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Classical mechanics in infinite-dimensional Hilbert space 

H. ZORSKI and J. SZCZEPANSKI (WARSZAWA) 

THE MECHANICS of a denumerably infinite set of particles constitutes in a sense an intermediate 
case between the usual mechanics of many-point systems and the continuum theory. In this 
paper we present some of the fundamental principles of classical mechanics in a real separable 
Hilbert space. Both kinematics and dynamics are investigated. 

Mechanika nieskoilczonego przeliczalnego zbioru C1l\Stek stanowi w pewnym sensie przypadek 
posredni pomictdzy zwykl(l mechanik(l ukladu zloi:onego ze skonczonej liczby C7llstek a mecha­
nik(l osrodk6w ci(lglych. W pracy tej przedstawiono odpowiedniki postawowych poj¢ i praw 
mechaniki klasycznej w nieskonczenie wymiarowej rzeczywistej przestrzeni Hilberta. Rozpa­
trzono zar6wno kinematyk~ jak i dynamik~ uklad6w o nieskonczenie przeliczalnej liczbie stopni 
swobody. 

Mexamn<a 6ecKoHetUJo CtieTHoro MHo»<ecTaa qacr~ coCTaBIDieT a HeKoTopoM CMbiCJie npo­
Memyrol.IHhm CJiytiaif Me>~my o6hiKHoBeHHo:H Mexamfi<o:H cHCTeMhi, cocromue:H H3 KoHetUJoro 
KOJIHtJecraa tJaCT.HI.(, 11 MexaHHKo:H cnJioillHbiX cpe~. B HaCTOHllleil pa6oTe npe~craaJieHbi 
aHaJIOrH OCHOBHbiX llOHHTHH H 3aKOHOB KJiaCCHtJeCKOH MeXaHHKH B 6eCKOHelfiJOMepHOM ~eH­
CTBHTeJibHOM rHJib6eproaoM npocrpaHCTBe. PaccMoTpeHhi TaK KHHeMaTHKa, KaK H ~aMHKa 
CHCTeM C 6eCKOHelffibiM Cl.IeTHbiM KOJIHl.IeCTBOM CTeneHeH CB060~bl. 

Introduction 

THERE ARE many physical systems which have to be considered as systems with an infinite 
countable number of degrees of freedom. The most natural class of such systems which 
recently have been intensively studied is a system of infinitely many point particles. The 
fundamental problem arising when studying dynamical properties of such systems is: 
what is the set of initial conditions for which there exists a solution of the following infinite 
system of equations: 

00 

(*) q; = p;, Pi = -.}; gradW(Iq1-q11), i = I, 2, ... , 
Ni 

where q1 1 p 1, i = 1 , 2, . . . denote respectively the position and momentum of the i-th 
point and f/J is an interaction potential. 

This highly nontrivial problem was studied by LANFORD [8, 9] for classical point-particle 
systems interacting by means of a two-body bounded, smooth and short-range potential 
f/J. He proved an existence and uniqueness theorem for the system of equations (*) in 
the one-dimensional case, assuming that the initial density of positions (q1)?: 1 is small 
enough and the initial momenta (p1)?: 1 increase with the distance from the origin at 
most logarithmicaly i.e., IPil < Klog+lq11. In an unpublished paper Gnibre proved the 
existence and uniqueness theorem for the system of equations(*) in the three-dimensional 
case but with stronger restrictions on the initial data, namely he assumed that both density 
of momentum and density of position are bounded. 

8* 
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116 H. ZoRSKI AND J. SzczEPANSKI 

The result of Lanford was expanded soQJ.e years later by DoBRUSHIN and FRITZ in 
two directions: allowing singular potentials [3], and two-dimensional systems [4]. Still 
later FRITZ improved this result [5] proving the existence of the dynamics for superstable 
interactions [5] of finite range in dimensions one and two; the above method, however, 
cannot be applied to a dimension greater than two. 

Another approach to this problem was given by SINAI [13]. His method based on some 
probabilistic considerations connected with a GIBBS state p, [ I3], can be applied in any 
numbers of dimensions. Using this method, he was able to prove the existence theorem 
for the set of initial conditions which has measure p, equal to I ; this set, however, is not 
known explicitly. 

