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An internal variable theory of inelastic behaviour at high rates of strain 

0. T. BRUHNS and H. DIEHL (BOCHUM) 

THE OBJECTIVE of the present paper is the formulation of the general frame of an internal variable 
theory of high strain rate deformations in metals. Such deformations are characterized by nuclea­
tion, growth and coalescence of various microdefects like shear bands, cracks and voids. Localized 
deformations in the vicinity of these microdefects as well as dislocation motion in the remaining 
parts of the body contribute to the inelastic strain rate. Mter identification of appropriate internal 
variables through an approximate homogenization procedure, evolution laws and flow rules 
are introduced and investigated with respect to their consistency with thermodynamics. The 
Clausius-Duhem inequality is utilized as a measure of irreversibility. Introducing a polynomial 
representation of specific free enthalpy, thermodynamically consistent evolution laws are derived. 
Finally, the theory is applied to the problem of propagation of uniaxial acceleration waves into 
an unstressed homogeneous medium. 

Celem pracy jest sformulowanie og6lnych zasad teorii zmiennych wewn~trznych przy duzych 
pr~dkosciach odksztalcenia metali. Odksztalcenia takie charakteryzuj'! si~ nukleacj'!, wzrostem 
i koalescencj'! r6znych defekt6w, takich jak pasma scinania szczeliny i pustki. Zlokalizowane 
deformacje w otoczeniu tych mikro-defekt6w jak r6wniez ruch dyslokacji w pozostalych obsza­
rach prowadz<! do pojawienia si~ niespr~zystych pr~dkosci odksztalcenia. Po identyfikacji 
stosowanych zmiennych wewn~trznych, drog'! przyblizonej homogenizacji, wprowadzono prawa 
ewolucji i uplastycznienia bada.i'!c je z punktu widzenia ich zgodnosci z termodynamik'!. Za 
miar~ nieodwracalnosci przyj~to nier6wnosc Clausiusa-Duhema. Wprowadzenie wielomianowej 
reprezentacji swobodnej entalpii wlasciwej umozliwilo wyw6d zgodnych z termodynamik'! praw 
ewolucji. Teori~ zastosowano na koniec do problemu propagacji jednowymiarowych fal przy-
spieszenia w jednorodnym osrodku beznapr~zeniowym. . 

UeJihiO pa6oThi HBJIHeTca ¢opMymtpoBI<a o6I..QHX npHHI.\HllOB Teopnn BH)'TpeHHHX nepeMeHllhiX 
npn 6oJihiUHX CI<opocTHX ~e¢opMal.\HH MeTaJIJIOB. Tai<He ~e¢opMal.\HH xapai<Tepn3yiOTCH 
HYI<Jiea}.\Heif, pOCTOM H HOaJieC}.\eH}.\Heif pa3HbiX ~ecf>eJ<TOB, Tai<HX J<aJ< llOJIOCbl C~Hra, Tpei..QHHbl 
M nyCTOTbl. Jloi<aJI.H3HpOBaHHbie ~ecf>opMa}.\MH B OI<peCTHOCTH 3THX MHI<po~ecf>ei<TOB, I<ai< 
TO>Ke ~BH>KeHHe ~HCJIOI<a}.\HH B OCTaJihHbiX o6JiaCTHX, llp.HBO~HT I< llOHBJieHMIO HeynpyniX 
C.h:OpOCTeif ~ecf>cf>opMa}.\HH. IJocJie M~eHTMcPHI<a}.\.HH COOTBeTCTByiOI..QHX BH)'TpeHHHX nepe­
MeHHhiX, nyTeM np.H6JI.H>KeHHOH rOMoreH.H3a}.\.HH, BBe~eHbl 3aJ<OHbl 3BOJIIO}.\HH M llJiaCTMll­
HOCTM, HCCJie~yH HX C TOlli<H 3peH.HH COBMeCTHMOCTM C TepMO~HHaM.HI<OH. 3a Mepy Heo6paTM­
MOCTH np.HHHTO HepaseHCTBO KJiay3nyca-.UIOreMa. Bse~eHne MHorollJieHHoro npe~cTaBJieHJUI 
CB060~HOH y~eJihHOH 3HTaJibllHH ~aeT B03MO>KHOCTh BhiBO~a COBMeCTHMbiX C TepMO~.HHaM.HI<OH 
3ai<oHoB 3BOJIIOI.\HH. Hai<oHel.\, Teopna npHMeHeHa I< 3a~alle pacnpocTpaHeHHH o~HoMepHbiX 
BOJIH yci<opeHHH B O~opo~HOH 6e3HanpH>KeHHOH cpe~e. 

General notation 

(J Cauchy stress tensor, 
E linearized Green's strain tensor, 
e absolute temperature, 
g specific free enthalpy, 
q heat flux, 
zo damage tensor. 

For arbitrary second order tensors A, B we use 

AB <=> AI}BJ"• 
A· B <=> AI}BiJ, 
trA <=> A11, 

Further notation is explained in the text. 
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1. Introduction 

THE BEHAVIOUR of metals under dynamic loading (impact, explosive forming) has been 
explored for about half a century. The classical papers by TAYLOR [53] and v. KARMAN 
and DuwEz [19] on theoretical and experimental determination of the "dynamic yield 
stress" can be considered as the foundation stones of dynamic plasticity. For many years 
the theory of rigid-ideally-plastic bodies with a yield stress taken from dynamic tests was 
fundamental to the design of dynamically-loaded structures. 

Several approximate theories, e.g., based on extremum principles, have been developed 
by MARTIN, SYMONDS, KALISZKY and others [18, 29, 52]. These theories provide reliable 
information as long as 

a) the external energy input is several times greater than the total elastic strain energy 
capacity, 

b) l ev~ ~ ldiva'l holds, 
c) the strain rate is approximately constant, 
d) the characteristic external times are large compared with 1/c, where I is a typical 

dimension of the structure and c is a typical velocity of wave propagation, 
e) the process can be regarded as isothermal. 
The violation of one of these presuppositions requires the use of more sophisticated 

constitutive models. Thus first corrections were concerned with the dependence on strain 
rate and temperature. We mention some simple extensions of the rigid plastic model where 
the originally constant yield stress is replaced by a function of e, () and the more elaborated 
overstress models by PERZYNA and SOKOLOVSKI-MALVERN [36, 28]. 

These models, however, are of pure phenomenological character and therefore show 
some disadvantages: 

The complex behaviour under high strain rate loading requires a large number of 
material functions and parameters, where only a few independent experiments are available. 

Phenomenological models are intended for stress analysis and do not contain failure 
criteria. 

These disadvantages have provoked the desire of incorporating micromechanics 
(deformation and damage mechanisms) into a continuum theory of high strain rate defor­
mations. The micromechanics of high strain rate deformations, namely, have been studied 
extensively (see for instance the conference proceedings [15, 16, 20, 31, 34, 41]). Metallurgy 
traditionally concentrates on the behaviour of isolated lattice defects rather than on defect 
accumulation and the published results on isolated defects are only partially useful for the 
continuum physicist. It was not until the mid-seventies that the first systematic studies on 
high strain rate damage were published by the SRI group, to which we owe almost everything 
that is known about microdamage under dynamic loading [9, 10, 45, 48, 49, 50]. 

It was found that in addition to the motion of dislocations, three-dimensional lattice 
defects (pre-existing flaws, inclusions) determine the material's behaviour. An improved 
continuum theory of dislocation-induced deformations at high strain rates is due to PERZYNA 
[37, 38]. Continuum damage theories of dynamically-loaded bodies have been published 
by the SRI group [9] and by PERZYNA [40]. Perzyna investigated isothermal damage 
processes due to ductile microcracks in the context of an internal variable theory. 
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AN INTERNAL VARIABLE THEORY OF INELASTIC BEHAVIOUR 429 

The objective of our paper is the development of a continuum damage theory of non­
isothermal high strain rate processes with particular attention to shear band formation. 
Section 2 contains a review of experimental observations and their physical interpretations. 
Conclusions about the applicability of the classical continuum theory and the general 
frame of an internal variable theory are presented in Sects. 3 and 4. Section 5 deals with 
the identification of internal variables describing micro-shear bands. Criteria for the 
assessment of shear band damage are derived in Sect. 6. They describe the failure of material 
volume elements, not of engineering structures. Flow rules and evolution laws describing 
dislocation mechanisms at slow, moderate and high strain rates up to 104 s- 1 are given 
in Sect. 7. The constitutive laws introduced so far will be inspected as to their consistency 
with the second law of thermodynamics in Sect. 8. The second law is expressed in terms 
of the Clausius-Duhem inequality with the free enthalpy function as the thermodynamic 
potential. The constitutive model is specialized to the case of uniaxial states of stress in 
Sect. 9. These equations are used to study some aspects of propagation of acceleration 
waves (propagation velocity, "transport equation" of the acceleration jump). 

The main features of our model are summarized in Sect. 10 and necessary extensions 
left to future work are outlined. 

