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Shape sensitivity analysis and optimal design
of physically nonlinear plates

K. DEMS ®ODZ) and Z. MROZ (WARSZAWA)

A UNIFORM variational formulation of sensitivity analysis for physically nonlinear plates is
presented in terms of generalized stresses and strains. Both the external and internal boundary
shape modifications are treated within this formulation. Next, optimal design problems for
stress and deflection constraints are formulated and the relevant optimality conditions are
derived using the concept of a linear adjoint plate. Finally, some illustrative examples of sensitivity
analysis and optimal design problems are presented.

Wariacyjne sformulowanie analizy wrazliwosci dla plyt fizycznie nieliniowych w zakresie teorii
malych ugie¢ jest przedstawione przy zastosowaniu uogolnionych napreien i odksztalcen.
Rozpatrzono wariacje zewngtrznego ksztalttu plyty i wariacje ksztaltu wewnetrznych powierzchni.
Optymalne projektowanie dla warunkoéw naprezeniowych i odksztatceniowych zostato nastepnie
rozpatrzone i warunki optymalnosci zostaly wyrazone jako warunki ekstremum odpowiednich
funkcjonatow. Przykiady ilustrujace zastosowanie ogolnego podejécia wariacyjnego do analizy
wrazliwosci zostaly przedstawione w koncowej czgéci pracy.

BapuaumnorHoe copmysJHpoBaHue aHalIH3a UyBCTBUTEJIBHOCTH JJIA (PH3HUYECKH HEJIMHEHHBIX
IUIMT B OOJIACTH TEOPHHM MalbIX NPOrMOOB IPEeCTaBJIEHO MPH IPHMEHEHHH OOODIMEHHBIX
HanpsiKeHui 1 gedopmanuii. PaccMoTpenbl BHelUHUEe BapHauud (GJOPMBbI IUIMTHI M BapHaLH{
¢opMbI BHYTpEHHMX IOBEPXHOCTeH. 3aTeM pacCMOTPEHO ONTHMAJIBHOE IIPOEKTHPOBaHHE
[JIA YCJIOBHMI HanpshiKeHHsi U AedopMalHE H yCJIOBHS ONTHMAJIBHOCTH BBIPAaXKEHBI KaK
YCJIOBHSI 9KCTpEMyMa CooTBeTcTByIOMX dyHKuMoHanoB. IlpuMepsbl, wunOCTpUpyrOLKe
NpUMeHeHHe 0OLIero BapHAIMOHHOTO MOJAX0Aa K aHAaJIN3y YyBCTBHTEIBLHOCTH, NMPEeJCTaBIIeHbL
B OKOHUATeJbHOM YacTH paboThI.

1. Introduction

THE PRESENT PAPER is devoted to a variational formulation of sensitivity analysis and
optimal design of plates subjected to flexure within small deflection and strain theory.
However, a nonlinear relation is assumed between generalized stresses and strains. Such
a situation corresponds, for instance, to fiber-reinforced composite plates which exhibit
nonlinearity even within small strain and deflection ranges, as a result of progressing
damage and inelasticity within fibers or matrix. Thus the assumption of nonlinearity pro-
vides a more accurate description of the deformation of composite structures subjected
to flexure.

In optimal design problems of such structures, local or global constraints are usually
set on displacements and stresses. The objective function then corresponds to a minimum
of weight or cost of material of a structure. In order to derive the relevant optimality con-
ditions, explicit expressions for variations of constraint equations and objective functions
in terms of the variations of design functions are to be determined (sensitivity analysis).
For linear elastic structures such variations were derived in Refs. [1-5] for any stress,
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strain or displacement functionals assuming both material parameters and shape variations.
The general case of sensitivity analysis in the case of physical nonlinearity was discussed
in [8, 9] and the case of both physically and geometrically nonlinear beams and plates
was considered in [10, 12]. The present work supplements the results of [10, 12] by consider-
ing the derivation of variations of functionals for plates with respect to external and internal
boundary modifications. In spite of the fact that our analysis will be limited to the geometri-
cally linear case, extension to the geometrically nonlinear theory can easily be obtained
by following the present analysis and the one presented in [10, 12]. The concept of an
adjoint structure and its mechanical interpretation discussed in [1-4] remains valid in the
nonlinear case. However, the stiffness matrix for the adioint structure is specified as the
tangent stiffness matrix of the primary structure. Hence the adjoint stiffness matrix is not
constant but depends on the strain or displacement fields of the primary structure. This
renders the iterative solution of the optimal design problem more complicated since the
tangent stiffness matrix should be updated after each redesign step.

In Sect. 2, the sensitivity analysis of an arbitrary functional with respect to variation
of an external plate boundary will be discussed and in Sect. 3 the case of an interface
variation within a plate will be considered. Variations of potential and complementary
energies associated with shape variations will be derived in Sect. 4. In Sect. 5, the optimal
design problem will be formulated and the relevant optimality conditions will be derived.
Some illustrative examples will be presented in Sect. 6.

