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Elastic wave propagation in a two-component composite structure
M. SOKOLOWSKI and Z. WESOLOWSKI (WARSZAWA)

PrOPAGATION of longitudinal elastic waves is considered in a model of composite structure
consisting of two rods made of different materials interconnected by means of elastic springs.
Wave profiles are evaluated numerically from the accurate integral formulae (8).

Rozwaza si¢ propagacje podtuznych fal sprezystych w modelu konstrukcji ztozonej z dwéch
pretow wykonanych z roznych materialow i polaczonych sprezynkami. Ksztalty fal wyznaczono
numerycznie ze scistych wzorow calkowych (8).

PaccmaTpuBaeTCst PacHpOCTPaHEHHe NPOJONBHBIX YIPYIHX BOJIH B MOJENH KOHCTPYKIMH
COCToAIeH 3 JBYX CTepyKHeil, H3roTOBJIEHHBLIX M3 PA3HLIX MATEPHu/IOB, M COEHHEHHBLIX
npy>KuuKamu. PopMBI BOJIH OIIpefieieHbl UHCIICHHO H3 TOUHLIX MHTErpamsHbIX dopmyrn (8).

LET US CONSIDER the problem of propagation of longitudinal elastic waves in a com-
posite structure consisting of two rods made of different elastic materials interacting with
each other with forces proportional to the difference of their longitudinal displacements.

The problem was formerly considered by one of the authors in the paper [1]; however,
the numerical analysis applied in that paper did not give satisfactory results concerning
the accurate profiles of elastic waves propagating in both rods. The problem will now be
analyzed in a slightly different manner, with the use of the integral transforms technique.

A model of such a structure is shown in Fig. 1: two rods characterized by Young’s
moduli E,, E, and densities o, , p, are interconnected by means of elastic springs (Fig. 1a)
transmitting longitudinal forces of intensity

(M 7 = #(u—1)

(Fig. 1b), where u = u(x, t),v = v(x, t) denote axial displacements of the respective
rods and x is the spring constant. In order to eliminate possible bending effects, the cross-
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section of the composite rod should actually be symmetric; for instance, it may be assumed
in the form of an elastic tube and core separated by a filling material (rubber, grease etc.)
transmitting the required interaction forces (1.1), Fig. lc. By assuming the problem to be
strictly one-dimensional (no transversal displacements or interaction forces), the equations
of motion of the model shown in Fig. 1 are written in the form
2 2

Ey o —oi o —eu—v) =0,

@

0*v v
E, o 22 Wl-i-x(u—-v) =0.

Apply now the Laplace transform to Eqs. (2); using the notation

[=e]

u(x,p) = L{u} = f e Pu(x, 1)dt,

0
o(x,p) = £ {v},

where p is the complex transform parameter, Eqs. (2) are rewritten in the form

N RS

Cy =l —pru+ki(v—u) = —F(x,p),
(3 "

, 0% R

C3 'é*;f —p27)+k2(“—77) = _Fz(xa P)

Here ¢; = V' E;fo;,i = 1,2, are propagation speeds, k2 = x/o;, and functions F;(x, p)
are determined by initial conditions of the problem

” Fi(x, p) = u(x. 0)+pu(x, 0),
@ Fi(x, 7) = $(x, 0)+-pv(x, 0).

In order to simplify the considerations as much as possible, assume the displacements
u(x), v(x) to be symmetric in x, u(x, 1) = u(—x, ), v(x, t) = v(—x, t); it follows that
the axial stresses in the rods, E; du/dx and E, dv/dx, vanish at x = 0; this takes place
when a semi-infinite rod 0 < x < oo with a stress-free end x = 0 is considered. Under
this assumption, the integral cosine-transforms u*, o*, F;* of displacements u, v and func-
tions F; may be introduced:

i(x,p) = [ @*(x, p)cosaxd,
0

(5) o(x, p) = [ T*(, p)oosaxde,
0

Fi(x, p) =f F*(a, p)cosaxde.
0

On introducing the expressions (5) into the differential equations (3), the problem
is easily solved for u*(«, p) and v*(«, p) to yield
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_ Q,F}+kiFF

u*(ee, p) = S22y T2 ,
© P =50 K

*(at, p) = Q Ff + k3 Fff

2.0~k
with the notation 2; = Q,(«, p) = p*>+o’c} +k7.

Inversion of the double transforms (6) would be possible under very special assumptions
as to the physical conditions of the problem under consideration. Partial inversion of
those formulae will be presented for the case of initial conditions

ux,0 =o(x,0 =0, u(x,0) = 2(x,0) = god(x),
where 8(x) is Dirac’s delta; then F*(x) = go/=.