Still another approach to this problems was presented by C. MARCHIORO et al. [11]. 
They considered the following Cauchy problem which is related to the dynamical 
problem (*): 

d 
di fr = !£fr, 

fr=o = f, f E L2(f!£, p,) , 

where 

!l'f = t { :~ p,+ !, F,(q)} is the Liouville operator, 

f!£ is phase space of the system (*), p, is Gibbs measure invariant with respect to the dy­
namics given by(*) andfis an element ofalgebra 0/1 c L 2 (f!£, p,) called "observable". Each 
function in 0/1 depends only on the coordinates of particles that fall in the fixed bounded 
region. It is possible to show [6] that if!£ is essentialy antiself-adjoint on 0/1, there exists 
a dynamical flow (f!£, Tt, p,) such that 

(Urf)(x) =f(Trx), tER, xEf!£, fEL 2 (f!£,p,), 

where Ur = eiRr. 
Marchioro et al. proved antiself-adjointness of the Liouville operator for a one-dimen­

sional hard core system with singular two-body interaction. We see that in this approach 
the main idea is to study the time evolution of the functions describing microscopic state 
observables rather than the motion itself .. Furthermore it was proved in [15] that by appro­
priate assumptions on the initial state p,, the phase space of a physical system can be re­
duced to the infinite-dimensional separable Hilbert space. 

Other examples of systems with an infinite countable number of degrees of freedom 
appear when the required physical quantity related to the described phenomenon is a func­
tionf(x, t) from Hilbert space L 2 (fJ). The evolution operator in this case is usually some 
differential or integral operator (Schrodinger equation, Boltzmann. equation) acting on 
the space L 2 (Q). The function f(x, t) can be expanded into Fourier series in an ortho­
normal complete basis e;(x) e- L 2 (fJ), i = I, 2, .... 

CX) 

f(x, t) =}; qi(t)ei(x). 
i=l 
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CLASSICAL MECHANICS IN INFINITE-DIMENSIONAL HILBERT SPACE 117 

It is easy to see that the time evolution of the function f(x, t) is equivalent to the time 
evolution of its Fourier coefficients (q;(t))f; 1 • The phase space here is also the Hilbert 
space: namely the space J2. 

The above considerations and the fact that the infinite set of particles constitutes, in 
a sense, an intermediate case between the usual mechanics of many-point systems and 
the continuum theory, prove the necessity of constructing a direct counterpart of classical 
mechanics [1, 14] in infinite-dimensional separable Hilbert space. The present paper is 
devoted to this problem. 

One of the most interesting transitions from the finite-dimensional to the infinite-dimen­
sional mechanics have been given by LAX [1 0]. He defined the counterparts of the basic 
concepts of classical mechanics in the infinite-dimensional case and put the Korteweg-de 
Vries equation in Hamilton formalism. Thus he proved the existence of an infinite system 
of conserved functionals for this equation. In our paper, we do not postulate Hamilton 
equations but derive these equation from the variational principle. In addition we give 
the definition and the fundamental properties of the divergence of velocity. This concept 
of divergence plays an important role in the derivation of the infinite-dimensional count­
erpart of the Liouville equation [15, 16]. 

1. The kinematics of motion 

1.1. The mapping X~ x 

Consider a homeomorphism/: X..__. x, X, x E'H, of a real separable Hilbert space onto 
itself; the inverse mapping will be denoted by g: x ..__. X. Assume that f is continuously 
Frechet differentiable, i.e., the mapping X..__. Df(X) is continuous and the linear operator 
Df(X) is a linear homeomorphism of H onto itself. Then the Frechet derivative Dg(x) 
is also continuous and the lineal' operator Dg(x) is a linear homeomorphism inverse to 
Df(X). 

(1.1) Df(X) o Dg(x) = Dg(x) o D/(X) = /. 

Frequently, if no confusion results, we shall write x(X) rather than f(X) and X(x) instead 
of g(x). 

