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Application of the unsteady lifting-lines method
to arbitrary configurations of lifting surfaces

J. GRZEDZINSKI (WARSZAWA)

THE EFFECTIVENESS Of the unsteady lifting-lines method of solving the lifting surface integral
equation is presented. This method, although assuming an unknown chordwise pressure distri-
bution in a form of a series of preselected functions, leads to a system of linear algebraic equa-
tions, very similar to that obtained by the well-known doublet-lattice method discretizing directly
the integral equation. It has been found that the present method is superior to the doublet-
lattice method in terms of computational time for both planar and nonplanar lifting surfaces.

W pracy przedstawiono efektywnos$¢ niestacjonarnej metody linii no$nych rozwigzywania
rownania catkowego powierzchni nosnej. W metodzie tej zaklada si¢ nieznany rozkiad cisnienia
wzdtuz cigciwy w postaci szeregu wzglgdem z gory dobranych funkcji, jednak wynikowy ukiad
liniowych rownan algebraicznych jest bardzo podobny do ukladu otrzymywanego w znanej
metodzie siatki dipoli, ktora polega na bezposredniej dyskretyzacji rOwnania caltkowego. Stwier-
dzono szybsza zbieznos¢ prezentowanej metody w porownaniu z metoda siatki dipoli, zardGwno
dla plaskich, jak i nieptaskich powierzchni nosnych.

IIpencraBnena adypeKTHBHOCTh HECTALMOHAPHOTO METO 1A HECYIIHX JHUHH PEIICHHS IHTEr-
pajibHOTO ypaBHEHUA HeCylleH MopepXHocTH. B 9ToM MeTo/ie NMpPeIroJiaraeTcsi HEM3BECTHOE
pacnpesiefieHue [aBJICHHA BIOIb XOpJAbI B BH/IE P#AJIa 10 OTHOIUEHHMIO K 3apaHee mogobpaH-
HBIM (DYHKIHAM, OJIHAKO Pe3yJbTHPYIOUIAA CHCTEMA JIMHEHHBIX aJIre0pandyecKux ypaBHCHHIT
OUEHb NO/I00HAsT CUCTEME, TIOJIyUaeMoil B H3BECTHOM METOAE CeTKM AMIIOJEiT, KOTOpas 3aiiIo-
yaeTcsi B HEMOCPEACTBEHHON JMCKPETH3ALMHM HHTETPAJIbHOrO ypaBHeHusi. KoHcTaTiponaHa
ObICTpast CXOAMMOCTDb IPEJIAracMoro MeTo/a IO CPaBHEHHIO C METOJOM CETKH JIHIO.eil, TaK
IS IUIOCKHX, KAK M HEMJIOCKHX HECYLHX IOBEPXHOCTEN .

1. Introduction

SINCE THE EARLIEST days, aeroelastic stability analysis (flutter) has influenced the develop-
ment of method used for the calculation of aerodynamic forces induced on bodies by
unsteady flow. From the point of view of the capability of recently used numerical methods
and equipment, an aircraft is still too complicated itself to be treated as a single body.
Therefore, each component is considered separately, including aerodynamic interference
effects only, if necessary. For flutter analysis, most important are unsteady aerodynamic
forces acting on main lifting elements of an aircraft (wings and tail). These elements are
usually thin enough to be treated as lifting surfaces (elements of infinitiesmal thickness).
For low aspect ratio wings, and especially for swept wings, the most simplified two-dimen-
sional model (airfoil) is unacceptable. The difference between two-dimensional and three-
dimensional models is qualitative because of the stronger singularity occurring in the
kernel of the integral equation, and also quantitative, because of the amount of compu-
tational time one order of magnitude greater. The numerical methods recently used for
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lifting surfaces are so much time-consuming that searching for more effective methods
is still of present interest. The other reason issues from the iterative procedure of deter-
mining the stability condition (critical flutter velocity) during which the lifting surface
integral equation has to be solved many times.

The aim of this work is to examine the effectiveness of the unsteady lifting-lines method
[1] of solving the lifting surface integral equation and also to check whether this method
can be applied to arbitrary configurations of lifting surfaces, as 7-tail for example.

