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Growth of voids in a ductile matrix: a review

P. GILORMINI, C. LICHT and P. SUQUET, Arch. Mech. 40, pp. 43-80, 1988

Since all the corrections indicated in the proofs of the paper could not be included by the
editor, the authors wish to point out the following errata to the reader. (Some additional
minor misprints are not listed, for the sake of brevity.)

Page 45: lines 13 to 30 must be moved to page 44, above 1.2. Damage and microme-
chanics, and n; should be changed into #; in Eq, (1.3).

Page 47: the last line above 2. Isolated Voids should be read as follows: ties, by J. Rice,
B. Budiansky, J. W. Hutchinson, A. Needleman, and their coworkers. A comma should
replace the full stop at the end of 6'" line from the bottom.

Page 48: a / is missing between /e and (X, ], and a 2 has been omitted between or
and (X, > in line 17.

Page 49: remove the a before generalized in line 11,
Page 53: change is into was in line 8, and € into & in Eq. (2.5).

Page 57: change /); for into /), for in line 6; the beginning of line 21 should be read as
to which a viod will tend has been etc.; replace ligh by high in line 23.

Page 61, Eq. (3.4): read 5" = sl(s—!) instead of s’ = s(s—1I).
Page 63: change 0.01,0.4 into 0.0/ —0.4 in line 7.

Page 66: change in into into (line 17), remove the comma after i) approximate expressions
(line 16), and add one after uniform strains in the footnote.

Page 67: read ii* instead of @* in the 2" equation and instead of *i* in the 5',

Page 68: read s” = s/(s—/) instead of s’ = s(s—/) in the 4'" equation, close the paren-
thesis in the 6'", and change ), into)), in the last line.

s 1
s—1 s—1

3 3
Page 69: ¢, = =5 should be replaced by ¢, = — G

Page 71: substitute E to Exﬂ two lines below Eq. (6.19).

21 2 P

Page 77: % must be replaced by —f in line 15, and E;3 by E3; at the bottom of
a P

the page.

Page 79 substitute dilatation to dilation in ref. 3, solids to solid in ref. 5, and composites
to composities in ref. [11].

Page 80: substitute voids or inclusions to voids inclusions in ref. [17].
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On thermodynamics of elasto-plastic porous media (*)

W. EHLERS (ESSEN)

THE PAPER concerns a macroscopic description of fluid-saturated porous media via mixture
theories extended by the volume fraction concept. Proceeding from second-grade materials,
elasto-plasticity is taken into account by means of a multiplicative decomposition of the first
and second solid deformation gradient. The constitutive theory is discussed on the basis of the
example of an immiscible binary model consisting of an elasto-plastic solid matrix saturated by
one viscous liquid. For this binary model the thermodynamical restrictions and several con-
stitutive equations are offered assuming the system to be governed by a single temperature and
constrained by an incompressibility condition for both constituents.

Praca dotyczy makroskopowego opisu cial porowatych nasyconych ciecza przy uzyciu teorit
mieszanin uzupehlionej pojeciem udzialu objetosciowego. Wychodzac z teorii materiatow
drugiego rzedu uwzgledniono wiasnosci sprezysto-plastyczne droga faktoryzacji pierwszego i dru-
giego gradientu odksztalcenia. Teori¢ réwnan konstytutywnych omowiono na przykladzie
binarnego modelu skladajgcego si¢ ze stalej, sprezysto-plastycznej matrycy nasyconej ciecza
lepka. Dla takiego modelu binarnego przedstawiono ograniczenia termodynamiczne i szereg
rownan konstytutywnych zakladajac, ze uklad jest okreslony przez jedna temperaturg, a oba
jego skladniki spelniaja warunek niescisliwosci.

Pabora KacaeTcs MaKkpOCKOMMYECKOTO OMHCAHMA TOPHUCTHIX TEJ HACBINEHHBIX MKMIKOCTBEY
MPH HCTIOJIb30BAHUK TEOPUH CMeceif, MOMOHEHHONH MoHATHEM o0beMHoro yuactusa. Mcxons
W3 TEOPHH MATEpHaJIOB BTOPOTO INOPAAKA, YUTEHBI YIPYro-IIACTHYECKHe CBOMCTBA ITyTeM
thakTopH3anHKH MEpBOro H BTOPOTO IpagueHToB Aedopmauun. Teopus onpenensiomux ypas-
HeHMil o6Cy)KZleHa Ha npuMepe OMHAPHOU MOJENH, COCTOAINEH U3 TBepHoil, yNpyro-miacTu-
UECKOM MATpHMIBI HACBIIEHHON BA3KOH »KMAKoCThIO. A Takoii OMHapHOII MoIend mpex-
CTaBJIEHb! TEPMOAMHAMMYECKHE OrPAHHUCHHUSA M DAL ONpPEAC/IAIOLIHX YPaBHEHMI, INMpeno-
Jaras, UTo CHCTEMa OIpeneNIAeTcsd ONHOM TeMmIepaTypoii, a oba e€e KOMIIOHEHTbI YHOBIlE-
TBOPAIOT YCIIOBHIO HECKHMaeMOCTH.