2. Experimental observations and their physical interpretation 

2.1. General considerations 

I. Classification of experimental methods 
Dynamic experiments can be divided into two categories: 
a) Measurement of the time history of macroscopic observables (e, £,a, 0) and con­

struction of a-s-diagrams, a-s-diagrams (see paragraph II). 
b) Inspection of structural changes (dislocation density, void density ... ) after a high 

rate loading (see paragraph III). 
Details about the experimental apparatus can be found in [15, 16, 31]. 
II. i. a-s and a-s-curves are determined by either flat plate impact tests, expanding ring 

tests or several modifications of the split Hopkinson bar. Strain rates of some I 04 s -l 
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FIG. 1. Typical stress-strain relations for 
various constant strain rates. 
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FIG. 2. Typical stress-strain rate relations for 
constant strain and various temperatures. 
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430 0. T. BRUHNS AND H. DIEHL 

can be realized with polycrystalline specimens. However, equivalent strain rates in biaxial 
loading are restricted to no more than 200 s- 1

• Typical a-E, a-.S-diagrams are depicted 
in Figs. 1 and 2. 

From Fig. 1 we see that the phenomenological yield limit ay as well as the tangent 
modulus Er depend on strain rate. aay/ (} i =1= 0 is more or less pronounced depending 
on the composition and crystal structure. For .S < 1 s- 1 and () = const Er increases with 
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FIG. 3. Dynamic stress-strain curves for 1100-0 aluminium (from ref. [7]). 
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i:: (curves I , 2). At extremely high rates (curve 3) adiabatic heating and damage result 
in a decrease of E, whose amount is not known exactly. The curves drawn in Fig. 1 sche­
matically are in some respect oversimplified, e.g. , the difference between the isothermal 
and the adiabatic Young's modulus is neglected. Figures 3 and 4 show stress-strain-curves 
for aluminium and Nitronic- 40. 

Nitronic 40 

0 0.1 0.2 0.3 0.4 FIG. 4. Stress-strain curves for Nitronic 40 

True strain stainless steel (from ref. [12]). 

ii. Stress-strain rate diagrams enable us to identify regions of different rate controlling 
deformation mechanisms [13, 37]. Usually cis taken to be an offset strain (say 2%) and the 
curves are then called yield stress-strain rate curves. Figure 2 shows the significant increase 
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F IG. 5. Polished cross section in shock-loaded Armco iron revealing internal cleavage cracks (from 
ref. [48]). 

FIG. 6. Polished cross section in shock-loaded 1145 aluminium showing the population of internal spherical 
voids (from ref. [48]). 

[431] 
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432 0. T. BRUHNS AND H . DIEHL 

of strain rate sensitivity olno"jolne at strain rates ofthe order 103 s- 1, ... , 104 s- 1
. This 

increase will be discussed in Sect. 2.3. 
III. i. Depending on material and loading conditions, high strain rate failure of solids 

occurs through nucleation, growth and coalescence of cracks, voids or shear bands [48]. 
Typical defect arrangements are shown in Figs. 5 to 7. The occurrence of voids and shear 

Fra. 7. Adiabatic shear zones near the plugged region in an ESR steel plate (from ref. [34]). 

bands at small overall strains distinguishes damage at high rates from well-known ductile 
failure at low rates. It was observed that under short-lived tensile pulses, materials fail 
by either microcracking or by void formation while under high rate compressive pulseslt 
shear bands are developed [48]. The tests were performed at strain rates up to 104 s- 1 

[45]. 
ii. It is generally assumed that any approach of modelling micro-structural high rate 

failure processes in a continuum theory is equally applicable to all damage modes. This 
hypothesis is based on the observation of "weak spots", where nucleation of defects is 
preferred [49, 10]. Possible weak spots are inclusions, pre-existing microcracks, grain 
junctions in inclusion-free grain boundaries [43]. While the role of inclusions and grain 
junctions is generally accepted in the case of microcracks and microvoids, the nature 
of .the weak spots in shear-band processes is still controversial [49]. 

CURRAN et a/. [10] describe void nucleation and growth by a general evolution law 
taking into account vacancy diffusion as well as mechanical debonding due to increasing 
mean stress and plastic strain. Plastic flow controlled growth was also assumed by PERZYNA 
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[40]. As to the use of plastic flow controlled laws, we quote from Curran et al.: "We assume 
that nucleation at any heterogeneity requires a combination of local stresses normal and 
tangential to the heterogeneity ... plastic shear strain is probably a better indicator of the local 
shear stress than is the continuum shear stress". Thus the use of plastic strain is merely 
a substitute for a measure of local stress, which cannot be registered in the continuum 
theories of Curran et al. and Perzyna. 

It is interesting to know whether defect generation at high rates is due to the damage 
mechanisms which are already known to be responsible for damage at slow rates. In the 
case of void formation, Curran et al. conclude: "there is nothing unique about high rate 
loads; they simply explore particular areas of the micro void kinetics". A generalization 
of this statement to other defects can be questioned, especially in the case of shear bands. 

iii. Local stress concentrations (phenomenologically described as weak spots) are re­
moved by local dislocation motion at slow rates. With increasing strain rate more and more 
dislocations are "frozen in" and the local stresses may overcome a nucleation threshold. 
The importance of stress concentrators may be expected to cease with increasing overall 
stress. If the overall shear stress reaches values of the order flflO (a value not uncommon 
in shock waves), homogeneous defect nucleation may occur (e.g. homogeneous nucleation 
of dislocations [32]). 

IV. The irreversible deformations due to localized shear, slip or void opening, causing 
fragmentation on the microscale, superpose conventional dislocation induced deformations. 
Many experiments were performed to study dislocation density and spatial dislocation 
distribution after a high rate loading of single crystals and polycrystals [32, 6]. The main 
results are: 

The dislocation density Nat constants increases withe, i.e., the evolution of N proceeds 
rate dependent ([12], comparison of data from [6], [2]). 

The spatial distribution of dislocations is much more homogeneous than at slow rates. 
There is little formation of dislocation arrangements, e.g., if cells are formed at all, they 
are smaller than the cells observed at slow rates [32]. 

The differences between local plastic strain at constant overall E decrease with increasing 
strain rate because high stresses permit slip or even multiple slip in unfavourably oriented 
grains. 

Twin formation is favoured, especialJy in materials with low stacking fault energy. 
A further discussion of dislocation mechanics at high rates follows in Sect. 2.3. 

2.2. Shear band observations and their interpretation 

I. Shear bands are surfaces with a reduced capacity for carrying shear-stresses and are 
deposited in a dynamicalJy-loaded solid body with a density of 103 fcm 3 to 105 fcm 3

• Their 
geometry resembles that of edge dislocations. In many materials, shear bands produced 
during high loading rates form not etchable, white bands. The white bands suggest the 
occurrence of a localized increase of temperature causing a phase transformation. Shear 
band dimensions vary over a wide range from some microns up to a few mm; larger bands 
occur due to coalescence in the final process of fragmentation. 
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434 0. T. BRUHNS AND H. DIEHL 

Typically shear band dimensions are larger than the grain diameter d and the spreading 
of shear bands is not influenced by grain boundaries (see Fig. 8). Unfortunately, the 
publications of the SRI do not provide a systematic study of shear band orientations. 
If we assume that during the CFC-test [49] plain stress and radial loading prevail, we can 

I ~ · . I 

FIG. 8. Propagation of an adiabatic shear band in a tungsten sinter alloy (from ref. [42]). 

conclude that under such conditions most of the shear bands are aligned with the principle 
stress trajectories. 

II. Currently, different types of shear localizations are known. A survey of shear locali­
zations at small strain rates and large strains is presented by ASARO [2]. Shear band phenom­
ena are classified according to their geometrical extensions. We distinguish 

localized shear zones in individual crystallites (kink bands, coarse slip bands, "macro­
scopic" shear bands), 

localized shear zones spreading over several grains (deformation shear bands). 
Shear bands in dynamically loaded materials belong to the second category. None 

of the shear localizations mentioned above is accompanied by high temperatures or phase 
transformations. Texture softening after large strains has been suggested as a nucleation 
mechanism. There seem to be typical shear band nucleation mechanisms at high strain 
rates, namely adiabatic shear [13] or catastrophic "Frenkel's" shear. By catastrophic 
shear we mean the athermal slip of crystallographic planes without the aid of dislocations. 
This mechanism was erroneously suggested by Frenkel as the reason of ductility at slow 
rates before the discovery of dislocations. 

2.3. Further remarks on the contribution of dislocation mechanisms 

I. Discussion of the increase of strain rate sensitivity at £ ~ 104 s- 1 

i. In the following we examine a polycrystalline volume element Ll V and a single crystal 
volume element ~V cut from L1 V. In the case of quasi-stationary dislocation glide, the 
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average dislocation-induced strain rate yd of dV can be expressed through Orowan's 
equation as follows [25]: 

(2.1) Y<~ = sym (.,L ticxma®ncx)' 
a 

(2.2) 
b~N:; 

Ga = ------------------------~---

(LJg)( . r!bcx!L1X)-l B ' 
exp k() 2vvsmh k() + r! 

where the sum extends over all active glide systems in dV with normal Dcx, glide directions 
rna and Burgers vector hex. The shear rate aa is determined by the mobile dislocation 
density N~,, the effective shear stress r! = Ta- Tpa, i.e., the difference between resolved 
shear stress and athermal stress, the free enthalpy L1g which must be supplied to push 
a dislocation over a weak obstacle in the case of r! = 0, the activation volume balL1x, 
the Debye frequency Yv, Boltzmann's constant 'k and a so-called drag coefficient B. The 
first term in the denominator represents thermally-activated glide, the second term drag­
controlled glide. Several special cases can be extracted from Eq. (2.2): very larger~, disloca­
tions may overcome the barrier L1g without thermal activation and the resulting shear 
rate is controlled by the dependence of the flight velocity on several interactions like 
phonon scattering, electron scattering and the like. These effects are summarized in the 
drag constant B. Small values of r~ result in thermally-activated glide and at even lower 
effective shear stresses r! ~ 0 Eq. (2.2) may be replaced by a rate-independent flow rule 
describing athermal glide motion (see [25]). 