We shall also consider the mappingf:{X, t) ..__. x where tis time, t E [0, T] c R; then 
we assume that x(X, t) is a homeomorphism of H for all t and that it is continuously 
differentiable on H x [0, T]; then 

(1.2) 
a Tt x(X, t) = v(X, t) 

will be called the velocity of point X E H. Since His identical with its tangent dual space, 
we assume that v(X, t) E H. Moreover, we assume that the linear operator 

(1.3) 
a a 

Dv(X, t) = D at x(X, t) = at Dx(X, t) 

is continuous and the mapping (X, t) ..__. Dv(X, t) is also continuous. 

http://rcin.org.pl



118 H. ZoRSKI AND J. SZCZEPANSKI 

Since X -+ x is a homeomorphism, the velocity can be regarded as a function of x, t; 
then, applying the chain rule, we. have 

(1.4) 

Let now Dx* = Dx*(X, t) be the operator adjoint in the sense of the Hilbert space 
to Dx, i.e., 

(1.5) {Dx(Y)IZ) = (YIDx*(Z)) 

for all Y, Z E H. We recall that IIDx*ll = IIDxll, (Dx*)* = Dx, (Dx*)- 1 = (Dx- 1)*. 
For arbitrary Dx, i.e., for arbitrary X, t we introduce a linear, continuous, self-adjoint 

operator C = C(X, t) = Dx* o .Dx; this operator is positive definite, i.e., for 0 =1= Y E H 
(C(Y)IY) > 0; furthemore IICII = 11Dxll2 • Then there exists [12] a unique linear conti-

nuous operator, called the absolute value of Dx, V C = IDxl, such that 1Dxl 2 = C; the 

operator J! C is positive and commutes with every operator commuting with Dx. The 

corresponding notations for Dx* are the following: c = Dx o Dx*, y'c = IDx* I ; we 

have llcll = 11Dx*ll 2 = 11Dxll2 and yc commutes with every operator commuting with 
Dx*. 

We now invoke the polar decomposition theorem [12]: for every Dx there exists a uni­
tary (linear continuous) operator U mapping H onto H such that 

(1.6) Dx = uyc. 
For the adjoint operator Dx* 

(1.7) Dx* = vyc, 
Vis also unitary; taking the adjoint relations we obtain 

(1.8) Dx* = JICU*, Dx = ycV*. 

Constructing the operator Dx o Dx*, we have 

(1.9) 

i.e. 

(1.10) 

and similarly 

(1.11) 

c = Uo Co U* 

C = Vo co V*. 

Comparing the decompositions of Dx we have 

(1.12) 

whence 

(1.13) 

Thus, from Eq. (1.10), V = U* and finally 

Dx = Uo ale= ycoU, 
(1.14) 

Dx* = 1/ Co U* = U* o yc-
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CLASSICAL MECHANICS IN INFINITE•DIMENSIONAL HILBERT SPACE 119 

and 

(1.15) c = U o Co U*, C = U* o c o U. 

The polar decomposition of Dx is the counterpart of the decomposition of the defor­
mation gradient in the finite-dimensional Euclidean spaces into the product of the rotation 
and the strain tensor; we shall call therefore C the right Cauchy-Green strain tensor and 
c the left Cauchy-Green strain tensor. 

1.2. Definition of the divergence of v(x, t) and its properties 

Consider the velocity v(x, t). In the case of finite-dimensional space, denoting by{(!>,}, 
n = 1 , 2, ... , N the system of base vectors orthogonal, normed and by (I) ~e scalar pro­
duct, we have 

(1.16) 

N N N 

divv(x) = 2 2 (<P.I ::~ <lim)= 2 (<P.ID,v<P.). 
m==l n=l n=1 

Thus in the considered Hilbert space we define 
00 

(1.17) divv(x) = 2 (l/>n iDxvlf>n) 
n=l 

where, as before, {(!>, }~ 1 is an orthogonal system. We assume that it is complete; We 
00 

recall that for a linear operator A, }; (l/>n iAlf>n) is called the trace of A and denoted by 
n=1 

Tr A or SpA. In order that this definition be meaningful, we assume that the operator 
Dxv is nuclear. Then (and only then) [7] the above expression for div v(x) is independent 
of the choice of {(l>n}~= 1 and divv(x) < oo. Moreover, 

00 

(1.18) divv(x) = 2 An, 
n=1 

where A, are the eigenvalues of Dxv. Note that since Dv = Dxv o Dx, 

(1.19) divv(x) =}; (l/>niDv o Dx- 1(/>n). 
n=1 

The expression div v(x) plays an important role in further considerations concerning 
the Liouville equation. 