The unsteady lifting-lines method can also be used for predicting aerodynamic loadings
caused by control surface motions [2]. The first preliminary results [15] for planar surfaces,
although revealing sometimes strange and unexplained convergence behaviour, seem to
be attractive but systematic analysis has not yet been made.

2. The unsteday lifting-lines method

Let Oxyz be a rectangular coordinate system, oriented in such a way that the Ox
axis and undisturbed flow velocity vector U are parallel and of the same direction. The
lifting surface is placed in an inviscid flow at zero incidence. The surface can be nonplanar
but is built up from lines parallel to the free-stream velocity. The lifting surface downwash
w(x, y, ) is given and the unknown function is the nondimensional pressure difference
between the lower and upper side defined by

24p(x, y, 2)

dey(x,y.z) = 007

where x, y, z are coordinates of the lifting surface point, p is the pressure, and ¢ stands
for the flow density. The lifting surface integral equation [3] relates the pressure Ac, to
the normal velocity w:

wx, ),z .
@0 wix, JA,) _ ‘8_17{ fs f Ay (&, 0, D) K(Xo, Yo, zo)dEdndL,

where integration is carried out over the lifting surface S and the remaining symbols are
defined as follows:
Xo=x=&, Yo=y-m, z=1z-C,
g
7?17{(17(7){07»)"0,ZO)+T2K2(x0, Yo, ZQ . g

(22) K(XO, Yos ZO) s rz

?

/ 2
r=Vyi+z,

o — circular frequency of surface oscillations.
If the surface is planar, then T, = 1, T, = 0. The planar part K, of the kernel is given
by

(2.3) Kl(x07 Yo, 20) = (] +%) e_““"‘— F(ikl 5 l"l)'
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where

R = Y+,

f*=1-M?* (M — Mach number),

wr

ky = ‘U B

u MR—XO

1 — VR

B2r
~ t
(2.4 F(v,u) = vf | — ———— | e "dt
: bl Y1422

(r denotes here the dummy integration variable). The nonplanar part K, of the kernel is
defined by

2.2 I M .
(2.5)  Ka(xo, Vo, Z0) = { - "xT;(“ %)~ikllztl +%°(T'+u1me-'kn"x
+F(ikl, Ul)‘}"G(ikl, ul),
where the function G(z, ) is given by an integral

@K

(2.6) G, w = o [ 1 (1_17”1{?)6‘""”-

The functions T, and T, depend on the local deflection from a planar surface and are
given by

(2.7 T, = cos(ngng),

u

(2.8) T, = cos(rng)cos(rng),

where ns and ng are unit normals to the surface at two points &, , { and Xx, y, z, respec-
tively. Vector r is built from components (0, y,, zo). The kernel (2.2) of the integral equa-
tion (2.1) has a nonintegrable singularity along the line y, = z, = 0, x, > 0, and the
finite part in Hadamard’s sense has to be taken [4].

There are many works dealing with the lifting surface problem, a part of them is listed
in a survey paper by LANDAHL and STARK [5], but essentially there are two groups of
methods for solving the integral equation (2.1). The most popular representative of the
first group is the doublet-lattice method [6] being a nonstationary extension of the well-
known vortex-lattice method. The basic idea of these methods lies in a direct discretization
of the integral equation in search of a finite number of Ae¢, values in a set of arbitrary
chosen points of the lifting surface. The methods of the second group assume the solution
Acp as a linear combination of the known functions ¢;, with the unknown coefficients a;:

n

5
AC,, = 2, ajq/'j(x’ Y Z),
j=1
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and is called the lifting-surface method [7]. The set of n unknown coefficients is to be deter-
mined by any approximate method of solution of integral equations. Convergence of the
method used strongly depends on a proper choice of preselected functions. It is casy
to make such a choice for a lifting surface of a smooth boundary and of a continuous
downwash function w(x, y, z). Difficulties arise for wings with kinks in leading or trailing
edges and also for control surface motion. The normal velocity distribution in such cases
has lines or points of discontinuity resulting in solutions with singularities. This problem
does not appear in the doublet-lattice method; however, in order to get sufficient accuracy,
a large number of control points placed close to the discontinuity lines must be taken
into account. The uniqueness of the solution (Kutta condition) in the lifting-surface method
is achieved immediately if preselected functions all have zero trailing edge values. In the
doublet-lattice method, uniqueness of the solution is achieved by the so-called 1/4-3/4
rule. According to this scheme, the control point is placed on the 3/4 chord of each panel
and the lift distribution is concentrated on 1/4 chord line of the same panel (Fig. 1). Nu-
merical calculations give satisfactory results but there is no rigorous justification of this
rule.