The increased strain-rate sensitivity at strain rates of the order of 104 s- 1 has repeatedly 
been attributed to drag effects [26, 37, 47]. Very recently objections have been raised 
against this interpretation [12]: 

The change in strain rate sensitivity can also be explained by a rate-dependent increase 
of total dislocation density. 

ii. Four reasons prohibit the application of Orowan's equation to high strain rate 
processes: 

a) Later on we will be interested in the average dislocation-induced deformation 
ed of L1 V which results from all the dV contained in L1 V. Due to the fluctuations of the 
resolved shear stress, i.d contains contributions from grains with different activated defor~a­
tion mechanisms. The total dislocation induced deformation simultaneously exhibits 
athermal, thermally-activated or drag-controlled dislocation motion. 

b) Cross-slip and climb are neglected in Eq. (2.1). However, cross slip may be important 
during a high-rate loading and climb may be initiated during recovery under high tempera­
tures following a high-strain-rate defo::-mation. 

c) Eq. (2.1) does not take into account deformations due to twinning. 
d) As was already mentioned, the Orowan equation is restricted to quasi-stationary 

flight motion. MECKING (30] and PERZYNA and PECHERSKI (39] discussed generalizations 
which, for single slip, are given by 

(2.3) 
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Nm is the rate of production of mobile dislocations. It is believed that Nm is controlled 
by athermal mechanisms [39]. In addition to athermal glide in grains with small r*, this 
is another source of athermal behaviour. 

II. While total dislocation density can be measured quite accurately for N < 1014 m- 2 , 

there is some uncertainty about the values of mobile dislocation density at high strain 
rates. Extrapolation of formulae derived for small rates gives unrealistically large values 
of Nm. Direct measurement of Nm was performed by Smo:RI [46, 47] at strain rates up to 
8 · 103 s- 1 • A slow increase of Nm with s was observed, which was below the increase 

of total dislocation density with €. We conclude that the ratio Nm/N decreases with increasing 
strain rate. 

Very few evolution laws for Nm can be found in the literature. In most cases Nm/N 
is assumed to be a constant of the order of 10- 2

• A rate-independent evolution law Nm = 
= (Nm/N +Nf(N)) N was suggested by GILMAN (see [21]). 

III. Widely different suggestions for evolution laws of N can be found in the literature. 
A comparison of these suggestions is beyond the scope of this article. The equations 
intended to be valid for small and moderate strain rates typically have the form . 
(2.4) N = k1( · )yd-k2( · ). 

Dislocation generation is governed by plastic flow while - k 2 corresponds to annihilation. 
Restriction to small strain analysis allows for the neglect of - k 2 • Often k 1 = const 
is assumed for slow processes. ZSLODOS and KovAcs [54] suggest k 1 = a.r, a = const. 
This corresponds to the use of plastic work as a measure of hardening in phenomenological 
theories of plasticity. 

In order to describe rate-dependent dislocation generation at high strain rates, KLE­

PACZKO [22] suggested a nonlinear dependence on Yd: 
(2.5) 

GILMAN [14] introduced an evoluti.,n law of the type 

(2.6) 

where the second _term describes homogeneous nucleation of dislocations at large a I p, 
i.e., at high strain rates. 

A drastic increase of dislocation density has been observed in shock-loaded materials. 
Since it is believed that dislocations are generated at the wave-front and are rearranged 
behind the wave-front [32], one might ask for a jump condition .giving the jump [N] in 
terms of [a], [v], [8]. None of the equations mentioned above allows for the calculation 
of [N]. STOUT [51] developed a generalized dislocation theory with a balance law for N 
of the Boltzmann-type and derived [N]. 

IV. Remark on latent energy in high strain-rate processes: 
It is known that only 90-95% of plastic work is converted into heat, the rest is stored 

as an internal stress energy. The latent energy of a polycrystal is determined by two types 
of internal stresses, namely internal stresses fluctuating with the mean separation distance 
of single dislocations and with the grain diameter, respectively. The contribution of the 
former probably increases with strain-rate because of the lack of time for dislocation 
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arrangement. However, the stress variations between adjacent grains are less pronounced 
at high rates. 

Nothing can be said about the fraction of latent energy. Since stress variations between 
adjacent grains are responsible for the Bauschinger effect, we might expect that anisotropic 
hardening is less pronounced at high strain rates. 

3. Conclusions about the applicability of a local continuum theory 

I. Let P E B be a material point of a body B with current location x E Xt. P is defined 
by attaching average quantities taken over a representative volume element L1 V whose 
dimensions are chosen such that 

(3.1) 

where Is is a characteristic length of the material's substructure (e.g., the diameter of or 
the distance between shear bands) and /e is a characteristic length of the applied lqad. 
In wave propagation problems le can be chosen as v 0 c0 /1 [v] l, where c0 is the largest velocity 
of acceleration waves, v 0 is an impact velocity and [v] is the jump of the acceleration 
across the wave-front. Thus the right inequality in Eq. (3.1) expresses an upper bound 
vmax of v 0 . If v 0 > Vmax, an inadmissible increase of v results and Ll Vis no longer typical 
and probably a non local theory is appropriate. In the present case L1 V is a polycrystal 
containing a finite number of defects with the diameter < fl L1 V (henceforth called micro­
defects). Sometimes it will be useful to study the volume element bV cut from a single 
crystal as well. The relationship between Xt, Ll V and bV is sketched in Fig. 9. Following 

Polljcrijsfaf 
LlV 

) 

Single crystal 

cl'V 

FIG. 9. Illustration of the relation between the volume elements L1 V and 15V. 
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[5] we take [v] = v 0 ft, with the rise time t, and write y· L1 Vas a multiple of the grain di­
ameter d. Therefore the inequality (3.1) can be written as 

(3.2) 

For typical values of c0 , t" d, n is of the order 10 to 100. 
II. The basic postulate of continuum mechanics is that the motion x(X, t) is a continuous 

function of X, i.e., adjacent volume elements remain adjacent during the whole process. 
This condition is violated by growth and coalescence of defects. Only defects with dimen­
sions < y L1 V can be described in the framework of the classical continuum theory and 
may be considered "smeared out" over the actual configuration Xr. Larger defects ("macro­
defects") grow in the course of the process and must be treated as individual perturbations 
of the body's topology. Necessarily the calculation of a high strain rate deformation 
proceeds in two periods: 

PI 0 ~ t ~ t*(x), 
P2 t > t*(x), 

where t*(x) is the time at which a macrodefect is nucleated in x. 
Ill. The objective of our paper is a description of Pl. A small strain formulation is 

sufficient in many applications (e.g., plugging, spalling) and will be employed. As mentioned 
in Sect. 2, there are well-defined regimes where shear banding is the dominant damage 
mechanism and the restriction of a general damage theory to a theory of micro-shear 
bands (henceforth abbreviated as misbs) makes sense. As long as the misbs can be considered 
"smeared out", there is no need to determine size distributions. In this respect our theory 
differs from the formulations of CURRAN [9] and PERZYNA [40]. 

A necessary condition for an extension of the model to P2 (e.g., via FE-calculations 
with mesh-reorganization at macrodefects) is that the time of nucleation as well as the size 
and orientation of a macrodefect are determined by the continuum damage theory. 

Throughout the paper we assume that homogeneous nucleation of defects is prevented 
by a restriction to such processes where nucleation at weak spots is verified experimentally, 
i.e., for strain rates up to 104 s- 1

• We have repeatedly pointed out the importance of stress 
concentrations and/or local hot spots for nucleation and growth of microdefects and 
continuum measures of stress concentrations and hot spots are highly desirable. 

