) = [D(t)/2n]Z- 1 

which can also be interpreted as the limit of two counter-rotating potential vortices on the 
Y-axis of equal amount of circulation r placed at Z 0 = ± iY0 , if Y0 --+ 0, while D = 2Y0 T 
remains constant. In the z-plane we get a ''folded" dipole whose complex potential becomes 
with Eq. (A2.1) 

(A2.7) w(z) = [D(t)/2ni]z- 112 • 

The complex velocity is with z = x+iy = r exp(iq;) and with Eq. (A2.4) 

(A2.8) u-iv = [iD(t)/4n]z- 312 = [D(t)/~n]r- 312 [sin(3q;/2)+icos(3q;/2)]. 

We see that for q;--+ ±n along the plate v = 0 and u = ±D(t)/4nr-312
• The pressure 

becomes, due to Eqs. (A2.5) and (A2. 7) 
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(A2.9) p = ( e ~ f2n) !Jl[iz- 112
] = e ~ sin(q;/2)/(2n Jli) 

dD 
= edt sgn(y) [(r- x)/2]112 /(2nr). 

Here also a pressure jump exists along the plate at y = 0, x < 0 which yields, due to Eq. 
(2.11 ), a dipole sheet with the strength 

dD 1 dD 
(A2.10) Fd = e-d -[(lxl-x)j2x2 ]112 = e-d [H(-x)flxi]11 2 jn. 

t n t 

Note that this discontinuity is associated with the branch cut of the function z 112 located 
in the negative real axis, i.e., at the location of the plate. Furthermore, they-component 
of the velocity, v, is due to Eq. (A2.8): 

(A2.11) v = - [D(t)f4n]Bl([z- 312]. 

Finally, we consider a parqllel flow in the Z-plane with 

(A2.12) w(Z) = W(t)Z. 

This yields a "folded" parallel flow in the z-plane with Eq. (A2.1) which has also been 
considered by B & M: 

(A2.13) w(z) = W(t)iz 112 • 

The complex velocity is with z = x+iy = rexp(hp) and with Eq. (A2.4): 

(A2.14) u- iv = [iW(t)/2]z- 112 = W(t)[sin(cp/2) + icos(cp/2)]/(2r112
). 

At cp ~ ±n along the plate again we have v = 0 and u = ± W(t)/(2r 112
). The pressure 

is due to Eqs. (A2.5) and (A2.13): 

(A2.15) p = · -e dW Bl[iz112] = e dW r 112 sin(cp/2) = e dW sgn(y)[(r-x)/2]112 • 
~ ~ ~ 

Again we have a pressure jump across the plate for y = 0, x < 0 which yields a dipole 
sheet due to Eq. (2.11) with the strength 

(A2.16) 
dW - dW 

Fd = 2e dt [(lxl-x)/2]112 = 2e dt [lxiH( -x)]112
• 

The v-velocity becomes, from Eq. (A2.14), 

(A2.17) v = -(W(t)/2)9l[z- 112
]. 
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