Lifting - Lines Doublet - Lattice

2 doublets T—r
§,=c052m1 = 3
S Collocation | 1
Xj==§&; nt 1
point m—
FiG. 1.

The unsteady lifting-lines method [1] shares some properties with both doublet-lattice
and lifting-surface methods. The solution is assumed in a form of series

M

(2'9) Acp(§5 U) b(O') -l/ 1+§ LJ a'(J)Pf—l(S)s

where £ is the chordwise coordinate normalized to the interval (—1, 1) in each section
of the lifting surface, o denotes the spanwise curvilinear coordinate, b(o) is a local semi-
chord, and P;(£) are Jacobi polynomials orthogonal over the interval (—1,1) with the

weighing function J/ (1 —£)/(1 +&). The unknown functions a;(s) are to be found.
The normalization mentioned above of the streamwise coordinate & (or x) means that
for each component of the lifting surface a new coordinate system &, o (or x, o) is created
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and each component forms in its own coordinate system a rectangle with a leading edge
value x = £ = —1 and a trailing edge value x = § = 1.

At first, the Galerkin scheme is applied, but only chordwise, with orthogonality condi-
tion to the sct of Jacobi polynomials Q;(x) with the weighing function /(1 +x)/(1 —x)
over the interval (—1,1). Both chordwise integrals involving the functions P;(&) and Q;(x)
are calculated numerically according to the Gauss-Jacobi quadrature with the same number
of abscissas, equal to the number of terms in the expansion (2.9). After that, the lifting
surface integral equation leads to the set of one-dimensional integral equations:

(2.10) | K(@)APTa(a)do = w(o),

Ls
where K — n x n matrix composed of kernel values k;; = K(x;—&;, o, 25), A — diagonal
matrix of Gauss-Jacobi quadrature weights, P —nxn matrix of Jacobi polynomial
values corresponding to quadrature abscissas, p;; = P;_1(§)), w(o) — vector of normal
velocity values in quadrature abscissas, w;(o) = w(x;, y, z), Ly — length of the span of
the lifting surface.

The abscissas of the quadrature are equal to (Fig. 1)

2ni
b T —— = - j .= ’)
X cos(2n+1), & Xps  LaJ = 152 st

The next step is to discretize the spanwise integral in Eq. (2.10). The method employed
is the same as that used in the doublet-lattice method. The lifting surface is divided into
a set of narrow strips parallel to the free-stream velocity, assuming constant values of the
functions a(o) along each strip. The parabolic interpolation of the numerator of Eq. (2.2)
is used and also an analytic evaluation of improper integrals is obtained. Since the error
of interpolation grows very rapidly for points (x, y, z) and (&, #, {) closely spaced one to
each other, the steady solution is substracted and obtained by using the horseshoe vortices.

After introducing a new set of unknowns

I'(6) = APTa(o),

the set of linear algebraic equations is obtained, which is almost the same as that of the
doublet-lattice method. The only difference comes from Gauss—Jacobi quadrature abscissas
taken instead of a set of arbitrary chosen points along the chord lines. The meaning of
the solution is also different. As a result, a set of coefficients of the expansion (2.9) is
obtained instead of Ac¢, values on the lifting surface. Consequently, the time of computa-
tion for the fixed number of unknowns is the same for both doublet-lattice and lifting-lines
methods. However, a better accuracy of the lifting-lines method is observed in numerical
examples.

Following the orthogonality condition of Jacobi polynomials

PAPT = al,

the set of coefficients a(o) can be obtained from the solution I'(¢) without any knowledge
about the quadrature weights

@.11) a@=%ﬂ@.

Physical interpretation of the vector I'(¢) can be found in [1].