2. Sensitivity analysis of an arbitrary functional with respect to external boundary variation

Consider a plate occupying the domain 4 with the boundary S, Fig. 1. The plate is
subjected to transverse load p, whereas either generalized tractions or displacements are
specified on S. Denote the generalized stresses (i.e., bending and twisting moments within
plate domain) by M, the associated strains (i.e., curvatures and torsion) by x, and the
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Fic. 1. Plate occupying domain 4 with boundary S.
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lateral deflection by w. It is assumed that the nonlinear stress-strain relations are generated
by strain and stress potentials such that

@) Mo = S0 ey = TOD
where
. M
2.2) UG) = [M-dx, WM) = [ % dM
0 0

and the dot between two symbols denotes the scalar product or the summation with respect
to indices of lower order tensors. The incremental form of Eq. (2.1) is expressed as follows:

U oW
where
PU M oW ox
(24) D=uox ~ x> C~ aMom — M

For a stable elastic material, D is a symmetric and positive definite tangent stiffness matrix,
whereas C is a compliance matrix.

Under applied loads the plate passes from its initial configuration to a deformed one
specified by the deflection field w. In addition to the deformation process, let us consider
a transformation process which modifies the plate domain, x* = x+ ¢, with the imposed
transformation field ¢p(x) specified within A, Fig. 1. Obviously this transformation field
modifies the shape of the external boundary of a plate or its internal interfaces between
different materials and affects deflection, strain and stress fields within plate domain.

Considering a simultaneous variation of transformation and state fields (cf. [4]),
any point P within plate domain, initially placed at x, is transformed to the actual position
x* according to the rule

(2.5) P P* xf=x+0p(x), k=12,
whereas the state fields for the actual configuration of plate are
w*(x*) = w(x)+5w(x), w*(x*) = %(x) +5x(x),

(2.6) .
M*(x*) = M(x) + 0M(x)

X
M

w
J LPLL
Y | 9w

X *=x+8¢

F1G. 2. Variations of state field within plate domain.
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where 5( - ) denotes the total variation of enclosed quantity with respect to a fixed Cartesian
reference system. From Eq. (2.5) and (2.6) it follows that, Fig. 2,

2.7) dw = dw+w g, Ox = du+u  dp, OM = IM+M g,
where the comma denotes partial differentiation and () = (-)*(x)— (-)(x) is the local

state variation for a fixed configuration of the plate. Furthermore, the following transforma-
tion rules occur (cf. [4]):

8(d4) = e udA,  8(dS) = (Oqu,i—1 Oy, n)dS,
(2.8) Sn_,- = n?—n_,' = (n_,n,—(sﬂ)nké(pk’l,
3, = tf—t; = (Ou— 100 0ps 1,

where dA, dS denote the area and boundary length elements, n, t are the unit normal and
tangential vectors to S, respectively, and J;, denotes Kronecker's symbol. Note that the
vectors n, t form the local right-hand orthogonal reference system (#, s) along the external
boundary of a plate.

Consider now any kinematically admissible deflection field w* and any statically admiss-

ible stress field M* within a plate of fixed configuration. For the small strain theory,
the generalized strain ®* is obtained from w* by a linear equation

2.9 = —why,

where w¥,; is the in-plane second-order gradient of the deflection field. Thus the equilibrium
condition for a plate can be expressed in terms of the virtual work equation, namely,

(2.10) [ M- stda — [ pwrda+ [ (M5 wh—Vowhyds = 0,
where
@.11) M, = Mn,

are the boundary moment components with respect to a fixed Cartesian coordinate system
and V* denotes the shear force along the boundary S, that equals ([11))

(2.12) Ve = My ;.

In view of Egs. (2.7) and (2.8), the total variations of M;, and V*° can be expressed as

follows
(2 13) San = SMfJnj+ij Snj = 76‘M§‘,,+'M,‘J.k 5¢knj+ij(njn,—§j,)nk é(pk,la
. BVX = :S(ij‘_,)n,-+ij.j5ni = (SVS‘FME‘J"J‘& 5q;kni+M;-‘j‘j(nin,— ail)”k 6(pk.l!

where 0M;, and 6V* denote the local variations for a fixed plate configuration.
Consider now the following functional:

(2.14) G = [ p(M, %, p, w)dA
A

depending on generalized stress and strain fields, transverse load and deflection ‘within
plate domain. The major question now posed is how the value of this functional is modified
as a result of transformation of plate domain. Thus it is our goal to determine the first
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variation of G with respect to the variation of plate shape. Assuming y to be a continuous
and differentiable function of its arguments, the first variation of G equals

2.15)  0G = [ (. SM+y - Sty ,dp+y., dwtyip, )dd

= [ Gom- Mty Sty 3p+y,, dw)dA+ [ yog,dS,

where dg, = n- 0 ¢ denotes the normal component of boundary variation on §.

To eliminate oM, dx and dw from Eq. (2.15), let us introduce an adjoint, physically
linear plate of the same shape as the primary one, but subjected to the imposed fields
of initial stresses and strains specified by

(2.16) MY =y, wi=yn within 4
and loaded by
.17 p'=1w,, within 4.

Furthermore we assume that on the boundary S of the adjoint plate either generalized
tractions or generalized displacements vanish and the adjoint plate is supported in the same
way as the primary one. The stress field M® within the adjoint plate is related to its strain
field »® by the relation

(2.18) M = D7 - (07— n*) —M%

with the stiffness matrix D specified by Eq. (2.4). Obviously M” satisfies the equilibrium
conditions for the adjoint plate and »“ is the associated strain field that follows from the
deflection field w*. Using now Egs. (2.16), (2.17) and noting that in view of Eq. (2.3)
we have

(2.19) oM = D - dox,
Eq. (2.15) can be rewritten in the form
(220)  0G = [ [(DT- %"+ M“) - Suty, ,0p+p*owldA+ [ pogp,dS
= [ OM—M°: bty ,0p+p*ow)dA+ [ pog,ds.

