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A uniqueness theorem in anisotropic viscothermoelasticity 
of integral type 

I. LUCA (BUCHAREST) 

THIS PAPER is concerned with a uniqueness theorem for the mixed problem within the framework 
of a linearized theory of materials with memory predicting finite speeds of propagation. 

W pracy zaj~to si~ twierdzeniem o jednoznacznosci rozwictzan dla problem6w mieszanych 
· zlinearyzowanej teorii material6w z pami~cict, prowadzctcych do skonczonych pr~dkosci pro­
pagacji zaburzen. 

B pa6oTe 3aHHMaJOTCH TeopeMo:H o6 e.QHHCTBeHHOCTH perneHH:H .QJIH cMernaHHhiX 3a.Qaq JIHHe­
apH3oBaHHOH TeOpHH MaTepHaJIOB C naMHTbiO, npHBO,Q.Hll(HX K KOHeqHbiM CI<OpOCTHM pacnpo­
CTpaHeHHH B03Myll(eHHH. 

1. Introduction 

A MATHEMATICAL theory which is able to account for memory effects and for propagation 
of finite thermal discontinuities with finite speeds was proposed by GURTIN and PIPKIN 
[1]. Their theory is confined to rigid materials. In [2] McCARTHY removes this restriction 
by formulating a theory of thermomechanical materials with the same essential features 
as those from [1]. The linearized version of the constitutive equations considered in [2] 
is given in [3]. 

There exist some investigations concerning uniqueness theorems for history-value 
problems appropriate to the linearized theory from [1] see [4-7]. In this work we give 
a uniqueness theorem concerning the anisotropic viscothermoelastic material d~fined in 
[3) and occupying a bounded region in space. Its proof makes use of an argument given 
by Edelstein and Gurtin [8] for a similar result in the case of anisotropic viscoelastic 
solids. 

2. Notations 

Statement of the mixed problem. Let D be a regular bounded region (in the sense 
of KELLOG [9]) of a three-dimensional Euclidean space E. Denote by D, oD and n its 
closure, boundary and unit outward normal, respectively. Du, Da and D8 , D 2 stand for 
complementary subsets of oD i.e., oD = DuuDa = DouD2' DunDa = DonDl = (/>. X is 
a point of E and t stands for time. The initial value f(x, 0) (or f(O)) of a function f(x, t) 
(or f(t)) is denoted by / 0 (x) (or / 0 ) . 
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536 I. LUCA 

The constitutive equations of a visco-thermoelastic material of integral type are (see 
[3]) 

00 

T(x, t) = G0 (x)E(x, t)+ J G(x, s)E(x, t-s)ds-N0 (x)T(x, t) 
0 

00 

- J N(x, s) T(x, t-s)ds+ J R(x, s)g(x, t-s)ds, 
0 0 

00 

(2.1) (]o'YJ(X, t) = N 0(x) · E(x, t)+ J P(x, s) · E(x, t-s)ds+g0 (x)T(x, t) 
0 

00 00 

+ J g(x, s) T(x, t-s)ds+ J r(x, s) · g(x, t-s)ds, 
0 0 

00 

1 J . -& ·q(x, t) = J 0 (x)E(x, t)+ J(x, s)E(x, t-s)ds+h0 (x) T(x, t) 
0 0 

00 00 

+ J h(x, s) T(x, t-s)ds+ J K(x, s)g(x, t-s)ds. 
0 0 

Here T i) the stress tensor, E = Vu, where u is the displacement and V is the symmetric 
gradient, 'YJ- the specific entropy, q- the heat flux, eo, () 0 - the uniform(!) density 
and absclute temperature, respectively, in the reference configuration, T = () -(}0 - the 
temperatJre difference, g - the temperature gradient and tr - the trace operator. The 
constitutive functions appearing in Eq. (2.1) are defined on D x [0, oo) and have the 
following values: G(x, s) is a fourth-order tensor, N(x, s), P(x, s) are symmetric tensors 
of order 2, K0 (x, s) is a tensor of order 2, R(x, s), J (x, s) are third-order tensors, r(x, s), 
h(x, s) are vectors and g(x, s) is the scalar. The superposed dot stands for time differentia­
tion. In [3] it is shown that the Clausius-Duhem inequality implies 

(a) G0 (x) symmetric, 
(b) N 0 (x) = P0 (x), 
(c) K(x) symmetric and negative semi-definite. 