4. Genaral frame of a continuum theory with internal and process variables 

I. The concept of internal and process variables has been discussed extensively in the 
literature. We briefly summarize the ideas. 

i. In addition to macroscopic variables (a, fJ, e, q, g, e), further quantities are intro­
duced to describe the internal mechanical state of an inelastically deformed polycrystalline 
material. Devices on a microscopic scale are necessary to make these quantities visible. 
Such a quantity is called an internal variable p if changes of p result in a change of internal 
energy (e.g., total dislocation density, void density). Other quantities p of interest which 
do not alter the internal energy are called process variables (e.g., mobile dislocation density, 
preferred directions). 
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ii. In the present case we introduce two sets of internal and process variables, respect-
ively: 

{ Si} set of internal variables describing shear band processes, 
{Dd set of internal variables describing dislocation processes, 
{ ~} set of process variables describing shear band processes, 
{DJ set of process variables describing dislocation processes. 
II. Total strain is decomposed into reversible and irreversible parts according to 

(4.1) 

£i is further decomposed into dislocation-induced strains and strains due to accumulated 
localized shearing and slip along misbs: 

(4.2) 

£ 4 represents contributions of different dislocation mechanisms. From the discussion 
of Sect. 2, it follows that 

(4.3) 

Here Eda is the average effect of athermal dislocation motion in the disproportionately 
stressed grains of L1 V and similar interpretations are given to Edt, e44 in connection with 
thermally activated dislocation motion and drag-controlled dislocation motion, respect­
ively. In general, one of the three terms in Eq. (4.3) will dominate, e.g., /\E4all ~ //E4r//, 
//£44 // at low temperatures and strain rates. However, the decomposition (4.3) is fundamental 
for a continuous behaviour over a wide range of strain rates. The different contributions 
of ei are subjected to different yield and loading c_onditions. In some respect e = 104 s- 1 

has the meaning of a limiting strain rate. It characterizes the beginning of a significant 
contribution of drag mechanisms, it is the current upper limit of the regime of discrete 
defect generation at weak spots and it is related to the maximum admissible velocity v0 

in Eq. (3.2). In what follows we shall restrict our considerations to strain rates less than 
104 s- 1 and will thus neglect ed4 in Eq. (4.3). 

III. The constitutive law for a material undergoing inelastic deformations well into 
the regime of high strain rates up to 104 s- 1 comprehends 

a) one function g(a, (), Si, DJ specifying the free enthalpy, 
b) flow rules for Es, EtJa, Edt and associated yield and loading conditions, 
c) evolution laws for Si, Di, si, Di, 
d) the law of heat flux. 

In the following Section we shall identify the internal and process variables and postulate 
general representations of the corresponding growth laws. These equations are subjected 
to the second law of thermodynamics in Sect. 8. 

IV. In constructing general representations of the evolution laws, the following principles 
are formulated and will be observed: 

PRINCIPLE 1. The complete set of balance laws and constitutive laws constitutes a quasi­
linear hyperbolic system. 

PRINCIPLE 2. The left-hand side of the Clausius-Duhem inequality is piecewise linear 
in the rates of the macroscopic variables. 
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PRINCIPLE 3. (Decoupling of dislocation and shear band processes at the macroscale): 
The evolution of the Si, Si is independent of the D i, jji and vice versa. 

Of course, there is a coupling between different deformation mechanisms on the micro­
scale which will be taken into account by the definition of the si. 

Principle 1 has an obvious physical interpretation. Principle 2 is more or less a matter 
of convenience to comply with the usual methods of evaluating . the Clausius-J?uhem­
inequality. Both principles rule out oversimplified descriptions of rate-dependent behaviour 
like Eq. (2.5) for the dislocation density or PERZYNA's [39] concept of an £-dependent 
control function in the ·flow rule for E:d. 

Further principles will be introduced later on. 
IV. i. To simplify the notation, a few abbreviations of the general form of evolution 

laws to be considered in Sects. 5 and 7 will be given here. Let Y be a representative element 
of {Di}u { Di}, say. (The case Y E { Si}u { ~} can be dealt with analogously). Changes 
in Y may be due to either athermal or thermally activated mechanisms and may therefore 
be idealized as either rate-independent and instantaneous or rate-dependent and delayed: 

(4.4) Y = Yinst + Y*, 
(4.5) Y1nst = f1 (cr, (}, D1 , 5;, iJ, 0), f1 hom. of degree 1 in iJ, fi, 
(4.6) Y* = f 2 (cr, 0, D1 , D1), 

where a star denotes dependence of a variable on present values. Let F(a, (}, Di, DJ 
be a yield function such that F ?: 0 is necessary for Y # 0. The associated loading index is 

(4.7) 
oF . oF. 

LC : = 8; · cr + 8(i (}. 

We postulate continuity of Y for continuous a, 0, especially at changes from loading to 
unloading and vice versa. The evolution law for Y1nst thus reads 

. lLCh(cr,O,DbD1) 
Yinst = · 0 otherwise, 

(4.8) 
if LC > 0, F?: 0, 

and h has the additional property h ~ 0 for F ~ 0. Equation (4.8) can be written in compact 
form with the aid of Maccauly-brackets 

l (LC) if LC > 0, 
(LC) = . 

0 otherwise, 

if F?: 0, 

otherwise, h ~ 0 for F~o. 

If both parts of Y are subjected to the same yield condition, Eq. (4.4) can be written as 

(4.9) 

with h = dyny where Dy (not necessarily a unit tensor) gives the direction of instantaneous 
changes of Y. 

ii. In formulating constitutive laws which are claimed to be valid over a wide range 
of strain rates, the following problem frequently occurs: 
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The idealization of instantaneous changes of the internal mechanical state loses its 
validity with the decrease of the characteristic external time, i.e., with increasing strain 
rate. 

One expects IIY*II ~ IIYinst ll at high rates at least for some of the internal variables. 
This is clearly impossible if dy and Y* depend cmly on instantaneous values of rate-indepen­
dent variables. Taking dy, Y* as functions of e, (i results in a violation of principles 1 and 2. 
Thus the following question arises: 

Can one find a variable (internal or process) denoted by u, whose present value charac­
terizes £, 0 in the following sense: 

a) If e = e = const, 8 = fi. = const, then there exists a unique relation u oo = u00 (e, fi.). 
b) If arbitrary processes e(t), O(t) are approximated by piecewise constant strain and 

temperature rates E = ej, {} = Di for tj < t < ti+Lfti = ti+l' and if Uoo i = uoo (ej, Dj) 
then the relaxation time of u must be small compared with Lf ti. 

Indeed the considerations of Sect. 2.3 suggest that 

(4.10) 
Nm 

U ·= - -. N 

is an appropriate measure of strain rate and dy = dy(u, ... ), Y = Y*(u, ... ) enables us to 
describe the dominance of thermally-activated mechanisms at moderate and high strain 
rates. The questions a), b) are a challenge to the stability theory of ordinary differential 
equations. The answers will be discussed briefly in Sect. 7. 

5. Constitutive modelling of micro-shear band processes 

5.1. Internal and process variables 

I. Consider the representative volume element Lf V depicted in Fig. 10. It contains 
a finite number N of stress concentrators CJ located at Ya., (X E I= {1, ... , N}. Misbs are 
assumed to be nucleated at Ca. and are modelled as planes <5Aa. = <5Aa. ea., (X E / 58 c _ I, where 
/ 58 is the subset of all Ca. where misbs exist at time t. The substructure of the material is 

!Ia: 

)( 

FIG. 10. A representative volume element L1 Vof the damaged body with <;tress concentrators Cy and micro­
shear bands oAIX. 

2 Arch. Mech. Stos. 4/89 
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disturbed by the presence of these microdefects. We shall now introduce so-called "micro-· 
fields" defined on L1 V, labelled by an index m and containing information about the be­
haviour at Ca.. The nan approximate homogenization, particularly well-suited to the problem 
of a strongly disordered substructure, is employed to obtain continuum macrovariables .. 

Is should be noted that modelling stress concentrators as points Ca. is already a heuristic 
approximation of the real volume element, where inclusions, microcracks etc. are finite 
regions <5Va.. c L1 V. To the best of the authors' knowledge there exists no method of calcula­
tion of the exact microfields in a volume element with arbitrary arranged <5Va. embedded 
in an inelastic matrix. Therefore the approximate microfields (5.1), (5.2) are introduced 
a priori. It is hoped that they describe the essential features of the exact microfields. 

II. Microfields are defined in the following way: 

(5.1) i) <Jm(X, y, t) = <Jml(x, y, t)+}; L1<ra.(t)LIV<5(y-ya.), 
a.E[ 

(5.2) Om(X, y, t) = Om 1 (x, y, t)+ L L10~(t)LIV<5(y-ya.), 
a.el 

and similarly for Ed, Db Di. 
The first terms in Eq. (5.1) and (5.2) are called quasi-homogeneous parts since they 

describe the material in the absence of stress- and temperature concentrators. The latter 
are modelled by attaching additional stresses and temperatures to the Ca. via Dirac's delta­
distribution. 

ii. We shall now define microfields characterizing the shear band processes. Obviously 
they have no quasi-homogeneous parts. 

(5.3) Zm(X, y, t) : = }; <5A 11 (t)LI Vea.®ea. <5(y- Ya.) 
a.Efs 8(t) 

is called the micro damage tensor and 

(5.4) Esm(x, y, t) := sym( }; (aa.va.®ea.LIV<5Aa.(Y-Ya.)) 
a.Efs8(t) 

is the micro strain rate due to localized shearing and slip. <5Aa. is the delta-distribution 
associated with the plane <5Aa. (see [33]). A further interpretation of Zm will be given in 
Sect. 6 along with the discussion of failure criteria. 