Identifying now M, w* and »* with M“, éw and dx, respectively, the virtual work equation
(2.10) can be written in the form

2.21) M- oxda— [ prowda+ [ (Mg, 0w ,—Vebw)dS = 0.

On the other hand, setting M* = éM, w* = w? and »* = »°, it follows from Eq. (2.10)
that

(2.22) [ oM wdd— [ Spwedd+ [ (6M,,we,— 8Vwe)dS = 0.
Then, in view of Egs. (2.21) and (2.22), Eq. (2.20) can be transformed as follows:
(223) oG = _‘ (W“+w_p)5pdA+f(an”—éM,,,wf'i—V“aﬁw-l- Mg, éw ;+pdg,)dS.

Thus the first variation of G is expressed in terms of local variations of boundary moment,
shear force and deflection of primary plate along its boundary.
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One can now express these local variations by means of total variations. Making use
of Egs. (2.7) and (2.13) and noting the following identity that holds on the plate boundary
S

(2.24) J (M Wi = My, yw*)n, 0g dS = f [(VWis — Minw!s) Oy
— (M- %" —pw*) 6, + (VW — My, w?) 8y o+ (M wi — My ;w*)my Opy (1dS
Eq. (2.23) can be rewritten in the form

2.25)  0G = [ w4y ) dpdA+ [ [(p—M - 5 +pw?) dp, + (VW' — My w?) (8., — Kop,)
F (PW— MW+ Vo — MEW, 1) O+ 6V — SM y w® — Vow + M, dw ,1dS,

where d¢, = d¢p - n and dp, = d¢p - t are the normal and tangential components of the
transformation field along plate boundary and X denotes the curvature of S. Equation
(2.25) expresses the first variation of any functional G in terms of components of boundary
tractions and deflection and their derivatives of both primary and adjoint plates with
respect to the fixed Cartesian reference system as well as the total variations of primary
state fields. Specifying boundary conditions, it is generally more convenient to specify
them in a local coordinate system (m, t, b) associated with plate boundary, see Fig. 3a.

Fi1G. 3. Boundary conditions along S; (a) components of generalized surface tractions, (b) total variations
of traction components.

The generalized tractions along plate boundary are then the bending moment M,
and generalized shear force Q which can be expressed in terms of M, and V" as follows
(2.26) M, = Myn;,, Q=V+M,,,
where the twisting moment M, along plate edge equals
(2.27 M, = M, t;.

During the infinitesimal transformation of plate boundary to its actual configuration S*,
a typical point P passes to P* and the unit vectors n, t are translated and rotated to their
actual orientation n*, t*, whereas the vector b is translated to b*, Fig. 3a, specifying the
new local coordinate system (n*, t*, b*). The change in orientation of n and t in a global
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fixed Cartesian coordinate system during this transformation is expressed by the last two
equations of the set (2.8) that can be now rewritten in the form

(2.28) on; = —t;(Kdqy+ 0. ), Ot, = ny(Kops+ 0. s),

whereas ob = 0 and variation of the boundary length element described by the second
line the set (2.8) can be expressed in the equivalent form

(2.29) 8(dS) = (dgs,,— Kdgp,)dS.

Consider now any vector field f(s) specified along plate boundary S, whose components
in the global fixed Cartesian coordinate system are denoted by f; (f = 1, 2, 3) and in the
local coordinate system (n, t, b) by f,, f; and f;, respectively. During the transformation
process of plate boundary shape, f changes to f* with components £, f:¥ and £,*¥ with
respect to the axes n*, t*, b*. The total variation of f with respect to a fixed coordinate
system is defined as of = f*—f with components Sf, Vh fj For purposes of our
subsequent analysis, besides considering the total variations 6fj, let us introduce the
corotational variations of components of f with respect to the local reference system,
which do not take into account the rotation of this system during the transformation
process. Since the components of f and f* are denoted by (f,.f;,/,) and (f.%, f&, /%)
in configurations S and S*, respectively, then the corotational variations of f are defined
as follows:

O, = Sty = [Fni—fimy = By, f; b,
(2.30) O = fA—f = FeE =1ty = St by,

Oy = fit—fy = [FbF—1fibs = by
The solution of Eqs. (2.30) with respect to Sfj provides the relations between the total
variations (SfJ of any vector field f and its corotational variations 8f;,, éf;, 6f,. Noting that

ny=6dny =ty = bt =0and b, = b, =0, b, = 1 and taking into account Egs. (2.28),
it follows from Egs. (2.30) that

o = nyofu+ 1,8+ (mfy—1.1) (Kdpu+ 09, ), = 1,2,
o = of,.

Furthermore, for any quantity defined along plate boundary length, the following identity
can be written:

(2.31)

1) 12 o] 9C) | _ dloC)] _ d(-) o[dS]
232) oL )0 = 5[ ds ] B ds i ds ds
In view of Eq. (2.29) it follows from Eq. (2.32) that
(2.33) O[(+).d = [0()].s— () s(dgs,s— Kdpy).