In~roduce now the displacement 

(1.20) u = x(X, t)-X = u(X, t) 

which can also be regarded as a function of x and t, and define the linear, continuous, 
self-adjoint operator 

(1.21) E = C-1 = Dx* oDx-1 

or, in terms of the displacement, 

(1.22) E = Du+Du*+Du* o Du. 
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We assume now that the operator E is nuclear; then the system of its eigenvectors 
{(l)n }:'= 1 is a complete basis in the considered Hilbert space H which we assume to be 
orthogonal and normalized. The eigenvalues of E 

(1.23) 

are real and 

(1.24) 

The operator C has the same system of eigenvectors 

(1.25) 

and since C is positive definite, 

(1.26) 

The relation (1.25) can be written in the form 

(1.27) 

where 

(1.28) 

The bases {'IJ'n }:'= 1 , {"''~ }:'= 1 (in general neither orthogonal nor normalized) will be called 
biorthogonal, since 

(1.29) 

Let us now differentiate the operator E with respect to time, denoting now the differ­
entiation by. a dot; making use of Eqs. (f.4) and (1.21) we have, after transformations, 

(1.30) 
. where 

(1.31) 

E = Dx* o 2d o Dx, 

is the rate of the strain operator. We shall later need the "rotation operator" 

(1.32) 

Furthermore, since An = ((/)niE(/)n), (d>nl(/)n) = 0 and E* = E 

(1.33) ~n = ((l)njE(l)n) = (4>nJE(l)n) + ((l)nJE(l)n) + ((/)n JEd>n) 

= An(~nl(/)n) + ((/)nJE(/)n) + (E(l)nlq)n) = ((l)nJE(l)n) 

and making use of Eq. (1.30), 

(1.34) ~n = ((/)niDx* o 2d 0 Dx(/)n) = 2(Dx$nld 0 Dx(/)n) = 2{ (A.n + l)1J'~ I d1f'n) 
i.e., 

(1.35) 
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Since the bases {1Jln }, {1p~} are biorthogonal, in view of the theorem of in variance of the 
trace of nuclear .operator [7] we obtain 

00 00 00 

(1.36) trd = 2 (1Jl~ld1f'n) = _IInJ1A:+l =~tIn n VAn+l. 
n=l n=l n=l 

Furthermore, since tr Dxv = tr Dxv*, we have, making use of Eq. (1.31), 
00 

(1.37) divv = 2 +((Dxv+Dxv*)1Jln l 1f'~) = trd, 
11=1 

whence 

(1.38) . D- n .. ~-
dlVV = Dt In v An+ 1 . 

n=l 

Denoting by 
00 

(1.39) J = n VAn+ I 
n=l 

the· counterpart of the Jacobian in the finite-dimensional case, we define the determinant 
of the operator C as follows: 

(1.40) 

Thus 

(1.41) 

detC = 1 2 

D D .. 1-
divv = Dt lnJ = Dt In v detC. 

Note finally, that the definition (1.28) of the base vector {1Jln} implies the formula 
00 

(1.42) l=nll1f'nll· 
n=l 

1.3. Hamiltonian velocity 

In order to develop the Hamiltonian mechanics and the Liouville theorem, it is impor­
tant to introduce the Hamiltonian velocity. To this end we first decompose the considered 
Hilbert phase space into the product of two identical Hilbert spaces 

H= H'xH' 

corresponding in the finite-dimensional case to the decomposition of the 2n-dimensional 
phase space into the n-dimensional configuration and momentum spaces. The scalar pro­
duct, with the obvious notation, is defined as usual in terms of the scalar product in H 

( (xt, Yt)l (x2, Y2)) = (x1lx2) + (YtiY2), 

where (x 1 , y 1) E H' x H', (x2 , y 2 ) E H' x H'. 
Introduce now the linear operator 

(1.43) a: H'xH'~H'xH' 
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given by 

(1.44) = [0 -I] 
a I 0 

in terms of the unit operator in H; thus, we have 

(1.45) a( ( x, y)) = (y, - x) 

for (x, y) e H' x H'. We note that the operator a is anti-Hermitian, a* = -a and a2 = -I. 
Let now the Hamiltonian :Yf be a real function of class C2 

~: H' X H' X [0' T] --+ R 

and define the Hamiltonian velocity by the formula 

(1.46) 

where DxJif is the Frechet derivative of Jlf. Thus, if (q, p) E H' x H', suppressing the time 
argument 

(1.47) 

and 

(1.48) 
Dpp:Yf(q' p)], 

- Dpq:Yf(q' p) 