III. Homogenization of microfields 
i. Let Hm be an arbitrary microfield, H = (Hm) denotes its average (in the present 

context the symbol < ) shouldn't be confused with a Maccauly bracket) defined by 

(5.5) H(x, t) = (Hm(x, y, t)) := LI
1
V f Hm(x+y, t)f(y)dVy. 

LIV 

fE C<X>(L1V) with/(~)= /(1~1), dffd l ~ l < 0 is a weighting function. There are several reasons 
for the use of a weighted average instead of the average with f = 1 usually employed in 
the theory of heterogeneous media. First of all, the use off E C<X> allows Hm to be a distribu­
tion. Secondly, classical homogenization procedures require either a periodic structure 
or a homogeneous deformation of oL1 V [24]. Neither of the two alternative requirements 
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is fulfilled in the presence of misbs. Thirdly, f E coo enables us to write the result of Eq. 

(5.5) as a series of moments of Hm, which can be truncated after the desired degree of accu­

racy. Finally, the influence of 3L1 V can be diminished by choosing a rapidly decreasing 

function! In general, fneeds not be specified. The averaging procedure (5.5) is well known 

in continuum electrodynamics [17] as the multipole expansion of Maxwell's laws. 

ii. Inserting the microfie1ds (5.1)-(5.4) into Eq. (5.5) leads to the following representa­

tion of the accompanying macrofields: 

a = (am1) +a0 -diva1 ± 
(5.6) z = zo- div Z 1 ± ... ' 

Z is the macro-damage tensor (or damage tensor), expressed in terms of the moments 

Z 1 of j-th order. For example, 

(5.7) 
ot 

(5.8) 
ot 

The average stress concentration a 0 = (.EL1aotL1 V €5(x)) will be called the stress concentra­

tion tensor. We will speak of a continuum theory of j-th order if the expansions (5.6) are 

truncated behind the moments of j-th order. 

iii. The following estimations suggest that the simplest case of a zeroth-order continuum 

theory will already provide useful information. From the definition of the norm of higher 

order tensors 

(5.9) O(ildivZl+ 1 ll/ II Z1ll) = Vi fV/le ~ 1 by assumption . 

In what follows we will restrict ourselves to the case of a zeroth-order theory where, for 

example, 

(5.10) 

The expressions in (5.10) may still be simplified since 

(5.11) IJ (amt) ll ~ ll a 0 ll though llamt ll ~ IIL1 aa ll -

The relation (5.11) follows from the fact that the stress concentrations are restricted to 

a small neighbourhood of Ca. This is an analogy to the role of the dislocation core in 

dislocation mechanics. We conclude from the relation (5.11) and similar considerations 

that the zeroth moments may be neglected in comparison with the average of the quasi­

homogeneous parts 

(5.12) 

This simplifies the description of dislocation-induced processes. 

iv. According to what has been said above, the continuum damage theory of zeroth 

order comprises the zeroth moments a 0 , ()0 , e~ , e~, zo, D?, D?. e~, D?, D? represent localized 

dislocation processes in the vicinity of stress concentrators. The interdependence of a 0
, 0°, 

e~, Z 0 etc. expresses the interaction of different mechanisms on the microscale. If we assume 

that local hardening processes described by D?, D? do not contribute to the overal~ be-
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haviour significantly, we may also disregard D?, D?. Thus evolution laws for a 0 , ()0
, e~, e~ 

and zo are required and these will be discussed in the next chapter. Since £~, £~ do not 
cause changes of the internal energy, we finally have 

si = { ao, eo, zo}, 

s; = { E~ , E~ } . 
(5.13) 

5.2. Evolution laws 

I. In the foregoing paragraph we have defined macromeasures of the instantaneous 
damage state. The complexity of the behaviour at the microscale prohibits the formulation 
and averaging of evolution laws for the micr'ofields. Moreover, such a procedure is unnecess­
ary as long as the misbs are considered "smeared out". Therefore we switch to a phenomeno­
logical description. 

II. The evolution law for a 0 is proposed as 

(5.14) iJ0 = Da+a0 *, 

where, according to principle 3, the fourth-order tensor D and a0 * merely depend on 
a, (), Sb S;. The first term expresses that every change of macrostress amplifies the local 
stress concentrations. a0 * will describe the removal of stress concentrations due to local 
dislocation motion. At very high strain rates lla0* II ~ I IDa! I and the stress concentration 
tensor increases till he eventually overcomes the threshold condition for damage initiation. 
The special choice 

(5.15) 

will be applied in Sect. 9. 
III. The evolution law for zo generally consists of three parts, namely 

(5.16) 

where n, g, c denote nucleation, growth . and coalescence, respectively. In period 1 Z~ 
may be neglected. We henceforth assume that the effects of nucleation and growth can be 
described by a single equation 

(5.17) 

where { }z is associated to the yield condition 

(5.18) 

defined in ( a 0
' ()

0
' si' SJ-space and LC z is given by 

(5.19) 

Equation (5.19) renders (5.17) rate-independent. This assumption is valid if Z0 occurs 
either athermal (Frenkel's shear) or the relaxation time of thermally-activated mechanisms 
is sufficiently small. 

The tensor D couples the loading condition for local processes with the rate of macro­
stress. Since damage continues during macroscopic unloading, D must not be positive 
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definite. In fact the functions di in Eq. (5.15) have to become negative for large zo (i.e., 
large strains). 

From the definition (5.7) of zo it follows that zo is positive definite. A necessary condi­
tion to maintain the positive definiteness is 

(5.20) zo is positive definite. 

We shall discuss the condition (5.20) in Sect. 8 along with the discussion of thermodynamics. 
Dz, dz will then be chosen in accord with this condition (5.20) and with the second law of 
thermodynamics. 

IV. The flow rule for E~ = Es is taken as follows: 

(5.21) E~ = {ds}s(((LCs)))ns, 

where { }s corresponds to the yield condition 

(5.22) 

and 

(5.23) 

V. The evolution laws for local dislocation motion and local temperature concentrations 
are taken to be 

(5.24) 

(5.25) 

6. Discussion of the macro-damage tensor, failure criteria 

I. Two different failure criteria are required 
a)· a criterion for the nucleation of a macro-shear band and 
b) a criterion for the assessment of damage due to misbs. 
II. A useful indicator of shear band damage is the relative part C of shear band area 

of a reference plane L1A = L1An 

~-, bAcx 
(6.1) C : = L.J L1A lecx · nl, 

1AA 

where the sum extends over all misbs cutting L1A (see Fig. 11). If C exceeds a threshold 
value Ccrit, no further macro-shear stress can be transmitted. Therefore we postulate 

(6.2) 

FIG. 11. Illustration of the damage measure C and the reference plane 
LIA. 
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HI. C itself is not a material property since it depends on n. Howev~r, bounds of C 
can be expressed in terms of Zm and finally in terms of Z 0

• Details can be found in [11]. 
We will present the main results: 

J n·ZmndV VI J I! ZmWdV 
LIVA ~ r ~ LIVA N 

L1VL1A "' "' "' LJA misb' 
(6.3) 

where N misb is the density of micro shear bands. The right inequality serves to render 
a more severe condition than the inequality (6.2) 

(6.4) 

We can prove 

(6.5) 

and thus arrive at the criterion 

(6.6) 

in the case of a zeroth-order theory. However, a few rather crude estimates are involved 
in the derivation of the inequality (6.6) and one might ask for phenomenological generaliza­
tions. If there are no preferred shear band orientations, the inequality (6.6) may be restated 
by postulating that a strictly increasing isotropic function of Z 0 must be bounded. In the 
case of two orthogonal preferred orientations (CFC-Test), the inequality (6.6) may be 
replaced by a strictly increasing orthotropic function of zo. Nevertheless, the inequality 
(6.6) and its generalizations permit a judgement of damage due to micro-shear bands. 

IV. As to the criterion for the nucleation of a macro-shear band, we propose: 
Let Zmax be the largest eigenvalue of zo and emax the corresponding eigenvector. Then 

a macro-shear band with area IIZ0 II and normal emax is nucleated if Zmax exceeds a threshold 
value Zcrlt. 

To motivate this proposal, we assume that one of the shear bands (say bA 1) is already 
large compared with the other bAcx, such that zo ,.., bA 1 e1 ® e1 • However, Z0 emax = 
= Zmax em ax and thus Zmax "'" bA 1 , em ax = e 1 • 

7. Constitutive modelling of dislocation-induced deformation for strain rates between lo-s s- 1 

and 104 s- 1 

7.1. Internal and process variables, flow rules, evolution laws 

I. Starting with the decomposition (4.3) of dislocation-induced strain, we will formulate 
general representations of flow rules and evolution laws. Throughout this paragraph we 
presuppose the existence of a variable u with the properties discussed ahead of Eq. (4.10). 
The present state of development of an appropriate evolution law for u will be studied in 
Sect. 7.2. 
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II. Neglecting the contribution of drag-controlled dislocation motion, we have 

{7 .1) Ed = Eda +Edt . 

The flow rules for Ed a, Edt will be chosen such that typical features of pure athermal or pure 
thermally-activated dislocation motion are rediscovered as special cases, i.e. 