Other symmetry properties have been proved using additional assumptions, logically 
independent of the entropy inequality. Thus it is found that the heat-work done on every 
closed path starting from the virgin state is invariant under time reversal if and only if 

G(x, s) is symmetric, 

(2.2) N(x, s) = P (x, s), 
R(x, s) = JT(x, s)+constant, 
r(x, s) = -h(x, s)+constant, for every (x, s) ED x [0, oo). 

In the theorem some of these properties are used. 
The balance equations which are to be satisfied on D x (- oo, oo) are 

(2.3) 

(1) In fact eo may depend upon x. 
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where b is the body force and r is the heat supply. Suppose that 
(i) b(x,t)=O, r(x,t)=O on Dx(-oo,O); 

(ii) b(x,t) and r(x,t)areofclass~1 on Dx(-oo,oo); 
(iii) G(x, s), N(x, s), R(x, s), P(x, s), g(x, s), r(x, s), J(x, s), 

h(x, s), K(x, s) 
are of class ~2 on D x [0, oo ). 

By a solution to the mixed problem we mean a pair (u, T) having the properties: 
(iv) u is thrice continuously differentiable, while Tis twice continuously differentiable 

on i5 x (- oo, oo); 
(v) (u, T) satisfies the field equations (2.3) and the constitutive equations (2.1) on 

Dx(-oo,oo); 
(vi) (u, T) satisfies the initial conditions 

(2.4) u(x , t) = 0, T(x, t) = 0 on 15 x (- oo, 0]; 

(vii) on oD the following boundary conditions are to be satisfied: 

u(x, t) = u(x, t) on 8D11 x [0, oo), 

(2.5) 
T(x, t)n(x) = t(x, t) = t(x, t) 

T(x, t) = T(x, t) on 

on 8Dax[O,oo), 

8D0 X (0, oo ), 

q(x, t) · n(x) = q(x, t) on 8D2 x [0, oo). 

In view of the initial conditions (2.4), the constitutive equations (2.1) become 

I I t 

T(x , t) = J G(x, t-s)E(x, s)ds- J N(x, t-s) T(x, s)ds+ J R(x, t-s)g(x, s)ds, 
0 0 0 

I I I 

(2.6) (!o'YJ(X, t) = j'P(x , t-s) · E(x, s)ds+ J g(x, t-s) T(x, s)ds+ J r(x, t-~)·g(x, s)ds, 
0 0 0 

t t t 

fq(x, t) = J J(x, t-s)E(x,s)ds+ J h(x, t-s)T(x,s)ds+ .f k(x, t-s)g(x,s)ds. 
0 0 0 0 

3. Uniqueness theorem 

The proof of the theorem uses the following lemma. 
LEMMA 3.1. Let (u, T) be a solution to the mixed problem corresponding to null data. 

Then 

(3.1) 0 = + J {eoii(x, t) · ii(x, t)+.E(x, t) · G0 (x)E(x, t)+g0 (x)T2 (x, t) 
D 

-g(x, t) · K0 (x)g(x, t)} dx 

I 

+ J J {[- Go(x)E(x, r) + N0 (x) T(x, r)-R0 (x)g(x, r)] · E(x, r) 
D 0 
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(3.1) 
[const .) 

t 

I. LUCA 

+ rPo(x) · E(x, r)+ko(x)T(x, r)+ ro(x) · g(x, r)]T(x, r) 

+ [j0 (x)E(x, r)+h 0 (x)T(x , r)+K0 (x)g(x, r)] · g(x, r)}drdx 

+ J J {[G(x, t-r)E(x, r)-N(x , t-r)T(x, r)+R(x , t-r)g(x, r)] · E(x, t) 
D 0 

+ [- j ( x, t- r) E ( x, r) - h ( x , t - r) T( x , r) - K ( x, t- r) g ( x, r)] · g ( x, t)} dr dx 
t 