170 J. GRZEDZINSKI

3. Loads caused by control surfaces motion

The normal velocity induced on a lifting surface by control surfaces motion is no
longer a continuous function of surface points. Therefore the Gauss-Jacobi quadrature
cannot be used to evaluate the Galerkin method integrals involving w(x, y, z). These
integrals can be evaluated analytically assuming that

w(x, 0) = f(x, o) H(x—e(0)),

where H(x—e) is the unit-step function (discontinuity appears at the point x = e of the
control surface leading edge) and f(x, o) is a continuous function of x. It can be easily
verified, that in this case the right-hand side of Egs. (2.10) equals

") = QTe(o),

where

1
1+x
Gy sl = | ]/ [ S8, )04 () H(x—e)dx.
-1
If the function f(x, o), for ¢ = const, can be approximated by a finite number of Jacobi
polynomials, then the last integral (3.1) can be expressed as a linear combination of the
following integrals:

1 I
f ]/ %’j— Oc1(x)dx =

where Uy(e) denotes the value of the second kind Chebyshev polynomial of order &, in
a point x = e.

Besides the right-hand side modification of the integral equation, proper interpretation
of the solution is necessary in the case of discontinuous downwash. There exists a logar-
ithmic singularity In|x—e| of the solution at the control surface leading edge and without
any additional information a great number of terms of the expansion (2.9) would be
needed to achieve the acceptable accuracy. However, in the very first approach use can
be made of the known result for the airfoil with control surface in two-dimensional flow
[8]. Such a known, singular term is taken as a singular part Ac,s of the solution to the
lifting surface equation (in chord direction):

(3.2) Ac,s(x, 0) = [bo(0)+bi(0)(x—e)+b,(0)(x—e)*+ ... ]A(x, e),

V/1—e?+arccos(e), for k=1,

V‘i'_—ez[U*;\}(‘M RaB} g ke,

where b;(o) are known coefficients, and the function A(x, e) is given by

'1—xe —_k_]_y"_T_'__—_?z y 1—x7|
H—xe—p1—e* Y 1—x3

A(x, e) = »é_ln

This function has a logarithmic singularity In|x—e| and equals zero at the leading and
trailing edges. The total difference of pressure (solution to be found) is a sum of a regular
part: '
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1 /15x N\
(3.3) Acpr(x, 0) = b—(a)_ l/'lq_“x ﬁ ci(0)Pi_1(x)
and the singular part Ac,s (3.2). The coefficients obtained from Egs. (2.10) are equal to
ai(a) = Ci(o’)‘i'di(d), i = l, 2, .

where d;(0) are coefficients of an expansion of the singular part of the solution in a set
of Jacobi polynomials:

Acys(x, 0) = b(a) ]/l+x yd(a)P, 1(%),

di(0) = —I@ fdc,,s(x 0)P;_(x)dx.

Knowing the coefficients d;(c), the solution A¢, can be written in the form

Aeyts, ) = oY 1o Z [0(0) ~d(o)IP, () + Acys(x, o).

For any fixed value of ¢ it is possible to evaluate coefficients ;(c) analytically:

da) = 2 Z b CL (@),

where L+ 1 denotes the number of terms in the expansion (3.2). The integrals
1
Cle) = [ (x—e) Pix) A(x, e)dx
-1

satisfy the following recursive formula:

{(e) = 2C{*i(e)+2eC{_ (e)—Ci_(e),

where
n]/'i—_?, for =0,
@ =|n_/Tte
P i @0t @@-0@), for >0,

C%(e) = —C3(e), Cli(e) = —Ci(e),

Essentially, the point of the method of handling the discontinuous boundary condition
w(x, y, z) is that the partial sum (from n+1 to infinity) of the slow converging series (2.9)
has been replaced by the partial sum corresponding to the two-dimensional solution.
Only the singularity at the control surface leading edge can be treated in this way. The
side edges singularities require more closely spaced spanwise strips in order to achieve
satisfactory accuracy (the same problem appears in the double-lattice method).
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4, Analytical continuation of the kernel