Eda is described by a rate-independent flow rule and necessary conditions for Eda i: 0 
:are the fulfillment of a yield condition and a loading condition; 

edt is described by a rate-dependent flow rule and is independent of a loading condition. 
Moreover, Edt depends on a yield condition such that IIEdt ll increases with positive values 
-of the yield function. 

To obtain familiar behaviour at small and moderate rates and small strains, a normality 
rule and symmetric behaviour under tension and compression is assumed for both parts 
.of the dislocation-induced strain rate. We emphasize that ei = £~+ida+ edt is of course 
.a non-associated and pressure-dependent flow rule due to the different secondary conditions 
.of each part. Hardening and softening are described by internal variables Di : For simplicity 
.12-theories with isotropic and kinematic hardening are employed. We speculated about 
the subordinated significance of kinematic hardening at high strain rates in Sect. 2.3, but 
including kinematic hardening is an integral part of the ability to model behaviour of solids 
over a wide range of strain rates, particularly in connection with recovery effects after 
dynamic loading. 

In the following we introduce an internal variabl~ x, which is related to the total disloca­
tion density N by 

(7.2) X= x 0 +rx.N. 

rx. ~ 5 · Io-s [Newton] is the constant introduced by ZsLooos and KovAcs [54]. 
The relation (7.2) enables us to use the classical plastic work hypothesis of isotropic 

hardening with the "dislocation density" x as an isotropic hardening parameter. 
Now the following flow rules are introduced: 

(7.3) 

where { } a relates to the yield condition 

(7.4) Fa:= (a'-X~)· (a'-X~)-ga(x, u, 0);?: 0 

·and LCd is given by 

,(7.5) 

Xa is the kinematic hardening tensor of athermal processes and the dependence of ga 
on u = Nm fN allows for the shift of the phenomenological yield stress ay with e. Da may 
be taken as oFafoa. As to the thermally-activated processes, we suggest 

(7.6) Edt = {Edt }r = Yr { </>r }rDr, 

where the symbol { }t is associated to the yield condition 

(7.7) Ft := (a'-X;)· (a'-X;)-gr(x, u, 0);?: 0. 

;pr(Fr) with ¢r ~ 0 for Fi ~ 0 is the usual overstress function. We emphasize that y, and 
-4>t are assumed to be bounded, i.e., no "control function" is required in contrast to the theory 
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of Perzyna and P~cherski. The dominance of Edt at moderate total rates £ is described 
by an appropriate dependence of Ya and Yt on the "rate measure" u. The appearance 
of a small amount of Ed a at high rates is in contrast with Perzyna's theory; however, accord­
ing to experiments and calculations by NowACKI [35], the combined effect of Eda and Edr 
gives better agreement with the data obtained from moderate velocity impact than the 

effect of Edt alone. 
III. Internal and process variables 
i. The quantity {J with {3 = aNm, a taken from the relation (7.2) is a measure of mobile 

dislocation density in a polycrystal. {J is decomposed into athermal and thermally-activated 
dislocations: 

(7.8) fJ = fJa+flt· 

Since the aforementioned experiments of SHIOIRI [47] were performed under conditions 
where thermal activation is assumed to dominate, we take 

(7.9) 
fJr 

U=­
X 

as the modified measure of strain rate. Pa, [J, are process variables. 
ii. Our theory requires constitutive laws for Xa, X,, u, fla, flt or Xa, Xt, u, fJa, u. For 

simplicity we assume that whenever there is a substantial contribution of Pa, that is for 
small IIEII, we may use Gilman's approach (see [21]) of a state function : 

(7.10) {J a = {J a (X, 0', 0) . 

This assumption reduces the number of yet unknown evolution laws to four. 
iii) We propose 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

Xa = Ca {Ya }a(LCd) Dxa + {X:,r}a, 

Xr = {X~9}r+{X~r}r, 
~ = 0' · (Eda+i:dt)-x:, 

Here the first terms in Eqs. (7 .11) and (7 .12) describe the growth of the kinematic hardening 
tensors, which can be specialized to the well-known laws Xa,g = cai.da, Xr,g = ct£dt by 
choosing D,xa = Da. x:.r' X~r and x: are intended to describe recovery effects. The growth 
term v13dic in ~ Eq. (7.14) expresses that a certain fraction of new dislocations is nucleated 
immediately as thermally-activated mobile dislocations (cross slip). The task of Pt is to 
describe demobilization of mobile dislocations at weak obstacles and at high rates. Instead 
of Eq. (7.14), we will use the evolution law for u, resulting from Eqs. (7.13), (7.14). To 
focus attention on the basic problems, we neglect x: in the following considerations. The 
equation for u thus reads: 

(7.15) . . * u = q;l u-q;2' 

where 

(7.16) 
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Let us emphasize that u changes already in the elastic regime. Thus u may reach its value 

u
00 

corresponding· to a given e rapidly and min (y! ga(u
00

, ... ), y' } g1(u 00 , ... )) is precisely 
the observed rate-dependent yield stress. The reason for the change of u in the range of 
macroscopically negligible inelastic deformations ed ~ 0 may be found in the suppressing 
of local dislocation climb at high rates because vacancies are "frozen in". In the elastic 
range we introduce the notation 

(7.17) U : = Ue = - q;f. 

7.2. The evolution of u 

I. In this chapter we outline the requirements of an evolution law of u. We start with 
a discussion of uniaxial states of stress and isothermal processes. The mathematical require­
ments have been stated ahead of Eq. (4.10). From the physical point of view, u must 
be prescribed in terms of a functional of the history of external rates because every retarda­
tion (acceleration) of a process causes a remobilization (demobilization) of dislocations 
obstructed at weak obstacles (moving between weak obstacles). The expected behaviour 
of u in the elastic range is sketched in Fig. 12. The initial value u = u0 remains unchanged 
for constant strain rate k ~ 0. With increasing k, u reduces to the value U00 (k), shown 
in Fig. 12 by a dashed curve. The adaptation to the value u00 has to be finished for e < ey 

(yield strain), otherwise the yield stress would not fit with the given strain rate. Obviously 
u possesses a point of inflection. The trajectory of the projection o! the inflection points 
onto the s-k-plane is a curve sip(k), which for reasons of lucidity is not shown in Fig. 12. 

FIG. 12. Expected variation of u within the range 
of reversible deformations, k is a constant strain 

rate. 

u 

Different suggestions of an evolution law for u have been investigated in [1 I]. Unfortu­
nately it turns out that simple first-order differential equations fail to describe the desired 
properties. A functional relation for iie is proposed as 

OC) 

ii, ~ -'l'(a)(;, r [ ~ {e,,(ir)-;} :, -J e-"aJ(s)ds]' 
0 

(7.18) 

where 'I', eip( ·) are material functions, n, A, e are material constants and E is Young's 
modulus; 6-J{s) := a(t-s)-a(t) is the difference history of stress rate. Though Eq. (7.18) 
appears to be fairly complicated, analytical solutions are possible in the case of constant 
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or piecewise constant stress rates a = Ei = Ek. It can be shown that Eq. (7.18) fulfills 
the aforementioned requirements. Moreover, it neither contradicts principle I nor principle 
2: In fact it may be shown by introducing the abbreviations ~ 1 = u, ~2 = a that the complete 
system of balance and constitutive laws is a quasi-linear hyperbolic · system. Since u is 
a process variable, it does not influence the enthalpy and u or ii do not appear in the Clausius­
Duhem-inequality. In the case of multiaxial states of stress, a and a are replaced by their 
second invariants. Further discussion can be found in [11]. 

II. The drawback of Eq. (7.18) becomes apparent in the range of inelastic behaviour 
where analytical solutions are impossible. 

i. We start with a discussion of the question of existence of u00 • Since we are dealing 
with a problem of dislocation mechanics, the answer should be independent of damage 
processes and we omit the damage variables from the very beginning of our considerations. 
For a given e = const, 0 = const the system of integrodifferential equations describing 
homogeneous processes comprises the equations for ii = ( cp1 ie)' + iie, x, sda, edt, .X a, xt 
and a. These variables are arranged in a solution vector w = (u, it, x, sda, Edt, X a, xt, a) 
which is subjected to an equation of the type 

(7.19) 
00 

w+a(w)+ f e-}.sB(s, w)w~(s)ds = 0. 
0 

Now the possibility of solutions w = (u00 , 0, "X, "Eda' "Ed, Xa, .X, a) = w(t) has to be exam­
ined. In the terminology of the stability theory this means that only two components of w 
are in equilibrium wliile the remaining components are time-dependent (The usual problem 
of the stability theory concerns the existence of equilibrium solutions w = const). The 
existence of such a solution can be assured for linear systems with suitably chosen coeffi­
cients. In the case of nonlinear systems, sufficient conditions have been derived in [11], 
but they are far too complicated to give serviceable restrictions for the material functions. 

At the present state of development we favour a kind of trial and error method with 
respect to the existence of U00 • This means that physically meaningful material functions 
are chosen from other points of view and are tested numerically. 

ii. We now look for the behaviour of Eq. (7.19) under perturbations of the constant 
strain and temperature rate. Due to the special choice of evolution laws, the derivative 
of Eq. (7.19) with respect tow exists and Eq. (7.19) may be linearized at w. Let w' = w+ 
+ l5w. Further assumptions on the hereditary integral lead to an equation 

(7.20) l5w+Al5w = R, 

where A, R depend on w(t) and explicitly on t. Compared with the literature on classical 
evolution laws, this again is an unusual problem [3]. If a fictitious equilibrium solution 
l5w is introduced as usual, Eq. (7.20) is replaced by 

(7.21) ( l5w -l5w)' = A( l5w -l5w). 

