
Arch. Mech., 41, 1, pp. 165-180, Warszawa 1989 

Application of the unsteady lifting-lines method 
to arbitrary configurations of lifting surfaces 

J. GRZEDZINSKI (WARSZAWA) 

THE EFFECTIVENESS of the unsteady lifting-lines method of solving the lifting surface integral 
equation is presented. This method, although assuming an unknown chordwise pressure distri­
bution in a form of a series of preselected functions, leads to a system of linear algebraic equa­
tions, very similar to that obtained by the well-known doublet-lattice method discretizing directly 
the integral equation. It has been found that the present method is superior to the doublet­
lattice method in terms of computational time for both planar and nonplanar lifting surfaces. 

W pracy przedstawiono efektywnosc niestacjonarnej metody linii nosnych rozwiqzywania 
r6wnania calkowego powierzchni nosnej. W metodzie tej zaklada si~ nieznany rozklad cisnienia 
wzdluz ci~ciwy w postaci szeregu wzgl~dem z gory dobranych funkcji, jednak wynikowy uklad 
liniowych r6wnan algebraicznych jest bardzo podobny do ukladu otrzymywanego w znanej 
metodzie siatki dipoli, kt6ra polega na bezposredniej dyskretyzacji r6wnania calkowego. Stwier­
dzono szybszq zbieznosc prezentbwanej metody w por6wnaniu z metodq siatki-dipoli, zar6wno 
dla plaskich, jak i nieplaskich powierzchni nosnych. 

Tipe)lCTaBJieHa 3¢cpei<TMBHOCTb HeCTaiJ;HOHapnoro MeTo,TJ;a HeCyi.u;HX JIHHHH perneHHH l!HTer­
paJibHOrO ypaBHeHIHI necy~.u;eM: noBepxnocnr. B 3TOM MeTo..a;e npe..a;noJiaraeTCH HeH3Becnme 
pacnpe..a;eJienwe ..a;aBJienMH B,AOJih xop,Abi B BM,Ae pn..a;a no oTnornenmo I< 3apanee no..a;o6pan­
HhiM cpyimiJ;liHM, O,TJ;HaKO pe3yJibTiipyWI.u;aH CMCTeMa JIMHeHHbiX aJire6paM'tleCI<HX ypaBHeHliH 
O"lleHb no..a;o6HaH CMCTeMe, noJiyqaeMOH B M3BeCTHOM MeTO,Ae CeTI<li ,AlinoJieH, I<OTopaH 3ai{JII0-
'tlaeTCH B nenocpe..a;cTBennoM: .AHCKpeTli3~HM MHTerpanbnoro ypaBneHliH. KoncTanrpoBana 
6biCTpaH CXO,AHMOCTb npe,AJiaraeMoro MeTO,Aa no cpaBHeHliW C MeTO,AOM CeTI<li ,AHnOJieif, TaK 
,AJIH IlJIOCI<liX, Hal< li HenJIOCI<HX necyi.u;HX noBepXHOCTeH. 

1. Introduction 

SINCE THE EARLIEST days, aeroelastic stability analysis (flutter) has influenced the develop­
ment of method used for the calculation of aerodynamic forces induced on bodies by 
unsteady flow. From the point of view of the capability of recently used numerical methods 
and equipment, an aircraft is still too complicated itself to be treated as a single body. 
Therefore, each component is considered separately, including aerodynamic interference 
effects only, if necessary. For flutter analysis, most important are unsteady aerodynamic 
forces acting on main lifting elements of an aircraft (wings and tail). These elements are 
usually thin enough to be treated as lifting surfaces (elements of infinitiesmal thickness). 
For low aspect ratio wings, and especially for swept wings, the most simplified two-dimen­
sional model (airfoil) is unacceptable. The difference between two-dimensional and three­
dimensional models is qualitative because of the stronger singularity occurring in the 
kernel of the integral equation, and also quantitative, because of the amount of compu­
tational time one order of magnitude greater. The numerical methods recently used for 
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166 J. GRZ~DZINSKI 

lifting surfaces are so much time-consuming that searching for more effective methods 
is still of present interest. The other reason issues from the iterative procedure of deter­
mining the stability condition (critical flutter velocity) during which the lifting surface 
integral equation has to be solved many times. 