The second Frechet derivatives are linear operators from H' into H'. We now have 
THEOREM I. If v is a Hamiltonian velocity and DxVJt' is a nuclear operator (from H into 

H), then div VJf' = 0. · 
P r o o f. According to the definiti9n 

00 

(1.49) divv = -.2; (4>,.1Dxv4>,.), 
n .. J 

where {4>,.}~= 1 is a complete system in H, which can be considered as two systems 
{(e,., 0) }::tt {(0, e,.)}~= 1 where {e,. }~= 1 is a complete (orthogonal and normalized) 

system in H'. Thus 

(1.50) divv = }; ((e,., O)IDxv(e,., 0))+((0, e,.)ID:.;v(O, e,.)) 
n=l 

but 

[ 
Dqp~, Dpp~J 

(1.51) D:.;v(e,., 0) = -Dqq:Yf' -Dpq~ (e,., 0) = (Dqp~e,.I-Dqq~e,.) 

and 

Hence 

(1.53) 
((e,., O) I(Dqp:Yfe,., -Dqqffe,.)) = (e,.IDqp:Yfe,.), 

((0, e,.)I(DPP:Yfe,., -DpqYl'e,.)) = (e,.I-Dpq~e,.) 
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and introducing Eqs. (1.53) into Eq. (1.50), we obtain 

co 

(1.54) divv = }; [(eniDq,Jren) + (enl- D,qJren)] = 0 
n=l 

-since D,qJr = Dq,:/f. Q.E.D. 
We now return to kinematic considerations based on the operator (1, which will be 

used later, in investigating canonical transformations. First, · we introduce the anti-Her­
mitian operators 

(1.55) 

or, in displacements, 

(1.56) 

C0 = Dx* o (Jo Dx, E0 = C0 -(1, 

Co = Dx 0 (1 0 Dx*, eo = Co-(1 

E0 = (1 o Du+Du* o (J+Du* o a o Du, 

e 0 = Du o (1 + (1 o Du* + Du o (1 o Du*. 

The time derivatives of the above operators have the form 

(1.57) 

where 

(1.58) 

It is also convenient to use the Hermitian operators 

(1.59) 

Observe that 

(1.60) 

The condition w0 = 0 is equivalent to the self-adjointness of the operator u o Dxv = 
Dx((J o v). Thus, we have the following equivalent statements: 

i) v is a Hamiltonian vector field, v = (1 o Dx.Yf, 
ii) the operator Dx(av) is self-adjoint, 

iii) W 0 = 0, i.e. Dxv* = a o Dxv o a, 
iv) C0 = 0. 

1.4. Canonical transformations 

Define first the Poisson brackets as follows: for the Frechet differentiable functions 
f, g: H' X H' --+ R 

(1.61) 

where x = (q,p), Dxf = (Dqf, D,f), Dxg = (Dqg, D,g) and by Riesz lemma Dqf, D,f, 
Dqg, D,g E H'. Thus 
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(1.62) (D.fiaD,g)n•xw = (D.f, D,J)I [~ -~] (D.g, D,g))n•xn· 

= ((Dqf, Dpf)I(Dpg, -Dqg))H'xH' = (DqfiDpg)H,-(Dpf/Dqg)H'· 

The Poisson bracket (1.61) has the same properties as in the finite-dimensional case and 
reduces to the latter if His finite-dimensional: 

i) it is bilinear, 
ii) {f, g} = - {g,f}, 

iii) {f, {g, h} }+ {g, {h,f} }+ {h, {f, g}} = 0 the Jacobi identity. 
We define a canonical transformation 1p: x ~ x as follows: for arbitrary f, g 

(1.63) 

i.e., omitting the argument 1p- 1 

(1.64) 

or, equivalently, 

(1.65) 

for arbitrary g. 
Taking into account that 

(1.66) 

we have our definition in the form 

(1.67) 

i.e. 

We note that since detO' = 1, 

(1.68) detD1p = ±I. 
In the finite-dimensional case the condition (1.67) has the form 

(1.69) 

or, decomposing the phase space (a, p, y = 1 , ... , N), 

aqa aqP aqa aqP 
BQY oPY - oPY oQY = o, 

()qY ()qY ()qY (}qY 
oQa. ()pP - ()pa oQP = 0, 

(1.70) 
aqa. opf1 aqa apP _ <X 

(}QY ()pY - ()pY ()pY - f:5 f1, 
()qY ()pY ()qY (}pY 
oQa ()pP - ()pfJ oQa = t:5ap' 

opec opP opa opP 
oQY ()pY - ()pY (}QY = 0, 

()pY ()pY ()pY (}pY 
oQa -()pf3 - oQP ()pa = 0 

(summation over y). 