The formulae (2.3) ... (2.8) describing the kernel (2.2) of the lifting surface integral
equation are valid also for complex values of the frequency w. However, because of the
convergence condition of the integrals (2.4) and (2.6), Re(z) = 0. only the motion with
growing amplitude is allowed. For exponentially decaying motion, an analytical con-
tinuation of functions F(v, 1) and G(v, u) onto the left-half of the complex z-plane has to
be evaluated. DSEMARAIS [9] proposed an exponential approximation of the integrand of
Eq. (2.4) of the form

1 W ot
4.1 1- el ~ Z s

The values of the coefficients o;(i = 1, 2, ..., 12), ¢ are given in [9].
This approximation results in the rational approximation for the function F(v, u):

= = 0,
F(v, u) = ve” 2 2‘y+7) ¥ for u=0
4.2) i
\ o cx‘ezly"
] _ 2 i -l t "
Flo,u) = —2-2v : @ty = 2t (2+’U Fy—v ), for u<0

i=1

The rational approximation (4.2) gives satisfactory results within the range =/4 < |
Arg(v)| < 3n/4(—o0 < u < o0) and, therefore, can be very useful for determining the
pre- and post-flutter behaviour of aeroelastic systems.

The approximation (4.1) can also be used for obtaining the rational approximation
of the function G(v, u):

2,-vu (xie_z " 1
G(v, u) = v?e 2 g e u+ 2550’ for uz=0,
¥ o BT
ﬁ i [(ziy)z__T)Z]z

12

b
—vu 2 B ({ S 1 . <
+e [2(1—|—vu)+fu Zoc,- 2";:—7;(“ Q‘y—v)J’ for w < 0.

=1

G(v,u) = —2+20°

The calculations based on the rational approximation (4.2) confirm the existence of
the pure aerodynamic singularity of the solution to the linear algebraic equations discre-
tizing Eq. (2.10), in some isolated points of the complex w-plane, corresponding to the
decaying motion. Such aerodynamic singularity was for the first time observed by UgDA
[16] for the Mach number of 0.8 and a rectangular wing with an aspect ratio of three.
Present calculations reveal more points of aerodynamic singularity also for lower Mach
numbers.
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5. Aerodynamic coefficients

The generalized aerodynamic forces are given by
(5.1) gis = | [ hitx, y. D) de,(x, 3, 2)ds,
S

where f;(x, y, z) is a deflection of the lifting surface (corresponding to the i-th natural
frequency) and de,;(x, y, z) is the unsteady loading caused by the motion associated with
J-th deflection mode. If the function 4; is approximated by polynomials, then the integrals
(5.1) can be evaluated analytically. The generalized force corresponding to s; = 1 has
a simple interpretation of the aerodynamic force, and for the linear function A; the aero-
dynamic moment is obtained. These two cases are interesting because for them most
experimental data are available.

For a given o, i.e., for a given chordwise section, the normal force and moment with
respect to the chord’s point of coordinate x,, are given by

N(o) = ma,(a)eU?/2,
M(o) = Z— [a2(0)— b(0)(1 +2xpm) a1 (0)] 0U?/2.

The force acting on a control surface is the sum

Nes(0) = Ns(0)+Ng(0),
where Ns(o) is the normal force induced by the singular part of the loading, Ac,ys (3.2)
and Ng(o) is caused by the regular part Ac,g (3.3). These forces are given by

L
N(o) = V1—=e D bi(0)S)le, /(j+1),
i=0

where the integrals
1

(x—e)’
S_,' ’ = f_ dx
(c, e e

c

are to be evaluated according to the recursive formula
1 g i
Sye,e) = 7['/1 —cX(c—ey  +(1-2))eS;_; +(— 1)1 —e?)S,_,),

So(c, e) = arccos(c),
Si(c, e) = Y 1—c?—e arccos(c).
The regular part of the normal force is the following:
Na(0) = D [a(0)—di(0)1Dy_1 (@),
i=1
where

arccos(e) — )/ 1 —e?, for i=0,

D‘ = N y
(E’) [/1—6‘2 [U:—ix(e) . (I]:i-(‘i)], for B 0’
D_,(e) = —Dol(e).
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The hinge moment M¢s(0) can also be calculated analytically:
- b
Mes(@) = {n/ ey V 1) Spaale, O+ Z [6,(0) ~ d(@)][D;—1(e) + Dy(o)]

+ [(e—xo) Ns(a) - onR(G)]b(U)}eU"‘/Z,

where x, denotes the nondimensional hinge line abscissa in the o-section,
The nondimensional coefficients corresponding to the unit deflection are defined as
follows:
Cy = 2N/(eU?SR) lift coefficient,
Cy = 2M[(eU?Sglz) moment coefficient,

where S and I denote the reference area and reference length, respectively.