+ J {t(x , t) · R0 (x)g(x , t)- J (R0 (x)+J6(x)) g(x, r) · E(x, r)dr 
D 0 

( 

+ J (r0 (x)-h 0 (x)) 'g(x, r)T(x , r)dr}dx 
0 

t T 

+ J J J {[-G(x, _r-s)E(x, s)+N(x , r-s)T(x, s)-R(x, r-s)g(x, s)] · E(x, r) 
D 0 0 

+ [P(x, r-s) · E(x, s)+ g(x, r-s) T(x, s)+r(x , r-s) · g(x, s)] T(x, r) 

+ [J(x, r-s)E(x, s)+h(x, r-s)T(x, s)+K(x, ·r-s)g(x, s)] · g(x, r)}dsdrdx. 

Proof. Taking into account the null data, the divergence theorem, Fubini's theorem 
and the balance equations (2.3), one arrives at 

( ( 

0 = .r f t(x, r). ii(x , r)dxdr+ f J eob(x, r) . ii(x, r)dxdr 
0 oD 0 D 

( t 

f J I . If (!o • - 0 T(x, r)q(x, r) · n(x)dxdr+ 0 T(x, r)r(x , r)dxdr 
0 oD 

0 
0 D 

0 

= +flo ii(x, t) · ii(x, t)dx 

( 

+ J J JT(x, r) · E(x, r)+e0 1J(x, r)T(x, r)- -f q(x , r) · g(x, r)lJ dxdr. 
0 D l 0 

Integrating by parts and using the initial conditions (2.4), the foregoing relation becomes 

(3.2) 0 = -~ J eoii(x, t) · ii(x, t)dx+ J{t(x, t) · E(x, t)- ~- q(x , t) · g(x, t)l dx 
D D 0 

( 

+ JJ{-T(x , r)·E(x, r)+eo1J(x , r)T(x, r)+~- ij(x , r)·g(x, r)}dxdr. 
0 /..) 0 
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Substituting in Eq. (3.2) the constitutive relations (2.6) and using the symmetry properties 
(a)-( c), after a long routine calculus one arrives at the theorem (3. 1). 

Now we give the uniqueness theorem. 
THEOREM 3.1. If the following properties 

G0 (x) is positive definite, 

g0 (x) > 0, 

(3.3) K0 (x) is negative definite, 

R0 (x) = Jb(x) = 0, 

r0 (x) = h0 (x) 

hold, then there is at the most one solution to the mixed problem. 
Proof. Let (u 1 , T1) and (u2 , T2) be two solutions to the mixed problem. The unique­

ness is proved if we may show that (u, T) = 0 on D x (- oo, oo) where u = u1 - u2 , 

T = T1 -T2. 
From the relations (3.1) and (3.3)4 it foiiows that 

(3.4) 0 = + J {e0 ii(x, t) · ii(x, t)+E(x, t) · G0 (x)E(x, t)+g0 (x)T2 (x, t) 
D 

-g(x, t) · K 0 (x)g(x, t)}dx 

t 

+ J J {[ -G0 (x)E(x, r)+N0 (x) T(x, r)-R0 (x)g(x, r)] · E(x, r) 
D 0 

t 

+ [P0 (x) · E(x, r) + g0 (x) T(x, r) + r0 (x) · g(x, r)] T(x, r) 

+ [j0 (x)E(x, r)+h0 (x)T(x, r)+K0 (x)g(x, r)] · g(x, r)}drdx 

+ j J {[G(x, t- r)E(x, r)-N(x, t- r)T(x, r)+R(x, t- r)g(x, r)] · E(x, t) 
D 0 

+ [- j(x, t- r)E(x, r)- h(x, t- r) T(x, r)- K(x, t- r)g(x, r)] · g(x, t) }drdx 

t r 

+ J J J { [- G(x, r-s)E(x, s)+N(x, r-s) T(x, s)-R(x, r-s)g(x, s)] · E(x, r) 
D 0 0 

+ [i\x' T-s). E(x' s) + g(x, T-s) T(x' s) + r(x' T- s). g(x, s)] T(x, r) 

+ [J(x, r-s)E(x,s)+h(x, r-s)T(x, s)+K(x, r-s)g(x, s)] · g(x, r)}dsdrdx. 