Using Eq. (2.31) we can now express the total variations M,, (i = 1, 2) in terms of coro-
tational variations of the boundary bending moment M, and twisting moment M,,, namely,

(2.34) OM,, = ny M+ 1, SMs+ (n; My — t; M) (K dps+ 00, ).
Furthermore, we have 5V = 8V, and then in view of Egs. (2.26) and (2.33) we can write
(2.35) OV = 80— 0(Mys,;) = 0Q—(OMy), s+ My, (05, s~ Ky
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The relation between total and corotational variations of the deflection field w and its
gradient along the plate boundary, in view of Eq. (2.31) and (2.33) has the form

dw = ow,
(2.36) .
éw,i =n; 6(”’.")4‘11(5"’).;—ttw‘s(a%.s“Ka‘Pn)‘F(”.'W.s—tiw.n) (Ka%‘*‘a‘?ns)
Moreover, we can write the two following equalities along plate boundary:

w.ka(Pk = w'sﬁqos-kw_,,éq;a,,,

37 W, 0@ = — (N %y + 13 25,) Oy — (1 250+ 1 2¢5) O,
where
(238) n = — W s Ky = _(W.ss_Kw.n)’ Hsnp = —(w.ns'i"Kw,s)

denote the curvatures and torsion of the deformated plate which are expressed in the local
coordinate system (m, t).

Using now Eqgs. (2.34)-(2.38) in Eq. (2.25) after some transformations and integrations
by parts along the plate boundary, the first variation of the functional G can be expressed
in the following form:

(2.39)  0G = [ W'ty ) 0pdA+ [ [y+pw'— Myl —2Mpg o+ Qwl o+ Q%W ,
+M:X"—(QWG—M"W?H)K— (an?s_*'M:w,s).s](S(pndS-‘_»J‘ (M".SW?H—“QJW"
— M3w o+ QW) 0, dS+ [ [80W — OM,w*,— Q0w+ M2 d(w_)]dS

+ [ (MG 6w = OM W™+ (OW* — My w* , — Mo W — Misw,.) O,
+ (MW — M W +Miw — Miow ) dg,], . dS.

The last integral on the right-hand side of Eq. (2.39) vanishes when the plate boundary
is smooth and all terms of this integral are continuous functions of the boundary parameter
5. On the other hand, when there exist some singular points S; along the plate boundary
at which either the plate boundary is not smooth or some terms of the last integral of Eq.
(2.39) suffer discontinuities, it is reduced to the form

(240) [ [.],,dS = 2 ([ ME] 0w — [OM, ] wo +[(QW* — My w®  — My wh

= Mgsw. ) 0g, ]+ [(Muw?!s— My w! o+ Maw s— My w ) 0,] 3,

where [f] = f(S;7)=f(S;") denotes the jump of proper quantity calculated as a difference
of its values on both sides of the singular point S;.

Equation (2.39) expresses the first variation of any functional G defined over the
plate domain A4 in terms of its integrand v, deflections, generalized stresses and strains
of both primary and adjoint plates as well as in terms of normal and tangential components
of plate boundary shape variation. Note, furthermore, that since along the boundary w
or Q and w , or M, are specified in advance, then their corotational variations are also
known and can be expressed in terms of de¢p. Similarly, the variations [ 6M,] which are
equal to the variations of concentrated forces at the boundary singular points can be
calculated from the specified boundary conditions in terms of dep.
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The formula (2.39) derived for the first variation of an arbitrary functional may appear
to be rather complex. This complexity results from a general formulation of the problem
and a general form of nonhomogeneous boundary conditions along plate edges. Even
in the most general case, all terms occurring in Eq. (2.39) are computable and 6G may be
calculated analytically or numerically. However, in most applications many of terms that
appear in Eq. (2.39) will vanish and many others will have a simple form. Assume, for
instance, the homogeneous boundary conditions along plate edges. Thus w or Q and w,,
or M, are equal to zero along the boundary of the primary plate. Since, in addition, the
generalized tractions and/or displacements vanish along the edges of the adjoint plate,
then Eq. (2.39) is simplified to the form

@41) G = [ W'+, ) 0pdA+ [ (p+pw'— Moxa—2M, s+ QW+ QW ,
+ M2 x,) 5, dS.

3. Sensitivity analysis for interface shape variation

Consider now a two-phase elastic plate contained in a domain A and bounded by the
boundary S, Fig. 4. Assume the plate to be composed of two materials occupying the
subdomains 4, and 4, and separated by the interface I, that is 4 = A, uA,. The interface

B*

FiG. 4. Two-phase plate with interface.

can separate either domains of different material properties or domains of different thickness
in a plate. Moreover, it is assumed that the interface I" does not contain any singular
points. Regardless of the finite jump of material properties or plate ridigity on I, the
deflection field within the plate is continuous and smooth and the generalized internal
tractions on I" are continuous. Thus this assumption yields

[wl=0, [w.]=0,

3.1 [M,] =0, [0] =0, on T,

5 Arch. Mech. Stos. 4/89
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where [ ] denotes the jump of the enclosed quantity on I” calculated as a difference of the
respective values in the domains 4, and 4,. Furthermore the continuity and smoothness
of the deflection field w assure the continuity of tangential curvature and torsion along I,
that is

3.2) [#] =0, [#s] =0 onlI.

