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Nonlinear scalar parabolic equation 
describing the temperature and flow of a heat conducting gas 

Z. PERADZYNSKI (WARSZAWA) 

WE ARE CONCERNED with the quasi-static flow of a heat conducting gas under some additional 
assumptions allowing for reduction of the system of five flow and energy equations to a certain 
nonlinear parabolic equation. Some properties of this equation are considered; the uniqueness 
and existence of global solutions is proved. The elliptic (stationary) case is also considered. 

Zajmujemy si~ quasi-statycznym przeplywem gazu przewodzctcego cieplo przy pewnych dodat­
kowych zalozeniach umozliwiajctcych sprowadzenie pi~ciu r6wnan przeplywu i energii do nie­
Jiniowego r6wnania parabolicznego. Rozwazono pewne wlasnosci tego r6wnania; udowodniono 
twierdzenia o istnieniu i jednoznacznosci rozwictzan globalnych. Rozwazono r6wniez przypadek 
eliptyczny (stacjonarny). 

3aifMeMCH: KBa3HCTaT:uqeCKHM TeqeHHeM TellJIOllpOBO,Will.{ero ra3a np:u HeKOTOpbiX ,D;OllOJIHH­

TeJibHblX npe,D;TIOJlO}I{eHHHX ,o;aiOI.I.{HX B03MO}I{HOCTb CBe,D;eHHH llHTH ypaBHeHHH TeqeHHH 

H :mepnm K HeJIHHeHHOMY napa6oJI:uqecKoMy ypaBHeHHIO. 06cym,o;eHbl HeKOTOpbie CB0HCTBa 

3TOrO ypaBHeHHH; ,D;OKa3aHa TeopeMa Cyll.{eCTBOBaHHH H e,D;HHCTBeHHOCTH rJio6aJibHbiX peWeHHH. 

06cym,o;eH Tome 3JlJIHTITHqeCKHH (cTai.{HOHapHbiH) CJiyqaif. 

1. Introduction 

IN MANY circumstances, when considering the flow of heat conducting gas, the flow itself 
is relatively slow whereas the temperature and hence the density of the gas may widely 
vary a few times or even more. In such cases when the flow takes place under constant 
exterior pressure, the influence of local variation of pressure due to dynamical effects 
on the local density can be neglected. Indeed, the dynamical pressure is of the order of 

( ()v )2 ()p ( ()v )2 
e -

2
- which, compared to p = RTe, leads to 2 = 

2
RT = (()v)2 /2c~, where 

c~ = RT is the isothermal sound velocity. Therefore, if the variations of the velocity in 
the flow are not too large, when compared to the velocity of sound, the pressure in the 
equation of state can be assumed to be constant. In this way the density e becomes the 
function of the temperature only. Thus the fluid is considered to be incompressible but 
temperature extendable. On the other hand, the gradient of the pressure cannot be removed 
from the momentum equation since it is of the same order as other terms in the equation. 
Thus the pressure in the momentum equation becomes a free variable not related to density 
as it always takes place in the theory of incompressible fluids. 

When the flow is realized in the vessel of a finite volume, the total pressure may change 
due to the heat supply. In that case one may still preserve the splitting of the pressure into 
the independent dynamical part p, appearing in the momentum equation and the "average 
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pressure" P which appears in the state equation. This can be done by assuming that the 

average pressure P can only depend on time. Integrating the state equation over the whole 
volume 

P(t) f ~dx = R f edx = Rm, 
Q Q 

the dependence of P on t can be determined. Here m denotes the total mass of the gas. In 

such a case, however, we have a functional dependence of e on the temperature 

Although further considerations can be carried out, in this case we will not deal with them 
because they lead to some additional complications for the boundary conditions. 

1. Derivation of the basic equation 

We start from the following system of equations in R3 : 

e ~~ +Vp = 1]L'tv+V(Cdivv), 

(1.1) de d. o dt +e IVV = , 

dT d" T) ecPdt = tv(xV +Q, 

d a 
where cP = cp(T) > 0, x = x(T) > 0, Q(x, t) ~ 0. Heredt = Tt+v · V; v = v(x, t)-

velocity field . 
To simplify the system (1.1) we assume the following hypothesis: 

HI. density e is a function of the temperature only, i.e., e = e(T); 
H2. 'YJ - the first viscosity coefficient is constant; 

H3. a) the inertial force e ~~ is negligible, or 

dv _ dv 
b) edt may be replaced by e dt' where (average) e is constant; 

H4. the ratio e; T : = - ~ is constant, ~ ~ 0. 
(! Cp . 

The last assumption is satisfied, for example, in the case of an ideal gas P = RTe 
under constant pressure. In this case one gets ~ = RfPcP. 

In general H4 implies that the specific enthalpy, under constant pressure, is given (or 
may be approximated) by the formula 

1 
h(T) = h0 + ~e(T) 
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resulting from the integration of the formula in H4. The assumption H 1 is well justified 
when the flow velocity is small compared to the velocity of sound. In that case the influence 
of small changes in pressure on the density may be neglected. Multiplying the continuity 

equation (l.lh by ecP and the energy equaton (l.lh by (.!,T, one arrives, after subtracting 
one from the other, to the following equation: 

(2 2 Cvdivv+e.T[div(xVT)+Q] = 0, 

which, by the assumption H4, is reduced to 

(1.2) div(v-axVT) = aQ. 