The aim of this work is to examine the effectiveness of the unsteady lifting-lines method 
[1] of solving the lifting surface integral equation and also to check whether this method 
can be applied to arbitrary configurations of lifting surfaces, as T-tail for example. 

The unsteady lifting-lines method can also be used for predicting aerodynamic loadings 
caused by control surface motions [2]. The first preliminary results [15] for planar surfaces, 
although revealing sometimes strange and unexplained convergence behaviour, seem to 
be attractive but systematic analysis has not yet been made. 

2. The unsteday lifting-lines method 

Let Oxyz be a rectangular coordinate system, oriented in such a way that the Ox 
axis and undisturbed flow velocity vector U are parallel and of the same direction. The 
lifting surface is placed in an inviscid flow at zero incidence. The surface can be nonplanar 
but is built up from lines parallel to the free-stream velocity. The lifting surface downwash 
w(x, y, z) is given and the unknown function is the nondimensional pressure difference 
between the lower and upper side defined by 

A ( ) _ 2L1p(x, y , z) 
LJCp X, y , z - (!U2 ' 

where x, y, z are coordinates of the lifting surface point, p is the pressure, and (! stands 
for the flow density. The lifting surface integral equation [3] relates the pressure L1 c P to 
the normal velocity w: 

(2.1) w(x 'b' z) = - 1- J J L1cP(~ , 17 , C)K(xo, Yo, zo)d~ dndC, 
8n s 

where integration is carried out over the lifting surface S and the remaining symbols are 
defined as follows: 

x0 = x- ~, Yo = y-17 , z0 = z-C, 

;---z-+ 2 r = )! Yo Zo, 

w- circular frequency of surface oscillations. 
If the surface is planar, then T, = 1, T2 = 0. The planar part K 1 of the kernel is given 

by 

(2.3) 
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where: 

(2.4) 

R = }ix5+fF,·2, 

{32 = 1-M2 (M- Mach number), 

wr 
kt =-u· 

167 

(t denotes here the dummy integration variable). The nonplanar part K 2 of the kernel is 
defined by 

(2.5) K2(xo, Yo , zo) = {-2- ~ ( 2+ /l;;,2

) -ik1 [ u1 + ~ ( ~r + u1) ]}e-••·•· 
+ F(ik 1 , u1) + G(ikt, ut) , 

where the function G(v, u) is given by an integral 

00 

(2. 6) G(v, u) = v 2 J t (1- . t )e-vtdt. 
y1+t 2 

u 

The fu nctions T 1 and T2 depend on the local deflection from a planar surface and are 
given by 

(2.7) 

(2.8) 

T1 = cos(ns nR), 

T2 = cos(rn5)cos(rnR), 

where ns and nR are unit normals to the surface at two points ~. r;, C and x , y , z, respec­
tively. Vector r is built from components (0, y 0 , z0). The kernel (2.2) of the integral equa­
tion (2.1) has a nonintegrable singularity along the line y 0 = z0 = 0, x0 > 0, and the 
finite part in Hadamard's sense has to be taken [4]. 

There are many works dealing with the lifting surface problem, a part of them is listed 
in a survey paper by LANDAHL and STARK [5], but essentially there are two groups of 
methods for solving the integral equation (2.1). The most popular representative of the 
first group is the doublet-lattice method [6] being a nonstationary extension of the well­
known vortex-lattice method. The basic idea of these methods lies in a direct discretization 
of the integral equation in search of a finite number of Llcp values in a set of arbitrary 
chosen points of the lifting surface. The methods of the second group assume the solution 
LlcP as a linear combination of the known functions q;i, with the unknown coefficients aj: 