Assume now that k, > k, and ¢, > ¢,. Introducing further notations

B =l B =g BkD,

i 1
c? = —(ci+cd), 2 = »%(ci—cf),

‘—2‘ E
M @2 = (k*+ 2?2+ kK3,
A2 = K24 o202 4+ D, B = >+ a2 -,

M,

L 2, s _l_"z 222
1+E(k +a%¢?), M, 1+q)(k o?c?),

I .2 - 1 - _
Ny = 1—-g (K240, N, = 1= (k*—o?c?),

the formulae (6) may be partly inverted to yield

ulx,t) =

2o (Ml sinBt N,sin At)
g + cosaxda,
2r J B A

®

o 0]
o(x, 1) = g J“ (Mzsin_Bt_i_EzsinAt

ot B 1 )cos:xxdx.

The integrals (8) representing elastic displacement waves travelling along the composite
rod cannot be written in explicit forms except for certain particular cases. For instance,
if k, = k, = 0, that is when the model consists of two different but separate rods subject
to identical boundary and initial conditions, in view of k=k= 0, ? =0a%?* A= uc,.
B=uac,M, =N, =2 M, =N, =0, one obtains (cf. [2])

o0
2sinacy tcos axdo
ulx, t) = %‘;, f e —
0

8o
oy 2er nle t—x),

o(x,t) = 5;’ n(cst—x),
2
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7(c; t—x) denoting the Heaviside function. This is the known solution representing two
separate elastic waves of constant displacements g,/2¢; travelling at the respective speeds
¢; along both semi-infinite rods 0 < x < oo. Similarly, in the case when k, = k, = k&,
¢; = ¢; = ¢ (two identical, interconnected rods), both waves are identical and travel

at the same speed c,u = v = g—z n(ct—x), what should be expected.

Finally, consider another simple but not trivial case of ¢; = ¢, ¢; = 2¢c. Introducing
new space and time variables: X = x/a (dimensionless distance) and ¢ = t/a, where a de-
notes a unit of length, assuming @ = 1, ¢ = 1, and putting k,a = k,a = 2, the formulae
(7) are reduced to

k=2 k=0, =25 &=15 @=15/a*+N",
N =83, A% = 4+2.5¢2+1.5 Y a* + N+,

B? = 442.5¢*— 1.5y a*+N*%,

My =14 2FLSE oy, 4-lse
LSy o* +N* 1.5y a*+ N*
1L5Yat+N* T 1.5 a*+ N+~

The integrals (8) are computer-evaluated and lead to the results presented in Figs. 2,
3,4 and 5.
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Fi1G. 4.

Figure 2 corresponds to relatively short times (¢ = 0.8, f = 1.6, # = 2.4). Solid lines
denote displacements u in the first rod, dashed lines — displacements v in the second
rod, ¢; = 1 and ¢, = 2. At small times 7 — 0 both displacements are represented by
Heaviside’s functions. At X = ¢ only displacement u is discontinuous, the jump being
independent of ¢ and equal to 1/2; At X = 2¢ only v is discontinuous and exhibits the same
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discontinuity 1/2; at that point the first displacement u vanishes. For larger values of ¢
(Figs. 3, 4 and 5) an interval of the rod may be observed along which both displacements
are approximately the same, ¥ & v. This confirms the observation made in [1] according
to which for large values of time, in addition to separate waves travelling in both rods,
a “common” wave is also propagated at a speed approximately equal to

]/C%-Hg
Cop = b =y

The approximate position of that “common wave-front” is marked in Figs. 3, 4 and 5 by
triangles.

Unexpected oscillatory curves appear in the neighbourhood of two displacement
discontinuities (wave fronts) X = ¢,z and X = ¢, for larger values of time (larger dis-
tances from the end of the composite rod). For instance, observe such phenomena in the
intervals 18 < ¥ < 20 and 34 < X < 40 in Fig. 5 corresponding to time 7 = 20.

In order to verify this phenomenon, let us consider two graphs presented in Fig. 6 a, b.
Contrary to the preceding ones, the curves correspond to fixes values of x and variable
time ¢, for which displacement u of the first rod has been evaluated numerically. At times

t < X/c, displacement u = 0 (in case of Fig. 6a X = 2, and in case of Fig. 6b X = 4).
At the instant ¢ = X/c, displacement u starts to increase due to the motion transmitted

from the second rod in which the wave propagates at speed ¢, > ¢;. At t = X/c,, the
displacement discontinuity [u] = 0.5 propagating along the first rod appears. Comparison
of the right-hand portions of curves shown in Figs. 6a and 6b confirms the previously
observed tendency of oscillatory motion of rods close to the wave fronts, the tendency
which is seen to intensify with increasing distances from the end of the rod.
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