The general solution to this equation can be written as 

( 1.3) 

where i hp = Q and div vs = 0. 
Now, according to the assumption H3, we consider two cases: 

a. When H3. a) holds, then vs must satisfy the Stokes equations 

(1.4) 

Since the inertial terms are not present in the case H3. a, the initial condition for v must 

be relaxed. As this case can be formally obtained by assuming e ---+ 0, we have the following 
physical picture - in the short time scale, of order 1 /Q, the flow parameters are adjusted 

in such a way that vs satisfies Eq. (1.4). 
The natural boundary condition for vs in R 3 is that vs tends to a constant flow v 0 , 

for lxl ---+ oo. In this case the only solution of Eq. (1.4) for vs is Vs = v 0 • However, one can 
admit also unbounded solutions for vs, assuming, for example, that vs is a shear flow. 

b. When H3. b) holds, we assume that vs is a gradient of a potential cp satisfying L1cp = 0 
or even somewhat less for non-simply connected domains, that vs is rotation and divergence­

free 

(1.5) rotvs = 0, divvs = 0. 

Let us notice that if vs satisfies Eq. ( 1.5), then it satisfies also the Navier-Stokes equations 

with constant density. 
Inserting the expression (1.3) into the momentum equation (1. 1) 1 , we see that in both 

cases a) and b) of the hypothesis H3 the equation is fulfilled since every term in the equation 

has the form of a gradient. Therefore this equation serves for the determination of the 
pressure. 

Applying now the expression (1.3) in the energy equation (I.lh, we arrive at the follow­

ing nonlinear parabolic equation: 

(1.6) 

where q(x, t) = a'Vlp+ ·vs. At this moment it is convenient to introduce a new variable, 

heat potential s = J x(T) dT. This reduces our equation to 

(1.7) e~. { ~~ + 1X(Vu)2 + q · vu} = Llu+Q, 
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or to another divergent form 

(1.8) 

where 

au . fJ 2 -81- = d1v(aVu)- (Vu) -q · Vu+aQ, 

X 
a= -­ec, ' 

da 
fJ = I+ ds' 

Let us note that having any solution of Eq. (1.6) (let it satisfy T ~ const at infinity), 
one can determine from Eq. (1.3) the corresponding solution of the whole set of flow 
equations (with e = 0 or Q ~ e according to H3. a or b). 

2. Existence theorems 

In order ~o prove the existence of solutions, we refer to suitable theorems proved in [2]. 
Chapter 5. We are searching, however, nonnegative solutions of Eq. (1.8) and need addi­
tional estimates. These estimates are based on the notion of sub and supersolutions. Let 
us consider the initial boundary value problem (IBVP) 

!l'u = Ur-div(a(u)Vu)+b(x, t, u, Vu), 

u ja'tiT = X, QT = Q x [0, T], 
(2.1) 

where (}'Qr denotes Q x {O}uoQ x [0, T] and where Q x Rn is a bounded domain with 
C 2 +f1 boundary oQ. We assume that x(x, t) in the relation (2.1) is a restriction of a 
cl+fJ.t+fJ/l function on Rn X R to (} 'QT. 

DEFINITION. A function ~(x, t) E C 2
'
1 (Qr) (or u E C 2

•
1 (Qr)) is called a subsolution 

(a super solution) for IBVP (2.1) if the following inequalities are true: 

!1'7;! ~ 0 (!l'u ~ 0) in Qr and l:! l a't~r ~ x (il ia' tiT ~ x). 
Sub and supersolution are useful in finding a priori estimates for the supremum norm 

of the solution. We recall: 
THEOREM 1. Let l;!(X, t) E C 2

•
1(Qr) (or u(x, t)) be a subso/ution (superso/ution) of the 

JBVP (2.1) and let u(x, t) be a solution of IBVP (2.1) of class C 2 •1 , then 

l;!(X, f)~ U(X, t) (u(X, f)~ U(X, t)) in !Jy. 

In order to prove this, let us notice that denoting by w the difference u- y, we have 

(2.2) 

with 

!l'u-!l'y = Wr-div(a1 Vw)-div(~w)+dVw+cw ~ 0 

W !o'.!h ~ 0, where CXt > 0, ~ = (e, ... , ~n), d = (dl, ... , dn) 

and c are functions depending only on x and t. In the derivation of the inequality (2.2) 
we made use of the following formula: 

II J 

~-., . . J of 
f(y)-f(Yo) = L.,; (y'-y~) -a--y (Yo+s(y-yo))ds, 

i=l 0 y 
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which is valid for the C 1 functionf(y1
, ••• , y") defined in a convex domain of Rk. Taking 

u, Vu for y and 1;1, V!! for Yo and then substituting their values at (x, t) E QT under the 
integral, one obtains appropriate terms in Eq. (2.2). Hence w satisfies a homogeneous linear 
equation with non-negative initial and boundary conditions; therefore by the maximum 
principle [3], w ;:::: 0 in QT. This proves the theorem in the case of subsolution. In a similar 
way taking !l'u- !l'u, one arrives at its counterpart for a supersolution. Basically the 
maximum principle is valid for bounded domains. It may be extended, however, to the 
unbounded domains imposing some restrictions on the growth of u for /xi ~ oo (the 
Phragmen-LindelOff principle [3]) as for example assuming that u ~ 0 for /x i ~ oo. 