Let us now define the Lie derivative of a smooth scalar function (for an arbitrary 
velocity v) as follows: 

(1.71) 
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The operator !£ v: F(H) ~ F(H) is a derivation, i.e., satisfies the following conditions: 
i) !£ v is linear 

ii) the Leibniz rule holds, i.e., 

(1.72) 

Of course, if c is a constant, !f' vC = 0. Let us now see how this operator behaves under 
the diffeomorphism 1p; we have 

(1.'73) fe 'P'* ov(?p* of)= ?p* 0 !evf · 

In fact 

(1.74) 

We note that for a Hamiltonian velocity v9 , the Poisson bracket (1.61) can be written 
in the form 

(1.75) 

Hence 

(1.76) {f, g} = fevgf· 

Thus the function space F(H) with the composition { , } is a Lie algebra. 
DEFINITION. The dijfeomorphism 1p: H ~ H is canonical if it preserves the Poisson 

bracket, i.e, 

(1 .77) 

THEOREM 2. The diffeomorphism 1p is canonical if and only if for Vg = (] o Dg 

(1.78) 

Proof. It follows from the definition (1.77) and from Eqs. (1.73), and (1.76) that 

(1.79) 

(1.80) 

and conversely. 
As usual, canonical transformations constitute a group: 
THEOREM 3. The set of canonical transformations with the composition " o " is a group. 
P r o o f. The identity is of course canonical. Let now 1p, f/1 be canonical; for f/1 o 1p we 

have 

( 1. 81) { (/)* 0 VJ* 0 f, (/)* 0 ?p* 0 g} = (/)* 0 { ?p* 0 f, VJ* 0 g} = (/)* 0 VJ* 0 {f, g } 

= (f/1 0 ?p)* 0 {f, g } . 

It follows also from the above formula that if 1p is canonical, 1p- 1 is also canonical; it is 
sufficient to write f/1 = VJ- 1 . 

We shall now find the general form of transformations preserving the form of the 
Hamilton equations. Let x ~ y be a diffeomorphism of H. We have the Hamilton equa­
tions 
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(1.82) 

We require that 

(1.83) 

. D . oy 
y = xYX+ar· 

where :J'f' is a Hamiltonian; thus we must have 

H. ZoRSKI AND J. SZCZEPANSKI 

( 1.84) <1 o ( DxyX + : ) = - D,.1'f' or <1 ( Dxyo <1 o Dx.1'f + z ) = - D ,.1'f' 

and hence it is necessary and sufficient that the linear operator [2] 

(1.85) D, [ <1 o ( DxY o <1 o D.J'{' + z ) ] 
be self-adjoint for arbitrary :/f. It follows that the operators in (1.85) containing different 
derivatives of :J'f must also be self-adjoint. 

(1.86) D,( Go :) = D, (Go z r 
i.e. 

(1.87) 

or 

(1.88) 

Multiplying on the left by Dxy* and on the right by Dxy, we obtain 

(1.89) 

where C11 = D.x* o (] o Dx(l) is the anti-Hermitian operator introduced in Eqs. (1.55). 
Since Dx:J'f or (] o Dx:J'f is arbitrary 

(1.90) 

and multiplying as in Eq. (1.88), we have 

(1.91) 

The condition for the second derivatives is 

(1.92) 

or, after simple transformations, 

(1.93) 

and Dx Dx:J'f being arbitrary 

(1.94) 

(I) More precise notation is Ca,x-+y 
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where f.l E R. In view of Eqs. (1.89) and (1.91) f.l is a constant real number. Finally, taking 
into account the fact that the identity is a canonical transformation, we obtain f.l = 1. 
Thus the required condition is 

(1.95) 

2. The variational principle and the equations of motion 

2.1. The du Bois-Raymond lemma in Hilbert space 

Let f( ·, 1) be a linear continuous functional on Hilbert space H depending on the real 
parameter 1, and let h(l) E H; then f(h(l), 1) E R. We assume that both h(l) and/(·, t) 
are continuous in 1. By this assumptions we have the following 

LEMMA. If 
tz 

(2.1) f dtf(h(t), t) = 0 

f§r a~. arbitrary h(t) E H satisfying the boundary conditions h(t1) = h(i 2 ) = 0, then 

(21} f(h(t), t) = 0 for t E [t1 , 12]. 