n 

LlcP =}; a1 q;ix, y, z), 
j=l 
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and is called the lifting-surface method [7]. The set of n unknown coefficients is to be deter­
mined by any approximate method of solution of integral equations. Convergence of the 
method used strongly depends on a proper choice of preselected functions. It is easy 
to make such a choice for a lifting surface of a smooth boundary and of a continuous 
down wash function w(x, y, z). Difficulties arise for wings with kinks in leading or trailing 
edges and also for control surface motion. The normal velocity distribution in such cases 
has lines or points of discontinuity resulting in solutions with singularities. This problem 
does not appear in the doublet-lattice method; however, in order to get sufficient accuracy, 
a large number of control points placed close to the discontinuity lines must be taken 
into account. The uniqueness of the solution (Kutta condition) in the lifting-surface method 
is achieved immediately if preselected functions all have zero trailing edge values. In the 
doublet-lattice method, uniqueness of the solution is achieved by the so-called 1/4-3/4 
rule. According to this scheme, the control point is placed on the 3/4 chord of each panel 
and the lift distribution is concentrated on 1/4 chord line of the same panel (Fig. 1). Nu­
merical calculations give satisfactory results but there is no rigorous justification of this 
rule. 

Lifting- Lines 

2rr · 
/;, ·=COS-J 

J 2n+1 

XJ=-f.i 

Line of 
doublets 

Collocation 
point 

FIG. 1. 

Doublet- Lattice 

y 

The unsteady lifting-lines method [1] shares some properties with both doublet-lattice 
and lifting-surface methods. The solution is assumed in a form of series 

(2.9) 

where ~ is the chordwise coordinate normalized to the interval ( -1, 1) in each section 
of the lifting surface, a denotes the span wise curvilinear coordinate, b( a) is a local semi­
chord, and Pi(~) are Jacobi polynomials orthogonal over the interval ( -1,1) with the 

weighing function y (1- ~)/(1 + ~). The unknown functions aj(a) are to be found. 
The normalization mentioned above of the streamwise coordinate ~ (or x) means that 

for each component of the lifting surface a new coordinate system ~' a (or x, a) is created 
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and each component forms in its own coordinate system a rectangle with a leading edge 
value x = ; = -1 and a trailing edge value x = ; = I. 

At first, the Galerkin scheme is applied, but only chordwise, with orthogonality condi-

tion to the set of Jacobi polynomials Q1(x) with the weighing function V (I +x) f(l-x) 
over the interval ( -1,1). Both chordwise integrals involving the functions Pj(;) and QJ(x) 
are calculated numerically according to the Gauss-Jacobi quadrature with the same number 
of abscissas, equal to the number of terms in the expansion (2.9). After that, the lifting 
surface integral equation leads to the set of one-dimensional integral equations: 

(2.10) r K(w)APTa(a)da = w(a), 
is 

where K- n x n matrix composed of kernel values kiJ = K(xi- ; 1, y 0 , z0), A- diagonal 
matrix of Gauss-Jacobi quadrature weights, P- n x n matrix of Jacobi polynomial 
values corresponding to quadrature abscissas, Po = Pi-l (;1), w(a)- vector of normal 
velocity values in quadrature abscissas, wi(a) = w(xh y, z), Ls -length of the span of 
the lifting surface. 

The abscissas of the quadrature are equal to (Fig. 1) 

( 
2ni ) 

xi= -cos 2n+l , i,j=l,2, ... , n. 

The n~xt step is to discretize the spanwise integral in Eq. (2.10). The method employed 
is the same as that used in the doublet-lattice method. The lifting surface is divided into 
a set of narrow strips parallel to the free-stream velocity, assuming constant values of the 
functions a( a) along each strip. The parabolic interpolation of the numerator of Eq. (2.2) 
is used and also an analytic evaluation of improper integrals is obtained. Since the error 
of interpolation grows very rapidly for points (x, y, z) and (;, 'Y), C) closely spaced one to 
each other, the steady solution is substracted and obtained by using the horseshoe vortices. 

After introducing a new set of unknowns 

r(a) = APTa(a), 

the set of linear algebraic equations is obtained, which is almost the same as that of the 
doublet-lattice method. The only difference comes from Gauss-Jacobi quadrature abscissas 
taken instead of a set of arbitrary chosen points along the chord lines. The meaning of 
the solution is also different. As a result, a set of coefficients of the expansion (2.9) is 
obtained instead of L1cv values on the lifting surface. Consequently, the time of computa­
tion for the fixed number of unknowns is the same for both doublet-lattice and lifting-lines 
methods. However, a better accuracy of the lifting-lines method is observed in numerical 
examples. 