Having this, we can apply the theorem (6.1) in [2], Chapter 5, which we specify here 
in the simpler form, more suited to the case of Eq. ( 1.8). 

THEOREM 2. Let us assume that !!(X, t), u(x, t) are bounded sub and super solutions, 
respectively, of class C 2

•
1 of IBVP (2.1) in QT (QT of class C 2+P) and let the following condi­

tions be satisfied: 
1) ct(u) > 0 for u E I:= [infu, supu] and IX E cl+fl(J); 

fir- fir 

2) b(x, t, u, p) is Holder continuous in Q x [0, T] x R+ x Rn with the exponents 

f], fJ /2, (J, fJ; 
there exists a constant {l(/) such that for every (x, t) E QT, u E I 

/b(x, t , u, p) / < fl{I + /p/2 ); 

3) for every e > 0 there exists a function q;e(x, t) such that for every (x, t) E QT, 

u E I and I pI ~ (! 

and 

T 

1/ q;e // q, r , flr : = [J dt ( J /q;e \qdxr'q r fr ~ {l((!) ~ 00, 
o fl 

where 

~- + ;q = I - e, q E [ l( 1 ~ e) , oo], r E L ~ e , oo], 0 < e < I. 

Then there exists a unique solution of IBVP (2.1) in Cl+fJ,t +P12(QT) and, moreover, its mixed 

derivatives Uxi are in L 2(QT). 

We assume the following additional conditions: 
H.5. The function ct(u) in Eq. (1.8) defined on R+ = (0, oo) is positive for positive u 

and is locally of class Cl+ fJ . The vector field v(x, t) in Eq. (1.8) is of class c P.P12 (QT) and 

its time derivative Vc has a finite II · 1/q,r norm in QT where r, q is given in theorem I, ct(u) 
grows not faster than linearly, i.e., 

ct(s) < c1 s+c2 for s c E R+ 

and Q(x, t, s) E c P,fJI2
• fJ satisfies 1) in Theorem 2. There exists a positive constant fl (or 

positive subsolution) such that 

Q(x,t , fl);:::O m QT. 

6'" 
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(Denote by lJ. the infimum of all such constants p,). Q is bounded from above; 

Q~C for (x,t)E!JT, uER+ 

and has bounded (weak) derivatives with respect to t and u. 
Now we can formulate the existence theorem. 
THEOREM 3. Assuming that Q is of class C 2 + fJ and the hypothesis H.5 is satisfied, then 

the IBVP (2.1) for Eq. (1.8) has a unique C 2 f1, t+ fJ/ 2 (Q1.) solution for any T > 0 provided that 

min(x- fL) > 0 (it may reach zero when fL is positive). 
i/ !Jr 

In order to prove this, lest us notice that there exists a positive constant ! such that 
min x ~ ! ~ fl.· One easily verifies that ! is a positive subsolution. On the other hand, 
o'Dr 

the solution s(t) to the ordinary differential equation 

d - ( - ) -(0) -d--t s = C c1 s+c2 , s = maxx 
. o'fJr 

is a supersolution of the IBVP for Eq. (1.8). Hence we have the bounds for the solution 
u(x , t) 

:! ~ u(x, t) ~ s(t). 

Applying Theorem 2 we conclude the validity of Theorem 3. 
Let us also notice that whenever oc,u ~ 0 the solution ofiBVP for Eq. (1.8) with removed 

quadratic term oc(Vu)2 is also a supersolution for the full equation (1.8). In the case of 

unbounded domain we assume that u ~ u0 ~ ! for lxl ~ oo. 

3. Elliptic problem 

When searching for stationary solutions, one can again use sub and supersolutions 
which are defined in a similar way, _ the only difference being that there is no ur in !I' and 
instead of QT we have Q. Again one easily checks that § satisfying infu lan ~ § ~ fL is a 
subsolution and s = max lan is a supersolution of BVP. Hence, using the results of the 
paper [I] and the form of Eq. (I. 7), one easily deduces the existence of a solution u(x) 

satisfying :! ~ u(x) ~ s. 
REMARKS. Solutions of Eq. (1.8) in a domain with boundary can describe a real flow 

if appropriate boundary conditions for T and v are satisfied. Imposing Dirichlet conditions 
for the temperature, we are not, in general, able to control VT at oQ arid hence, according 
to Eq. (1.3) velocity cannot be prescribed there- the fluid is leaking through the boundary 
(perforated boundary). One does not encounter these difficulties in the case of whole R 3 

when the flow is given at infinity. 
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