If A can be normalized (this places restrictions on the material functions) and is approx­
imated by a constant matrix A0 in a sufficiently short time interval, a relaxation time 
of u can be derived from the eigenvalues of A0 (see [11]). 
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8. On continuum thermodynamics of high-strain-rate-deformations 

I. The Clausius-Duhem inequality is assumed to be an appropriate characterization 
of irreversibility. We are searching for restrictions on the constitutive laws (5.14), (5.21), 
(5.25), (7.3), (7.6), (7.11 )-(7.13) and the law determining the heat flux q. 

As to the heat flux, the simplest generalization of Fourier's law, which results in a 
hyperbolic equation of heat conduction, is Maxwell-Cattaneo's law: 

(8.1) rqq +q = -kgradO, 

where Tq is the thermal relaxation time and k is the heat conductivity. Though the heat 
flux may often be neglected during high rate loading, q is substantial for the description 
of recovery in a body which is stressed and heated inhomogeneously after impact. As 
shown by KosiNSKI [23], Eq. (8.I) can be derived from the Clausius-Duhem inequality 
by supplementing the arguments of free enthalpy g with a vector-valued thermal variable 

aq. 
II. 1. We define the free enthalpy g by 

(8.2) 
1 

g = - er · Er-e+'Y}O 
(! 

(note that some authors use - g instead of g), whereupon the Clausius-Duhem inequality 

reads 

(8.3) • £i • • I dn 0 -eg-e'Y}u-Er· er+er · Ei - 0 q · gra u ~ . 

11. In the present case 

(8.4) 

and in view of principle 3 we employ 

(8.5) g = /e(er, 0, Z 0
) + /s(er, er0

, zo, 0°)+ /d(Xa, Xr, x, 0) + /q{O, aq). 

To rediscover Maxwell-Cattaneo's law. we use 

(8.6) 

(8.7) 

111. Inserting the flow rules and evolution laws into the inequality (8.3) results in 

(8 ) [ 
og T og I r o1 ) T<2 01 l) .8 -acJ+D oero -eEr+((as1 ))D (2er -vzl +(((as2 )))D er -vs 

+ 2{y.}.(a01 ) ("'-X~) 1·.; + [ ~; -'1-{y.}.(aDI) ~". ],o 
og .. o* og {d } og . {X* } og . {X* X* } + aero er +aeo Bd d + 8Xa a,r a+ 8Xr t.g+ t,r r 

+(I-+ _og )er · {ed~},- -~- (!5_- a +q) · gradO + _k_ a ·a ~ 0. 
e ox eo rq q __ (!~~- ~ __ __ q ___ q 
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The abbreviations 

(8.9) 

(8.10) 

(8.11) 

as1 = {dz}z(ogfoZ0) · Dz, 

og 
as2 = aeo {dos}s+ (a. ns) {ds}p 

have been used. The inequality (8.8) is linear in grad (} and we conclude that q = 
= - (k/rq)aq. With the help of Eq. (8.7) the law (8.1) is derived. 

III. i. The objective of this paragraph is to introduce sufficient conditions for the validity 
of the inequality (8.8). First of all, we assume that the underlined term and the remaining 
expression on the left-hand side of the inequality (8.8) satisfy this inequality separately. 
Following LUBLINER [27], we secondly consider a high rate loading in the case of which 

(8.12) R : = [ 11 • a+ [ 12 o ~ o 
must hold since the remaining sum is independent of a, 0 and can be made arbitrarily 
small by choosing large rates. Thus a sufficient condition for the inequality (8.12) is 

(8.13) _!_Er = ~g +DT :go +2Aia'-X~)+As1DT(2a0'-Yzl)+As2DT(2a0'-vsl), 
(! ua ua 

(8.14) 

and 

(8.15) 

The examination of unloading suggests Ad = 0, As 1 = 0, As2 = 0 and from the inequalities 
(8.15) we find 

(8.16) ')'aaD1 ~ 0, asl ~ 0, as2 ~ 0. 

This is a first set of restrictions on the material functions. In place of Eqs. (8.13) and (8.14) 
we have 

(8.17) 

ii. Concerning the remaining inequality, splitting in separate inequalities necessarily 
follows from the appearance of different secondary conditions. We arrive at 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8g/oa0
) • a0 * ~ o, 

(8gjoe0 ){dod}d ~ 0, 

(og/8Xa) · {x:,r}a ~ 0, 

( 1 og ) { . *} og {x· * x· * } o Q+--ax <f. Edt t+ oX-;. t,g+ t,r t ~ • 

The inequalities (8.16) and (8.18)-(8.21) comprise quite powerful restrictions to g and the 
other material functions. Though the validity of most inequalities can be guaranteed in 
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general (e.g., by choosing gas a sum of convex functions), it is more instructive to elaborate 
further consequences of the inequalities (8.16) and (8.18)_.:(8.21) in the light of the polynomial 
approximation of g presented in the next section. 

IV. i. An approximation of the free enthalpy function: The state zo = 0, a 0 = 0, 
0° = 0, Xa = 0, Xr = 0, u = 0, Clq = 0 is a strong equilibrium state in CRISTEscu's terminol­
ogy [8]. We will approximate gin the vicinity of this state by a polynomial Pg . It is assumed 
that Pg is an isotropic function of second degree in a 0

, 0°, Xa, Xr, u and of the third degree 
in a, 0. The latter demand is due to CLIFTON [5]; third order terms are important in wave 
propagation studies. The Z0-dependence is chosen such that a) the requirement (5.20) 
is fulfilled and b) that the compliances increase with increasing damage according to the 
well-known effective stress concept in the continuum damage theory. Additional assump­
tions are involved about decoupling of Xa, Xr. Furthermore, let 

(8.22) 

ii. Let Pg be given by 

(8.23) eg = ~ A.1 12 (0-0o) 2 + ~ A.1 13 (0-0o)3+A.211(0-0o)tr<r+A.2i2(0-0o)2tr<r 

;.3/0 2 ;.3/1 (0- Oo) 2 ;.4/0 2 
+ 2(1-kC0) (tr<r) + 2(I-kC0) (tr<r) + 2(1 -kC0 ) tr<J 

;.4/1(0-0o) 2 As ( )3 ;.6 ( )( 2) 
+ 2(1-kCo) tr<r + 3(1-kCo) tr<r + 1-kCo tr<J tr<J 

A1 3 1 0)2 1 02 ( '2zo) t- 3(1-kCo) tr<J - 2 ,ut(tr<J - 2 ,u2tr<r +,u3 tr <J 

1 .o2 1 ( o)2 1 (Oo)2 X X +2,u4trZ +2,Us trZ +2,U6 -v1<J· 0 -V2 <J· t 

with all vi ~ 0, fti ~ 0. For instance, an increase in u causes hardening which means that 
the free energy increases and the free enthalpy as defined by the inequality (8.3) decreases, 
i.e., v3 ~ 0. On the contrary, increasing damage causes softening and g increases, thus 
,U4 ~ 0, ,u 5 ~ 0. v 4 u is called "configurational entropy" and expresses the increase of 'YJ 

due to the production of lattice defects. 
iii. From Eq. (8.23) one can easily calculate e,., 'YJ· The utilization of Eq. (8.23) in the 

context of the inequalities (8.16), (8.18)-(8.21) will be demonstrated in the case of the 
inequality (8.21). Assuming that growth of Xr is caused by Edt' we choose X~g = Cr(.) e:t 
and reform the inequality (8.21) as 

(8.24) ·..!__[1-v3 u+v4(0-00)-v2 cr]<J·£dt-v2 <r·X~,. ~ 0. 
(! . . . . . .. 