6. Results and discussion

The convergence of the lifting-lines method is compared with the doublet-lattice method
for incompressible flow. At first, the calculations were performed for a 25° swept, unta-
pered wing with an aspect ratio of 2.94, without control surfaces. The wing oscillates in
pitch about the root-midchord with reduced frequency k& = 0.372, referred to the semi-
chord. The number of elements along the wing semispan is fixed at five. Figure 2 shows

135 1 : ; [ ; -
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the dependency of the moment coefficient (with respect to the pitching axis) on the number
N of lifting lines (chordwise elements). Figure 3 shows the dependency of the hinge moment
coefficient on the number of lifting lines. The wing is the same as in the previous case but
has a full span, 30%, chord, trailing edge control surface. Only the control surface oscillates
about the hinge line. Figure 4 illustrates the convergence of the lifting-lines method for
a nonplanar configuration of lifting surfaces. The yawing moment coeflicient of the 7-tail
is presented. The T-tail is that investigated by STARK [I1] and oscillates about an axis
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parallel to the z-axis of the coordinate system, passing through the center of the tip chord
of the fin. Both numbers of elements along the fin span and the horizontal stabilizer semi-
span are equal to five. The reduced frequency k = 0.3 is based on one third of the span of
the fin.

The convergence of all aerodynamic coefficients calculated by using the lifting-lines
method is faster than that obtained from the doublet-lattice method, for both planar and
nonplanar configurations of lifting surfaces.

For the 25° swept, untapered wing with an aspect ratio of 2.94, the unsteady pressurc
distribution has been calculated and compared with the experimental results by FORSCHING
et al. [10]. For the same wing, two other theoretical pressure distributions are also shown.
The first one is obtained by using the lifting-surface method [13] and the second one is
based on the potential function panel method [12]. The complex unsteady pressure distri-
bution is written as A¢, = Ac,+i Ae,’ and both real and imaginary parts are shown for
four different control surfaces motions. The wing has two control surfaces both of the
same chord length (30%, of the wing chord) and covering the entire span of the wing. The
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Yawing axis
F1G. 9.

span of the inner control surface is equal to 479 of the semispan of the wing. Figure 5
corresponds to both control surfaces oscillating in phase about their leading edges, with
the same amplitude of 0.82°. The A-section for the experimental data corresponds to 28%
of the semispan and for the present method is at 299, of the semi span of the wing. Figure
6 shows the pressure distribution caused by the inner control surface oscillations with an
amplitude of 0.82°. The loading corresponding to the outer control surface oscillations
with an amplitude of 0.66° is shown in Fig. 7. Figure 8 shows the pressure distribution
due to both control surfaces oscillating in anti-phase with an amplitude of 0.66°. The
B-section is placed at 709, of the semispan of the wing for the experimental data, and at
679 of the semispan for the present method. Essentially, none of the methods compared
is superior to the others in terms of their accuracy.

For a nonplanar configuration, a comparison is made of the pressure distribution for
the T-tail oscillating in yaw (Fig. 9) with the results of the doublet-lattice method and with
the experimental data. All data for comparison have been taken from Ref. [14]. The
pressure distributions are shown in Figs. 10, 11 and 12, for three stations shown in Fig. 9,
and corresponding to 25%, 65% and 95% of the fin span.
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7. Conclusions

The agreement between the lifting-lines method and the experimental data for the
simple motions of the wing and the control surfaces is generally good and, therefore, one
can expect a satisfactory accuracy of generalized aerodynamic forces calculated by this
method. The complicated shape of deflection modes of the lifting surface, especially for
higher natural frequencies, requires more terms in the expansion (2.9) and also more

12
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spanwise elements. Consequently, the lifting-lines method can be considered superior to
the doublet-lattice method in application to flutter calculations because of the higher
efficiency in terms of computational time.
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