Proof. According to the Riesz lemma, the considered functional has the form of 
a scalar product 

(2.3) f(h(t), t) = (a(t)ih(t) ), 

where a(t) E His uniquely determined by f, and 11 /11 = !!all. Furthermore, a(l) is continu­
ous in 1. Let for a -r E [11 , 12] a(r) :f.: 0, then a(t) :f.: 0 in a certain neighbourhood of 
r i.e., in [T-e, r+e]. Additionally we assume that for s E [t- e, r+ e], 

(2.4) 

Now we choose in this region 

(2.5) 

(a(s) la( r)) > {3 > 0. 

h(t) = a( r)cp(t) 

where cp(11) = cp(t2 ) = 0, cp(t) is continuous, supp cp c [r-e, r+e] and cp(r) > 0. Then 
It l2 T+fl 

(2.6) J dtf(h(l) , t) = J dt(a(t)ih(t)) ~ J dt{Jcp(t) > 0 
T-8 

which contradicts the assumption. Hence a(t) = 0 and therefore f(h(t), t) = 0 for 
IE(t1,12]. 

REMARK. It is easy to see that the above lemma holds even in the case when the func­
tions h(l) are of class c oo with compact support and h(t1) = h(12 ) = 0. Observe that in 
the finite-dimensional case it is sufficient to assume that only the functions h(l) andf(h(t), t) 
are continuous in t. 

2.2. The equations of motion. Passing from Lagrangian to Hamiltonian mechanics 

Now we are in ·a position to proceed to the Hamilton priQciple. Consider the Lagran­
gian functional L: Hx Hx [t1 , 12]--+ R or L(q(t), q(t), t) E R and introduce new vectors 
(<5q(t), <5q(1)) E Hx H, 
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where 

(2.7) 
• dq(t) d 

bq(t) = b----at= tit bq(t). 

Assuming that the Frt!chet derivative of L exists and is continuous (2) on Hx H, we have 

(2.8) 

where 

L(q+ bq, q+ bq, t)-L(q, q, t) = DL o (bq, bq)+r, 

as llbqll+llbql!--+ 0. 

The action of the linear continuous functional DL in Hx H can be written in the form 

{2.9) 

where DqL and DqL are partial Frechet derivatives. The quantity in the left-hand side of 
the above equation will be called the variation of L, i.e., bL = DL o (bq, bq). We have 

(2.10) Dr~Lo bq = Dq_L dd_ bq = dd (DqLo bq)- dd DqL o bq. 
t ' t t 

Consider now a smooth trajectory C and the action functional 
12 

(2.11) A[C] = f dtL(q(t), q(t), t). 

Let C' be another trajectory with different, in general, end points and denote the variations 

(2.12) 

Observe that 

(2.13) 

~~ -tl =btl, t~-12 = bt2, 

q'(t) = q(t) + bq. 

. . d ~ ( 
q'(t) = q(t) + dt uq t). 

We are interested in the variation of the action functional 
12 12 

(2.14) <5A = A[C']-A[C] = f dtL(q'(t), q'(t), t )- f dtL(q(t), q(t), t ), 

Making use of Eqs. (2.8), (2.9) and (2.10), we obtain 
lz 

(2.15) /lA = J dt [(D.L- ~ DqL) o aq+ ~ (DqLo /lq)]+ L/l{ 
ll 

12 

= f dt (D.L-:, DqL) o llq+(Lilt+D.L o llqf. 
I 1 

We shall state the Hamilton principle ,as follows: for variations of trajectories with 
fixed end points, i.e., bt = 0, and bq = 0 at the end points, 

12 

(2.16) llA = f dt (D.L-:, DqL) o llq = 0 
11 

(2) This assumption is needed only later. 
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for arbitrary variations <5q, continuous in t and vanishing at t1 and t2 • 

The du Bois-Raymond lemma implies fortE [t1 , t2] the Lagrange equations of motion 

(2.17) 
d 

D L- - D·L = 0 
q dt q 

for the considered system described by the trajectory q(t) in the Hilbert space H. These 
equations state that for the real trajectory the element of H* given by the left-hand side 
of Eq. (2.17) vanishes. 