Following the orthogonality condition of Jacobi polynomials 

PAPT = nl, 

the set of coefficients a( a) can be obtained from the solution r(a) without any knowledge 
about the quadrature weights 

(2.11) 
1 

a(a) = -Pr(a). 
n 

Physical interpretation of the vector r(a) can be found in [1]. 
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3. Loads caused by control surfaces motion 

The normal velocity induced on a lifting surface by control surfaces motion is no 
longer a continuous function of surface points. Therefore the Gauss-Jacobi quadrature 
cannot be used to evaluate the Galer kin method integrals involving w(x, y, z). These 
integrals can be evaluated analytically assuming that 

w(x, a) =f(x, a)H(x-e(a)), 

where H(x-e) is the unit-step function (discontinuity appears at the point x = e of the 
control surface leading edge) and f(x, a) is a continuous function of x. It can be easily 
verified, that in this case the right-hand side of Eqs. (2.10) equals 

1 
w(a) =- QTg(a), 

n 

where 

(3.1) fl .. /I+X 
g,(a) = V 

1
_xf(x, a)Qi_ 1(x)H(x-e)dx. 

-1 

If the functionf(x, a), for a = const, can be approximated by a finite number of Jacobi 
polynomials, then the last integral (3.l) can be expressed as a linear combination of the 
following integrals: 

1 
.. ; -1 - ll/ l-e2 +arccos(e), ! v ~~: QH(x)dx = y'J-e'[ U,k,(e) + U~~~e) ), 

for k = 1, 

for k > 1, 

where Uk(e) denotes the value of the second kind Chebyshev polynomial of order k, in 
a point x =e. 

Besides the right-hand side modification of the integral equation, proper interpretation 
of the solution is necessary in the case of discontinuous downwash. There exists a logar­
ithmic singularity In Jx- el of the solution at the control surface leading edge and without 
any additional information a great number of terms of the expansion (2.9) would be 
needed to achieve the acceptable accuracy. However, in the very first approach use can 
be made of the known result for the airfoil with control surface in two-dimensional flow 
[8]. Such a known, singular term is taken as a singular part L1cps of the solution to the 
lifting surface equation (in chord direction): 

(3.2) L1cP5 (x, a)= [b0 (a)+b1(a)(x-e)+b 2 (a)(x-e) 2 + ... ]A(x, e), 

where bi(a) are known coefficients, and the function A(x, e) is given by 

1 11 - xe + y 1 - e2 J! l - x 2 
[ 

A(x,e)=-ln 
1

. 

2 l-xe-]ll-e2 J/1-x2 

This function has a logarithmic singularity In lx-el and equals zero at the leading and 
trailing edges. The total difference of pressure (solution to be found) is a sum of a regular 
part: 
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(3.3) 

and the singular part Llcps (3.2). The coefficients obtained from Eqs. (2.10) are equal to 

ai(o") = ct(a) +dt(a), i = 1, 2, ... , n, 

where di(a) are coefficients of an expansion of the singular part of the solution in a set 
of Jacobi polynomials: 

Knowing the coefficients di(a), the solution L1cP can be written in the form 

For any fixed value of a it is possible to evaluate coefficients di( a) analytically: 

where L + 1 denotes the number of terms in the expansion (3.2). The integrals 

1 

Cf(e) = J (x-e) 1 Pi(x)A(x, e)dx 
-1 

satisfy the following recursive formula: 

C{(e) = 2C{:f(e)+ 2eCf_ 1(e)- C{_ 2 (e), 

where 

for i = 0, 

for i > 0, 

Essentially, the point of the method of handling the discontinuous boundary condition 
w(x, y, z) is that the partial sum (from n + 1 to infinity) of the slow converging series (2.9) 
has been replaced by the partial sum corresponding to the two-dimensional solution. 
Only the singularity at the control surface leading edge can be treated in this ~ay. The 
side edges singularities require more closely spaced spanwise strips in order to achieve 
satisfactory accuracy (the same problem appears in the double-lattice method). 
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4. Analytical continuation of the kernel 

The formulae (2.3) ... (2.8) describing the kernel (2.2) of the lifting surface integral 
equation are valid also for complex values of the frequency w. However, because of the 
convergence condition of the integrals (2.4) and (2.6), Re(v) ~ 0, only the motion with 
growing amplitude is allowed. For exponentially decaying motion, an analytical con­
tinuation of functions F(v, u) and G(v, u) onto the left-half of the complex v-plane has to 
be evaluated. DSEMARAIS [9] proposed an exponential approximation of the integrand of 
Eq. (2.4) of the form 

(4.1) 

12 

I'V '\
1 -2y 1t "' .L.J rxi e . 

i=l 

The values of the coefficients rxi(i = 1, 2, ... , 12), yare given in [9]. 
This approximation results in the rational approximation for the function F(v , u): 

for u ~ 0 , 

for u < 0. 