The case when the internal tractions suffer discontinuity across /" will be treated in a separate
paper.

Consider now an infinitesimal variation of plate configuration prescribed by a continuous
and differentiable transformation vector field dep(x). The domains 4, and 4, are then
transformed into domains A} and A%, with the interface transformed into I'*. We assume
that when the interface I" does not penetrate the external boundary S then the function
dep(x) vanishes on S so that the external shape of the plate is not changed. On the other
hand, when the interface penetrates the external boundary at points 4 and B, see Fig. 4,
then S can undergo the tangential transformation only, so that de-n = 0 on S.

Similarly as in the previous Section, we introduce now an arbitrary functional G
expressed in the form

(3‘3) G = Gl+GZ = f'Pl(M:“aP) W)dA1+ wa(M»xs P’ w)dAZ
A,y A,

= f p(M, %, p, w)ydA4,

AyvAs

and derive its first variation with respect to the shape variation of the interface I". To do
this, we shall utilize the results obtained in Section 2. First of all, introduce the adjoint
plate that is defined by Eqgs. (2.16)-(2.18). It is obvious that the adjoint solutions w*,
%7, M“ satisfy the continuity conditions along I, expressed in a form similar to Egs. (3.1)
and (3.2). Next, to write the expression for the first variation of Eq. (3.3), we apply Eq.
(2.39) to both subdomains 4, and 4, of the plate domain 4. Keeping in mind the conditions
(3.1), (3.2) and those similar for adjoint fields, we then obtain

(3.4 OG = 6G,+6G, = f(w"+1p‘,,)5pdA+f({[w]]-I-[[p]]w"—[[Ms}]xﬂ
— 2 M, ]+ M, ]) Sudl+ [ (Mo W% =Q W — MW, o+ Q%W ) OipydS

+ [ 180w — 5M, ", —Q"Ow+ M 0(w NdS+ [ [Me, ow — OMpyw®

+(OW = M w! = Mo w!s— Miw ) 0g], s dS + {[ M7] ow—[OM,s] w*

— ([Mu[ we s +[Mi]w, o) b — ([ Mus] W w4+ [ M7 W, ) Opn}

where {}i’,‘; denotes the difference of enclosed quantities at points B and A calculated
along I

When the interface I is a closed curve within the plate domain, then in Eq. (3.4) all
integrals along the external boundary S and the last term in square brackets vanish. On
the other hand, when I” penetrates S, we assume that the points 4 and B are placed on the
smooth parts S, and S, of the boundary S, so that S = §,uUS,uUS,, and the tangential
transformation dg, of the external boundary influences these parts only. Moreover, we

AT
BI'>
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assume that on the remaining boundary portion S, there exist no such singular points
at which concentrated forces are specified if this portion is unsupported. In view of such
assumptions, and noting the following identities which hold at points 4 and B

(3.5 (W, 0gs+w , 0p)" = (W, 0g)°,

where the symbols ( )” and ( )® denote that the enclosed quantities are calculated along I
and S, respectively, Eq. (3.4) is reduced to its final form

(3.6) G = [ (w'+y,)opdd+ [ [w]+[p]w'—[M- %]+ M,[x:]

+ M[2,]) dgdl"+ f M, W =0 W= Miw .+ QW ) dp,dS

SauSh

+ [ 100w~ dM, e, — Q%W+ MEd(w,)]dS.
SaUSp
When the primary plate is subjected to the set of homogeneous boundary conditions, then
Eq. (3.6) is much simplified since the last two integrals on the right-hand side vanish.
The assumption that the points 4 and B move along the boundary S during shape
transformation of the interface I yields, in addition, the following relationship between
normal variation of /" and tangential variation of S at 4 and B:

r

(3.7 dps| = ——— dp,

where y denotes the angle between S and I, see Fig. 4. The change of this angle during
the transformation process is expressed as follows:

1—2sin?y _KT

— | rs_
(3.8) (5y—(K o

) (5(}0,, - 69%.:5

where d¢, denotes the normal component of the shape variation of I" at A or B and K¥,
KT are the curvatures of S and /" at 4 or B, respectively. If we assume no change of angle Y
during the transformation process, then the following constraint has to be set down on the
rate of d¢, at 4 or B:

—%sin?
(3.9 O, s = (1'(S 1——@ —K’“) dp, at A or B.

Up to now, we consider the problem of variation of an arbitrary functional G defined over
the whole domain of a primary plate. Thus the functional G has been treated as the global
structural response of a plate. However, the same approach can be applied to a closely
related class of problems associated with variation of local generalized stress and strain
components or deflection at a typical point x, of a plate domain, or associated with varia-
tion of any quantity f(x,) depending on state fields at x,. Using the well-known property
of the Dirac delta function d(x—x,), any local quantity f[M(x,), ®(X,), W(X,)] can be
converted to the global one by the following relationship:

(3.10) fxo) = G = [ fIM@X), %(x), w(x)] S(x—Xo)dA.

5%
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Comparing Eq. (3.10) with Egs. (2.14) or (3.3), it can be easily noted that
(3.1 P(M, %, w) = fIM(x), ®(x), w(x)] (x—Xo)

and then the discussed approach can be used in order to determine df(x,), with proper
qualification of the adjoint plate.