Performing the differentiation we have the equation 

(2.18) 

containing explicitly the acceleration q(t). 
In passing from Lagrangian to Hamiltonian mechanics, the basis is the invertibility 

of the relation q -+ D q_ L = p between the linear momentum p and the velocity q. The 
definition p = Dq_L is in general a nonlinear map of H into H, for a fixed q. In accordance 
with the inverse function theorem we have the following result: if for a certain q0 E H 
the map Dq_(DqL(q, q0)) is a linear homeomorphism of H into H*, then there exists an 
open neighbourhood O/i(q0 ) c H in which the map q-+ Di L(q, q) is a homeomorphism 
onto a neighbourhood "Y(p0 ) ofp0 = Dq_L(q, q0 ) in H. Moreover, if the map q-+ Dq_L(q, q) 
is continuously Frechet differentiable m times in O/i(q0 ), then the inverse map has the same 
property in "Y(po). 

Observe that the condition that Dq_(D-qL(q, q)) is a linear isomorphism ensures that the 
acceleration q is uniquely determined in terms of q and q from the Lagrange equation:s of 
motion (2.17). 

We are now in a position to perform the transition from Lagrange mechanics to Hamil­
ton mechanics. We can write the Lagrange equations of motion in the form 

(2.19) p = Dq_L, p = DqL 

the first equation being the definition of the linear momentum and the second the equation 
of motion. We assume that there exists a function :it(q, p, t) such that 

(2.20) 

so that 

(2.21) 

Thus, for (a, b, -r) E HxHxR, 

- - - 0 -D.Yf(a, b)= Dq.Yf(a)+Dp.Yf(b)+at Yf(-r), 

(2.22) 

DL(a, a')= DqL(a)+Dq_L(a')+ :t L(-r). 

In view of Eqs. (2.20), (2.21) and (2.22), we have 

- - 0 -(2.23) D.Yf(a, b)+DL(a, a')= Dp.Ye(b)+p(a'.)+ai (Yf+L)(-r). 

9 Arch. Mech. Stos. 1/89 
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Since D(p(q)) (b, a') = p(a')+qb, we determine from this relation the quantity p(a'); 
introducing the total derivative Dr on the space H x H x H x R, we obtain 

(2.24) 

Since the elements a, a' and b are arbitrary, it follows that there exists a function 
.f: H* x [t1 , t 2]-+ R such that 

(2.25) ~+L-p(q) =f, D,8-q = D,f, :t (~+L) = :t f 

or, introducing the Hamiltonian 

(2.26) .te(q,p, t) =:it-f. 

We have 

.te(q,p, t) = pq-L(q, q, t), 

(2.27) 

where pq = p(q) = (p!q)8 by the identification of H and H*. Thus, finally we have the 
definition of the Hamiltonian 

(2.28) .Tf(q,p, t) = pq-L(q, q, t) 

and the Hamiltonian equation of motion 

(2.29) 

2.3. Examples of the invertibillty of the dependence p(q) 

Let us assume that 

(2.30) 

EXAMPLE 1 

(2.31) 

(2.32) 

(2.33) 

EXAMPLE 2 

(2.34) 

(2.35) 

(2.36) 

L(q, qJ = K(q)- W(q) and W(q) = 0, 

K(q) = ; (q!q) = ; lltiW, 

DqL(h) = m(q!h), hE H, 

p = DqL(q, q) = mq. 

K(q) = ~ (q!q)z' 

Dq_L(q, q) = ml!qW(til· ), 

p = ml!qWq. 
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EXAMPLE 3 

(2.37) K(q) = mc2 ( 1- y1-c-2 (qlq) ), 

(2.38) D· L( ')(h) - (mqlh) 
q q,q - V1-c- 2 (qlq)' 

(2.40) 
mq 

p = -y--:=1=-=c==:_ 2==( q:==:lq=-) • 

EXAMPLE 4 

(2.41) 

where A is a linear self-adjoint continuous operator A :H --+ H, 

(2.42) Dq_L(q, q)(h) = ; (qiAh)+(h!Aq) =; ((A+A*)qlh), 

(2.43) 

where 

(2.44) 
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