The rational approximation (4.2) gives satisfactory results within the range n /4 < I 
Arg(v) l < 3n/4(- oo < u < oo) and, therefore, can be very useful for determining the 
pre- and post-flutter behaviour of aeroelastic systems. 

The approximation (4.1) can also be used for obtaining the rational approximation 
of the function G(v, u): 

G(v, u) = v2e-'" .i ~~~~·:· ( u+ 2,f+v), for u ;> 0, 
t = l 

12 

+ e-vu [2(1 +vu) +v2 ~ rxi --~
21

yu (u- -. -1- -)J, for u < 0. ? · 2'y-v 2'y-v 
:=1 

The calculations based on the rational approximation ( 4.2) confirm the existence of 
the pure aerodynamic singularity of the solution to the linear algebraic equations discre­
tizing Eq. (2.10), in some isolated points of the complex w-plane, corresponding to the 
decaying motion. Such aerodynamic singularity was for the first time observed by UEDA 

[16] for the Mach number of 0.8 and a rectangular wing with an aspect ratio of three. 
Present calculations reveal more points of aerodynamic singularity also for lower Mach 
numbers. 
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5. Aerodynamic coefficients 

The generalized aerodynamic forces are given by 

(5.1) qu = J J hi(x, y , z)L1cP1(x , y , z)dS, 
s 

where hi(x , y, z) is a deflection of the lifting surface (corresponding to the i-th natural 
frequency) and L1cpj(X, y, z) is the unsteady loading caused by the motion associated with 
j-th deflection mode. If the function hi is approximated by polynomials, then the integrals 
(5.1) can be evaluated analytically. The generalized force corresponding to hi = 1 has 
a simple interpretation of the aerodynamic force, and for the linear function hi the aero­
dynamic moment is obtained. These two cases are interesting because for them most 
experimental data are available. 

For a given a, i.e., for a given chordwise section, the normal force and moment with 
respect to the chord's point of coordinate xM are given by 

N(a) = nal(a)eU2 /2, 
Tl 

M(o') = 2 [a2(a)-b(a)(l +2xM)a1(a)]eU2 /2. 

The force acting on a control surface is the sum 

Ncs(a) = Ns(a)+NR(a), 

where N5 (a) is the normal force induced by the singular part of the loading, L1cps (3.2) 
and NR(a) is caused by the regular part L1cpR (3.3). These forces are given by 

L 

N(a) = y1-e2 2 bia)Sie, e)/(j+ 1), 
i= O 

where the integrals 
1 

f (x-e)1 

S1(c , e)= ;-= dx 
c l l-x2 

are to be evaluated according to the recursive formula 

Sic, e) = ~(J/ 1-c2(c-e)1 - 1 + (1-2j)eS1 _ 1 + U-1)(1-e2)S1_ 2], 
J 

S0 (c, e)= arccos(c), 

S1 (c , e) = V1-c 2 -e arccos(c). 

The regular part of the normal force is the following: 
n 

NR(a) = 2 [a1(a)-di(a)]D1_ 1(e), 
i=l 

where 

larccos(e)-Vl-e2 , for i = 0, 

D,(e) = .. 1 1
_ 2 [u,_l (e) _ Ui(e)] 

f e i i + 1 , for i > 0, 

D_ 1(e) = -Do(e). 
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The hinge moment Mcs(a) can also be calculated analytically: 

+ [(e-xo)Ns(a)- XoNR(a)]b(a)}eu 2 j2 , 

where x0 denotes the nondimensional hinge line abscissa in the a-section. 
The nondimensional coefficients corresponding to the unit deflection are defined as 

follows: 

eN = 2Nf(eU2SR) lift coefficient, 

eM = 2Mf(eU2SRIR) moment coefficient, 

where SR and IR denote the reference area and reference length, respectively. 