The sign of the second term (underlined) can be found by the following consideration: 
( og I oXr) · X~g ·must be negative in order to diminish the fraction of plastic work converted 
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into heat. This is correctly described by the I -v2 Cr instead of I in the bracketed term 
of the inequality (8.24). Thus, 

(8.25) 

has the opposite sign of the growth term and the second term fulfills the inequality (8.24) 
separately. As to the first term we require 

(8.26) 1 > 1-v3:l1:+v4 (0-00)-v2 c, > 0, 

(8.27) 

The magnitude of the expression (8.26) is estimated through measurements of stored 
energy and this magnitude can be achieved by choosing v3 = v3/:l1:max' ;,3 ~ 1 etc. 
Inequality (8.27) is fulfilled by deriving Ed~ from a convex potential, e.g., the one which is 
associated with the convex yield function (7.7). Therefore we may use 

(8.28) 

iv. Similar considerations can be applied in the case of the remaining evolution laws; 
we refer to [11]. The resulting equations are given below. 

a) Damage variables 

(8.29) zo = ~ {d.),l.(- ) {.u,a'2 + ,u4 Z 0 + (1- k~0) 2 C0 A(a, O)Z0
} ((LC,)), 

where A can be derived from g and dz, lz ~ 0 are functions to be determined independently 
of thermodynamic considerations. 

b) Dislocation variables 

(8.33) Eda = {Ya}a(LCd)(G' -X~), 

(8.34) Edt= Yr{c/>r}r(G'-X;), 

(8.35) Xa = CaEda -{fxJa(G'-X~), 
(8.36) Xt = CrEdr- {lxJr(G'- X;) , 

(8.37) U = G · ( Eda + Edr) · 

Equations (8.29)-(8.37) are supplemented with 
the evolution laws for the process variables 

Ya ~ 0, 

Yr > 0, 

/Xa ~ 0, 

fx, ~ 0, 

(8.38) u = (v ;t)•- P(II ") (II~ )"-1 r~ I (II·)-~) II~ 
fld a EA. f. e tv a E EA. 

cPt ~ 0, 

Ca > 0, 

Cr > 0 , 

-I e-•·u~.(s)ds]. II.;= 1;~-:--.;, n > 2 , 
0 
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the thermal and caloric equations of state, determining En r; and derived from Eq. (8.23) 
according to Eqs. (8.17); 

and the Mexwell-Cattaneo law (8.1 ). 
Thus the set of constitutive laws is complete. 

9. On some aspects of uniaxial wave propagation in a material with stress concentrators 

I. We are interested in the influence of stress concentrations on wave propagation. 
It is well known from the theory of linear elastic composites that inclusions or fibrous 
particles have a pronounced influence on wave phenomena (dispersion, frequency dependent 
attenuation). However, sophisticated continuum theories are required for analytical in­
vestigations [I, 4], because the classical continuum theory and Hooke's law are unable to 
describe dispersion. 

In this chapter, aspects of the propagation of uniaxial acceleration waves in undamaged 
solids with stress concentrators described by the stress concentration tensor a 0 will be 
investigated. On the wavefront and immediately behind the wavefront, the yield conditions 
are not satisfied and elastic overall behaviour prevails. Thus the results can be compared 
with an "effective modulus" approach in elasticity, which predicts the existence of simple 
waves and thus the wave profile remains unchanged. It will be interesting to see that accord­
ing to our theory the wave profile changes during the propagation of the wavefront. 

II. Uniaxial states of macrostress 
i. Let x 1 , x 2 , x 3 be a Cartesian rectangular system of coordinates, x 1 being the direction 

of wave propagation. With respect to this system, the matrices of the different tensors 
are given by 

a= diag(O', 0, 0), 0'
0 = diag(0'0 , 0'?, 0'?), £ = diag(s, s" s1), 

where s1 is lateral strain and 0'? is the lateral component of a 0
• For sufficiently small values 

of the initial value a 0 = a8, the yield functions Gd, Gs, Gz are negative immediately behind 
the wavefront of the fastest wave and 

(9.1) 0'' v ' () ' q' 0'
0

' 0'? ' u 

are the only time-dependent variables in this region. The particular evolution laws (5.15), 
(8.31) lead to a? = o for sS = o and a? may be cancelled from the list (9.1). 

ii. According to the above assumptions, the constitutive equations and balance laws 
describing uniaxial states of macros tress are as follows: 

a) Evolution of reversible strain (i, = s = v', ( )': derivative with respect to x 1) 

(9.2) · , " • ·o 0'-Erv +exr(J+ErmaoO' = 0, 

where Er is the thermoelastic tangent modulus 

E;- 1 = E- 1+(J.311 +J.411) (()-()o)+2(As+3J.6+J.?)O', 

at = [ex+ 2A2/2(()- ()o) + (A3/1 + A4fl) O']Er = : ext Er ' 

E- Young's modulus, ex - coefficient of thermal expansion and mao is a function of u 0 

0'? = O"~o. 
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b) Law of heat flux 

(9.3) . k ()' 1 q+- = - - q. 
Tq Tq 

c) Evolution of u. If the material is at rest for t < 0, we find 
t 

(9.4) il = -'l'(a)(;;.r[ ~ {• .. (<1)- ;} ;A+~ (1-e-'')- .f e-"U(t-s)ds]. 
0 

d) Evolution of a0 

(9.5) 

e) Balance of momentum 

(9.6) 

f) Balance of energy 

(9.7) 

ev-a'= 0. 

ca - specific heat at constant stress. 
III. i. To render Eqs. (9.2)-(9.7) quasi-linear, it is necessary to introduce further variables 

according to 

(9.8) v=~l, a=~2' {)=~3, q=~4, u=~s, a0 =~6 

and differentiate Eqs. (9.2), (9.3), (9.5)-(9.7) with respect to t. The final system of 12 
equations can be arranged as 

(9.9) 

with 

(9.10) 

A(w)w~+B(w)wx+d(w) = 0 

~£_____________ 

X 

FIG. 13. Characteristic coordinates in the r-x plane. 

and T = c0 t, c0 = y' Efe is introduced as a measure of time. The matrices A, B and the 
vector dare given in [11]. The inspection of the system (9.9) follows Clifton's method [3]: 
curvilinear orthogonal coordinates rJ(X, r), C(x, r) (Fig. 13) are introduced such that 
'YJ = 0 coincides with the wavefront and Eq. (9.9) reads 

(9.11) Cw77 +Twc+d = 0, 

(9.12) C = rJ-rA+rJxB, T = C-rA+CxB. 
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By definition all quantities with the exception of w71 are continuous across 'YJ = 0 and the 
jump [w71] is proportional to the right eigenvector r of C 

(9.13) [w71] = B(C)r. 

The objective of this paragraph is the calculation of the variation of the jump amplitude 
B( C). One source of a variation of B is nonlinear thermoelastic behaviour through the 
third-order terms in the enthalpy function. To focus attention on the influence of stress 
concentrations, a restriction to linear thermoelastic behaviour ( cx.t = ex., Et = E) is employed 
in the subsequent calculations. 

ii . The characteristic equation of the system (9.9) reads 

(9.14) 0 = det(cA- B) = (cc0 )
8

[ er. {ec,(l +'J'Em,a)+ ~ o} (cc0 )
4 

- e (c,ET.+k(l +'J'Em,o)} (cc0 )
2 +kE]. 

The existence of symmetric real-valued eigenvalues c can be read off from Eq. (9.14). 
The presence of stress concentrators has a presumably small quantitative influence on the 
wave speeds because q;Emao ~ 1 can be assumed. In the case of a0 = 0, we have mao = 0 
and the characteristic equation (9.14) may be transformed into the equation derived 
by Kosn';sKI [23] if the relationship between the specific heats ca and C8 is employed. The 
non-trivial wave speeds are 

(9.15) 
k+ TqCaE+q;Emaok 

2r.[ec,(l+'J'Em,a)+io]' 

Ve2 (k(l +'J'Em,o)+ TqCaEY-4er.kE[ ec,(l + 'I'Em,o)+i 0] 

2T• [ ec,(l + 'J'Em.,.,) + ~ 0 J 
We confine ourselves to the study of fast waves propagating in positive x 1-direction, i.e., 
c = c1 ((), a0

, a?). The transport equation for B reads 

a,b,c= 1, ... , 12, 

where the summation convention is applied. I, rare left and right eigen-vectors of C, whose 
calculation has been omitted here for the sake of brevity. 

3 Arch. Mech. Stos. 4/89 
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. For propagation into a macroscopically homogeneous medium and in the case of the 
employed constitutive laws, the underlined terms in Eq. (9.16) vanish. Consequently, 

(9.17) 

dB ( od ) (I · Tr) df + I · 8w r B = 0, 

I • Tr = 4eco + L1 , 

The coefficient I· (odfow)r =1- 0 is a quite complicated function of(), a 0
• Thus the stress 

concentration tensor influences the wave profile in a highly nonlinear way. The orientation 
of stress concentrators like elongated particles makes itself conspicuous via the dependence 
on a0

, a?. 

10. Summary and conclusions 

In this paper we have presented the general frame of a constitutive model of inelastic 
behaviour as a consequence of the combined effects of dislocation motion and shear 
band processes. We claim the validity of this model for a wide range of strain rates up to 
104 s- 1 and for predominantly radial loading histories like vertical impact with subsequent 
recovery. The latter restriction follows from the simplified modelling of dislocation processes 
and the accompanying hardening effects through single yield surfaces and associated flow 
rules for Ed a, Edt. 

In comparison with related papers we emphasize the following aspects of our model: 
a) the use of internal variables characterizing local disturbances and the application 

of these variables in yield functions; , 
b) the approximate method of homogenization, leading to the series expansions (5.6). 

This method seems to be very promising in connection with other damage effects like 
composite damage and deserves further investigation; 

c) the utilization of a measure u of strain rate and temperature rate; 
d) the consideration of thermodynamics. 
Future work will be directed towards: 
a) the determination of material functions and application to problems with radial 

loading and strain rates less than 104 s- 1 ; 

b) the extension of the theory with special regard paid to: 1) the description of the 
behaviour in period 2, i.e., after the nucleation of a macrodefect, 2) the incorporation 
of viscous drag-controlled dislocation motion, 3) the incorporation of other damage 
mechanisms. 
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