4. Variation of potential and complementary energies

Consider now a particular case when the functional G coincides with potential or
complementary energies of a plate and derive their first variations associated with the shape
variation of external or internal boundaries. The analysis of such a case is simpler than
in the general case since the solutions of the adjoint plate can be expressed in terms of sol-
utions of the primary plate.

Assuming the homogeneous boundary conditions along plate edges, consider first the
potential plate energy that equals

(@.1) 11, = [ [UG)—pwldd,

where U denotes the specific strain energy per unit area of a plate. Comparing Eq. (4.1)
with (2.14) or (3.3) we easily observe that

(4.2) y=U-—pw

and then, according to the relations (2.16) and (2.17) the adjoint plate is loaded by a
transverse load p°

(4.3) PP=y.=-p
with the imposed field of initial stresses
4.9 M%=y,=M

and vanishing generalized tractions or displacements on S. Moreover, we should note
that

(4.5) Y, = —W.
Thus the state fields within the adjoint plate are

(4.6) wi=0, =0, M'=-M

and the first variation of 77, can be obtained from the general expressions (2.41) and (3.6).
When the external boundary is subjected to shape variation, then from Eq. (2.41) we
obtain

4.7) 8, = [ (U—pw—M,x,—Qw,,)dp,dS— [ BpwdA,
whereas for interface shape variation Eq. (3.6) yields

(@.8) 81, = [ ([UI-[plw—MJn]) bgdl'— [ SpwdA.
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Assume now that the functional G coincides with the complementary energy of a plate,
that is

4.9) I, = [ wvd4,

where W denotes the specific stress energy per unit area. Comparing Eq. (4.9) with Egs.
(2.14) or (3.3), we have y = ¥ and the adjoint plate is subjected to the imposed field
of initial strains

(4.10) x‘” =YM=%

with vanishing external loading and homogeneous boundary conditions along plate edges.
Thus the state fields within the adjoint plate are

“4.11) wr=w, ®'=x, M =0

and the first variation of 11,, with respect to the shépe variation of the external boundary
equals

(4.12) ST, = [ (W+pw— My, 2Myy 0 +0OW ) Op,dS+ [ wipdA.

When the interface /" undergoes shape variation, then in view of Eq. (3.6) we have
(4.13) o, = [ ((W]+[plw—[M]n,—2[My]o0) 00,dT+ [ wipdA.

Noting that U+ W = M- », it is easy to prove that 0l/, = —4éll,.

5. Optimal shape design for specified displacement and stress constraints

The typical optimal design problem involves minimization of the cost function
(.1) C = [ cdA — min,,,

where ¢ is a specific material cost subject to the global constraint imposed on generalized
stresses, strains or deflection, i.e.,

(5.2) G = [w(M, %, p, w)dA—G, < 0

or constraint on local or maximum values of stresses, strains or deflection, and other
geometrical constraints which will not be considered here. Note that the constraint imposed
on local values of stress, strain or deflection can be easily converted to the global form
(5.2) by using Eq. (3.11) Similarly, any constraint imposed on maximum values of the
stress or strain component or deflection can be also expressed in global form. The maximum
local deflection, for instance, can be represented by the functional

(53) G = [ iwraa]™

since for p — 00, W — Wa,. The maximum local stress component or generalized stress
intensity can be obtained by considering the functional

(5.4) 6 =[[vwonaa|”,
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where p is even and p is assumed to be a homogeneous function of generalized stresses
of order one. For p — oo, G — supy, that is the functional tends to the maximum value
of its integrand. Another approach to impose a constraint on maximum stress is to apply
the penalty approach. Namely, introducing the acceptable stress intensity level y,, we can
consider the functional

(5.5) f ””(M) dA.

For p - oo the integrand (y/y,)? of Eq. (5.5) tends to zero for o/y, < 1 and tends to
infinity for y/p, > 1. This provides a proper penalty functional which for large p takes
very small values when y < y, and very large ones when p > w,.

Introducing the functional

(5.6) € = Cr{G—Gyrod),

where / denotes the Lagrange multiplier and « is a slack function, its stationarity condition
yields the optimality condition

(5.7 6C = — 210G
with the switching and constraint conditions of the form
(5.8) Ao =0, OAG—-Gy+a?) =0.

The variation of the constraint (5.2) is expressed here by Eqs. (2.39) or (3.6), whereas the
variation of structural cost equals

(5.9) 8C = c [ dp,ds
for the case of external boundary variation or is expressed by
(5.10) 8C = [c] [ dpudl’

for interface shape variation.
An alternative formulation of the optimal design problem would require the minimiza-
tion (or maximization) of G with the upper bound set on the structural cost, thus

(5.11) minG  subject to C—C, < 0.

Introducing now the functional

(5.12) G' = G+ AC—Co+p?),

where f is a slack function, we can obtain the following set of conditions:
(5.13) 0G = —A0C, Ap =0, OAMC—-Co+p*) =0

which are equivalent to Egs. (5.7), (5.8).