6. Results and discussion 

The convergence of the lifting-lines method is compared with the doublet-lattice method 
for incompressible flow. At first, the calculations were performed for a 25° swept, unta­
pered wing with an aspect ratio of 2.94, without control surfaces. The wing oscillates in 
pitch about the root-midchord with reduced frequency k = 0.372, referred to the semi­
chord. The number of elements along the wing semispan is fixed at five. Figure 2· shows 

1.35 

l jCHa l ·--· .-- I 
1.Z5 .-- -i 

Present method 
I 
i 

1.15 
Doublet- Lattice ~ 

I 

0.95 I I I I 
j 

0 z 4 6 8 10 N 12 

FIG. 2. 

the dependency of the moment coefficient (with respect to the pitching axis) on the number 
N of lifting lines (chordwise elements). Figure 3 shows the dependency of the hinge moment 
coefficient on the number of lifting lines. The wing is the same as in the previous case but 
has a full span, 30% chord, trailing edge control surface. Only the control surface oscillates 
about the hinge line. Figure 4 illustrates the convergence of the lifting-lines method for 
a nonplanar configuration of lifting surfaces. The yawing moment coefficient of the T-tail 
is presented. The T-tail is that investigated by STARK [11] and oscillates about an axis 
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parallel to the z-axis of the coordinate system, passing through the center of the tip chord 
of the fin. Both numbers of elements along the fin span and the horizontal stabilizer semi­
span are equal to five. The reduc~d frequency k = 0.3 is based on one third of the span of 
the fin. 

The convergence of all aerodynamic coefficients calculated by using the lifting-lines 
method is faster than that obtained from the doublet-lattice method, for both planar and 
nonplanar configurations of lifting surfaces. 

For the 25° swept, untapered wing with an aspect ratio of 2.94, the unsteady pressure 
distribution has be<m calculated and compared with the experimental results by F6kSCHING 
et al. [10]. For the same wing, two other theoretical pressure distributions are also shown. 
The first one is obtained by using the lifting-surface method [13] and the second one is 
based on the potential function panel method [12]. The complex unsteady pressure distri­
bution is written as L1cP = Lie;+ i L'Jc;' and both real and imaginary parts are shown for 
four different control surfaces motions. The wing has two control surfaces both of the 
same chord length (30% of the wing chord) and covering the entire span of the wing. The 
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A 

Yawing axis 

FIG. 9. 

span of the inner control surface is equal to 47% of the semispan of the wing. Figure 5 
corresponds to both control surfaces oscillating in phase about their leading edges, with 
the same amplitude of 0.82°. The A-section for the experimental data corresponds to 28% 
of the semispan and for the present method is ~t 29% of the semi span of the wing. Figure 
6 shows the pressure distribution caused by the inner control surface oscillations with an 
amplitude of 0.82°. The loading corresponding to the outer control surface oscillations 
with an amplitude of 0.66° is shown in Fig. 7. Figure 8 shows the pressure distribution 
due to both control surfaces oscillating in anti-phase with an amplitude of 0.66°. The 
B-section is placed at 70% of the semispan of the wing for the experimental data, and at 
67% of the semispan for the present method. Essentially, none of the methods compared 
is superior to the others in terms of their accuracy. 

For a nonplanar configuration, a comparison is made of the pressure distribution for 
the T-tail oscillating in yaw (Fig. 9) with the results of the doublet-lattice method and with 
the experimental data. All data for comparison have been taken from Ref. [14]. The 
pressure distributions are shown in Figs. 10, II and 12, for three stations shown in Fig. 9, 
and corresponding to 25%, 65% and 95% of the fin span. 
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7. Conclusions 
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The agreement between the lifting-lines method and the experimental data for the 
simple motions of the wing and the control surfaces is generally good and, therefore, one 
can expect a satisfactory accuracy of generalized aerodynamic forces calculated by this 
method. The complicated shape of deflection modes of the lifting surface, especially for 
higher natural frequencies, requires more terms in the expansion (2.9) and also more 

12*. 
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spanwise elements. Consequently, the lifting-lines method can be considered superior to 
the doublet-lattice method in application to flutter calculations because of the higher 
efficiency in terms of computational time. 
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