Now identify the tensor-valued constitutive functions with their representative matrices 
in a rectangular Cartesian frame as fo1Iows (see [8]): G(x, s) denotes a 6 x 6 matri.x, 
N(x, s)- a 6 x 1 column vector, P(x, s)- a 1 x 6 line vector, R(x, s)- a 6 x 3 matrix, 
J(x, s)- a 3 x 6 matrix, r(x, s)- a I x 3 line vector, h(x, s)- a 3 x 1 column vector and 

K(x, s)- a 3 x 3 matrix. Also let l be the 3 x 3 identity matrix, yeo u(x, t) and g(x, t)-

8* 
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ness is proved if we may show that (u, T) = 0 on Dx (-oo, oo) where o = o1 -o2 , 

T = T1 -T2. 
From the relations (3.1) and (3.3)4 it foJlows that 

(3.4) 0 = ~ J {e0ii(x, t) · ii(x, t)+E(x, t) · G0 (x)E(x, t)+g0 (x)T2 (x, t) 
D 

-g(x, t) · K 0 (x)g(x, t)}dx 

t 

+ J J { [-G0 (x) E(x, r) + N0 (x) T(x, r)- R0 (x)g(x, r)] · E(x, r) 
D 0 

t 

+rPo(x) · E(x, r) + io(x) i(x, r) + ro(x) · g(x, r)l T(x, r) 

+ [j0 (x)E(x, r)+h0 (x)T(x, r)+K0 (x)g(x, r)] · g(x, r)}drdx 

+ j J {[G(x, t- r)E(x, 't)-N(x, t- r)T(x, r)+R(x, t- r)g(x, r)] · E(x, t) 
D 0 

+ [- j(x, t- r)E(x, r)- h(x, t- r) T(x, r)-K(x, t- r)g(x, r)] · g(x, t) }drdx 

t r 

+ J J J { [- G(x, r-s)E(x, s)+N(x, r-s) T(x, s)-R(x, r-s)g(x, s)] · E(x, r) 
D 0 0 

+ [P(x, r-s) · E(x, s) + g(x, r-s) T(x, s) +r(x, r- s) · g(x, s)] T(x, r) 
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8* 
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hence 

C(x, t) = 0 on D x [0, oo). 

This implies 

ii(x, t) = 0, T(x, t) = 0 on D x [0, oo). 

Since u(x, t), u(x, t) and T(x, t) are continuous and because of the initial conditions (2.3), 
one obtains the desired conclusion 

u(x, t) = 0, T( x, t) = 0 on D x (- oo , oo) . 

Note that the conditions (3.3) 1-(3.3h become in the isotropic case 

A0 > 0, flo > 0, c0 > 0, 

and make possible the propagation with finite velocities of the thermomechanical distur­
bances (see (10]). But the restrictions (3.3)4 , 5 have no theoretical or experimental grounds. 
They are only sufficient to have a unique solution to the mixed problem. Also, if the heat­
work done every closed path starting from the virgin state is invariant under time-reversal, 
then the assumptions (3.3)4 , 5 determine the constants from the conditions (2.2h. 4 • How­
ever, if the material is centrosymmetric or isotropic, then 

R(x, s) = JT(x, s) = 0, r(x, s) = h(x, s) = 0, 

hence the conditions (3.3)4 , 5 are automatically satisfied. 
It is worth mentioning that the thermoelastic material of the Cattaneo type for which 

q(x, 0) = 0 is a particular kind of visco-thermoelastic material (see (11]). In view of the 
null data required by the proof of the uniqueness theorem, it follows that for this particular 
material the uniqueness problem is equivalent to that considered within the framework 
of the theory of the Cattaneo type. Thus our Theorem 3.1 provides the uniqueness to the 
mixed problem corresponding to the mentioned theory. 
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