6. Examples

In this Section, let us consider three simple examples which should illustrate the analysis
presented in the previous Sections.
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ExAMPLE 1. Consider a circular plate of radius r, with a central hole of radius r;, simply
supported on the outer edge. The plate is loaded uniformly by bending moments M,
and M;, Fig. 5a. Consider the mean compliance design for which both radii r, and 7,

ME MJ M 343 k
=1 075
(e \
=N<

or 0.5 \
R
a2 |

a 1.0 20 Jé]

Fi1G. 5. Circular plate with a hole; (a) boundary conditions, (b) ratio r;/r. versus ratio M,/M..

are to be determined so that the complementary energy /7, attains a minimum. The plate
is subject to the condition of constant structural cost

C
(6.1) ri-rt="2=¢C

(&4

The optimality conditions in this case follows from (5.13) where the variation of the objective
functional G =1/, is expressed by Eq. (4.12) whereas the variation of structural cost,
in view of Eq. (5.9) equals

(6.2) oC = 2r,0r,—2r,6r;.

Thus, in view of Eq. (4.12), (5.13) and (6.2), the optimality conditions can be expressed
as follows:

1 1 1 | 1 1
2n ( 3 M,x,.—--z— M x, — ; M,w,,)'_rrreére—kz (2 M, x, — 5 M,
(6.3) 1 1
—r-M,w_,). r;0r; = —22r, 0r,+24r, 6r;,
r=rg

ri—rf =_C.

Expressing the radial and circumferential bending moments and curvatures in terms of the
deflection field w, Egs. (6.3) yield the following set of optimality equations:

Ly - 4] |
(6_4) (W,rr+ _,"— W,r) '—2(1 _V)? W.r = - T for r=r, and r=r,
re—rf = C.

The deflection field within the plate is expressed as follows:

¥ 1
.5 J ey Ko & 2_ 2
(6.5) W C,In a+ 4 Ci(rz—r?,
where
201 _p2 M, 2200 M
(6.6) C, = 2(ri M,—ri M) c, = rer (ME,A )

T (A+NDGE—r2)’ — (A-9)DE-r)’
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Introducing now the nondimensional quantities
M,
(6.7) B=g k=

and using Eq. (6.5) the optimality conditions (6.4) result in the following optimality equa-
tion with respect to k:

6.8) [(1—v) (1—BkD+A+») (1=K (1 -k>)—2(1—pk?)k?
= [(1=») A=K+ 1 +2) (1= (1 =k f—2(1 - B)(1 — fk?).
Solution of this equation yields the optimal value of the ratio of r; and 7., namely,

3—»

—p
1+
(6.9) R 2 e
—1
14+
valid for
3—y
(6.10) 1< < i

Figure 5b presents the variation of the ratio r,/r, in function of M;/M, for different values

of ». It is seen that for § < 1 the optimal solution corresponds to the plate with vanishing

hole, whereas for # varying within the range corresponding to the condition (6.10) the

plate is gradually transformed from a thin ring into a circular plate without the hole.
The relative compliance of the plate is expressed by

(1-2*)DIl,  (1-») (1-Bk**+(1+v) (1 -p)*k?
MiC (1-k?)? :
Figure 6 shows the variation of the relative compliance as a function of & for § = 2 and

v = 0.3. It is easy to see that the value of k satisfying the optimality condition (6.9) corres-
ponds to a global minimum of the mean plate compliance.

(6.11)

12M,C,
En3 B=2 ]

30

2.0 /

1.0 -~
|
|
: kapr.
|

0.2 04 06 K

FI1G. 6. Variation of relative compliance of a circular plate versus ratio of ri/re.
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ExAMPLE 2. As the second example, consider a rectangular plate of dimensions a x b,
simply supported on its boundary, Fig. 7, and loaded by a transverse load of the form

~ posin ™ in .

(6.12) P = posin— sin b
yl

‘‘‘‘ T

I il

da |

a

<t P

Fi1G. 7. Shape variation of rectangular plate.

Assume now the material of the plate to be linear orthotropic, with principal axes of
orthotropy parallel to the plate boundaries, so that the equilibrium equation for the plate
can be written in the form

(6.13) DoW, axxx + 2V DeDyW ey + Dy, iy = P,

where D, and D, denote the bending stiffness moduli of the plate with respect to the prin-
cipal directions of orthotropy. The deflection field that satisfies Eq. (6.13) together with
the proper set of boundary conditions can be written in the form

(6.14) w= Po T i AL
a b

oL LY
"\ kb2
where k denotes the ratio of the bending stiffness moduli D,/D,. Assuming the constant
area of a plate, we are looking for its optimal dimensions a and & for which the global
measure of the deflection field is minimized, that is

(6.15) G = f w|"dAd — min for ab = C, = const.

Thus this example can be related to the general theory in Sect. 2, by introducing the
adjoint plate of the same shape as the primary one, simply supported on its edges and
subjected to the transverse load of the form

allwl"] »
6.16 — e NS n-1
(6.16) P P sgn(w)n|w|",
where
-1 w <0,
(6.17) sgn(w) = 0 for w=0,
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Assume now the the plate boundaries x = 0 and y = 0 are fixed and the two remaining
boundaries are allowed to translate in x and y directions, respectively, see Fig. 7. Thus

the transformation field within the plate domain can be assumed in the form d¢, = Lk da,
a

Oy, = %éb and, in view of Eq. (2.39), the general optimality conditions (5.13) for the

functional (6.15) can be expressed in the form

b a b
[ [ pawE syt [ @t My - 2My w4 0P Il = — 2,
0 0 0

b a b
©18) [ [ pywnd dedy— [ (@wty— Mot 2M oty 40", )dlx, 0 = —a,
0 0 0

ab—Cy, =0,

where the primary fields are generated by the deflection field (6.14) and the adjoint fields
are the generalized stresses, strains and deflection of adjoint plate subjected to transverse

load (6.16).
For n = 2, the adjoint deflection field is expressed in the form
(6.19) i e e _i’-_“’_ —
4 2
" kD’(az ¥ u/EbZ)

and two first equations of the set (6.18) yield the optimal ratio of the plate dimensions a
and b; that equals

(6.20) L Vk.
b
ExaMpLE 3. The third example is related to the optimal design of interfaces within
plate domain, treated previously in [2, 13]. Consider now a circular sandwich plate which
is simply supported at the outer edge and uniformly loaded by the lateral pressure p.
The plate is made of a linearly elastic material with sheet thickness #, constant over annular
subdomains defined by the radii r, (k = 1, 2, 3), Fig. 8. For the prescribed sheet thicknesses

Y

F1Gg. 8. Circular sandwich plate uniformly loaded by lateral pressure.
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t., the optimization problem is reduced to determining the radii r, and r,, for which
the global plate compliance attains minimum, within the class of plates of constant struc-
tural cost that is proportional to

3
(6.21) C =21 X tlrd—rt) = Cy
k=1

with r, = 0 and r; = R. Assume as the measure of global compliance the complementary
encrgy of the plate, equal to

3 Ik

(6.22) - 2= Z % f(M2 WM, M+ M?)rdr,

k= Tk-

where M, , M, are the radial and cnrcumferentlal bending moments, 24 is the core thickness,
and E, » are elastic constants. Thus, applying the stationarity conditions (5.13) and Eq.
(3.6) and using the continuity conditions (3.1)-(3.2) for r = r,, we obtain

MP-M:|  MP-M?|

+

tk [rI tk+1 Tk

= 42ER* (tis1 — 1),

(6.23)
Z‘tk(rkz—rkz—l) = qut()! k = l’ 2’
k=1
where r; and rf denote the values of M, and M, on the respective sides of the interface

r = r,, whereas ¢ > 1 and ¢, are prescribed quantities. The quantity ¢ can be termed the
relative cost of the design. The bending moments M,, M, can now be expressed in the form

(cf. [2])
_ Bk prz _ ‘Bk pr2
(6.24) M,. = Ak+*',.'2'_"l’6* (3+1), Ms_Ak ;2*'—E‘ (I+31’),

rk—lgrgrk’ k=l,2,3,

where the constants A,, B, have to satisfy the conditions

B, pR?
Bl :0, A3+'E;—'—T(3+'V)=O,
(6.25) Ak+1+—B"” = Ak+$§~, k=1,2,
k k

2 g1 = Ak[(1+1’)tk+(1—"’)tk+1]+[ = (14 )+ ‘(1—'1’2)] (t—tesr)-

Using the form (6.24) in Eq. (6.23) the optlmahty conditions take the form

By

6.26) (1—2? [A,‘Jr ;-2'_ t"“ [Ak(l~1')~%(l+v)

2
..’_’i"_(l )] = 41 ERPt by, k=1,2,

3

1 2
2 h(réi —ri-y) = qR?t,.

k=1
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Equations (6.25) and (6.26) constitute a set of equations with 9 unknowns A4;, B, (k =

=1,2,3), ry,r, and A, from which the optimal values of r; and r, can be determined.
In order to simplify the solutions of Egs. (6.25), (6.26) assume that the plate thickness

varies according to the relationship

(6.27) = @-kKkto

which implies that the structure is made up of plate elements of given thickness #,. The

solution for the case » = 0 is illustrated in Fig. 9a which shows the dependence of the

a b

/R T w w ,;[ T
| Q q=< v |
|
075 | / - 10 10 :
l ‘
g ;
& .
1 = !
050 | N/ 095 095 1‘—
| |
!
N 4 ; ‘
0.25 —— { A ;// ———1090 090 '[
f N
| o
0 ' [ S - 085 085 i,,lﬁ,,,, e _ﬂ_|_1
10 15 20 25 q 0 0z 04 06 sz
/‘7/ "

FIG. 9. Optimal solutions for a .circular sandwich plate; (a) optimal radii versus relative cost of design,
(b) relative compliance of a plate versus radius of first subdomain.

optimal radii r; and r,, as well as the relative compliance (i.e. the ratio of the mean compli-
ance of the optimal plate to the mean compliance of a plate of constant thickness and the
same cost) on the relative costg. It is seen that for decreasing relative cost ¢, the optimal
solution corresponds to the vanishing interface r = r;, whereas for ¢ tending to 3, the
optimal plate is gradually transformed into the plate of uniform thickness. Figure 9b
shows the variation of relative compliance for ¢ = 2.0 as a function of r, defining the
interface position between the first and the second subdomains. It is easy to see that the
values of r, and r, satisfying the optimality conditions (6.26) correspond to a global
minimum of the mean plate compliance.

7. Concluding remarks

The present paper supplements the results of previous works [3-5, 9, 10] and provides
a systematic variational approach to sensitivity analysis and optimal design for plates with
varying external boundaries and interfaces. The analysis is limited to geometrical linear
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and physical nonlinear plates for which the concept of adjoint plate provides an effective
tool in generating the first variation of any functional prescribed over plate domain. The
extension to the geometrical nonlinear plate can also be obtained by following the present
analysis and that presented in [10].
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