1. Introduction

IN THE FRAME of a macroscopic formulation [1], porous media models can be described
via mixture theories [2-6] extended by the volume fraction concept [7-13]. Usually, such
models are employed as an immiscible mixture of a porous elastic solid material saturated
by an arbitrary number of fluids [10, 11]. The single constituents are assumed to be either
compressible or incompressible. The constitutive equations for these models and the
thermodynamical restrictions governing these constitutive equations are generally well
known. However, there are only a few papers on elasto-plasticity for saturated porous
media, cf. e.g., [14], most of them, e.g., [7, 14-16], using a rather simplifying thermody-
pamical approach which neglects the second-grade character [17] of the single constituents
as introduced to mixture theories by MULLER [4]. In general, the definition of second-

(*) The paper was presented at the 4th Bilateral Polish-German Symposium “Mechanics of Inelastic
Solid and Structures”, September 13-19, 1987, Mogilany, Poland.
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grade materials implies that the partial densities and density gradients of the fluid constit-
uents and the first and second deformation gradients of the solid constituents are taken
as independent constitutive variables. For immiscible mixtures such as porous media
models, in addition, the volume fractions and volume fraction gradients are allowed to
affect the mixture response [9-11].

The contribution of the present article is to show how an elasto-plastic solid material
applies to the general theory stated above. Proceeding from second-grade materials,
elasto-plasticity is taken into account by means of a multiplicative decomposition of the
first and second solid deformation gradient. After a brief introduction to mixture theories
including the volume fraction concept, the problem is discussed basing, for simplicity,
on the example of an elasto-plastic solid matrix saturated by one viscous liquid. For this
binary model the thermodynamical restrictions along with several constitutive equations
are offered assuming the system to be governed by a single temperature and constrained
by an incompressibility condition for both the solid and the liquid material. A simplified
constitutive model related to the general one by means of a principle of constituent
separation is included. Throughout this paper direct notation will be used, cf. e.g., [18].

2. Preliminaries

The present section offers a brief review of kinematics, balance laws and the entropy
principle for mixtures together with the concept of volume fractions. In what follows,
all introduced functions are assumed to be sufficiently smooth in space-time.

Consider # as an arbitrary region of bulk volume ¥ bounded by a surface 6% of area
A. Then, for a mixture of k immiscible constituents ¢' with particles X?, each ¢’ occupying
its constituent volume ¥, a macroscopic formulation implies a model of superimposed
continua where at any time ¢ each spatial point x of the current configuration is simul-
taneously occupied by k different particles X of constituents ¢*. These particles, of course,
proceed from different reference positions X;. Thus each constityent is assigned its own
motion

(2.1) x = (X, 1).
The volume fractions
2.2 n' = n'(x, 1)

are defined as the local ratios of the constituent volumes V' with respect to the bulk volume
V:

k
@3 v=[Ya = [

K
nido.
# 0 P oy

For any model without voids the volume fractions are constrained by

k
2.4 D=1
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Given the relation (2.3), it must be noted that the definition of volume fractions as scalar
quantities restricts the theory to models with an isotropic distribution of the different
constituents. For the porous skeleton this restriction implies that only such solid materials
can be considered that have an isotropic pore structure. Anisotropic pore structures
might be taken into account using additional definitions like “structural permeability
tensors” [19].

Associated with each ¢' is an effective density o'® which is defined as the mass of ¢f
per unit of constituent volume and a partial or bulk density o' defined as the mass of ¢’
per unit of bulk volume. The density functions are related by

(2.5) o' = n'p'®,

The density of the whole model or the mixture density, respectively, is

k
26) e=¢.
=1

From the relation (2.1), each constituent is assigned its own velocity and acceleration field

r o ox(X, 1) v X, )
(2-7) X; = ‘—-—a—t'—', X; = -——ét2 :

Using the inverse motion function, an equivalent representation of Eqs. (2.7) is

(2.8) X =x(x,0), X =xX(x,1).

The mean velocity

K

. 1 Yo,

2.9 X =— E 0'x,
€<=

represents the barycentric velocity of the mixture. The velocity of ¢ relative to the mean
velocity field,

’

(2.10) 0 = X;—X,
is called diffusion velocity.

If I'is a differentiable function of (x, ), then, owing to the relation (2.8),, k£ independent
material time derivatives of I" can be introduced:

2.11) I = %Itl+gradr-:2,.
According to Eq. (2.9) the material time derivative of the mixture is
(2.12) I = %It:+gradl‘- X,

where

(2.13) ‘I",-[.’ = grad/"- u;.

In Egs. (2.11)-(2.13) the symbol grad denotes partial differentiation with respect to the
spatial position x.
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From the relation (2.1), the deformation gradient of ¢ and its inverse are

F;, = Grad,x,

2.14
@149 Fi' = gradX,,

Grad; characterizing differentiation with respect to the reference position X; of ¢'.
Given Eq. (2.7),, the material velocity gradient of ¢’ is defined by

(2.15) (F); = Grad,x;.
From the relation (2.8),, the spatial velocity gradient of ¢' yields
(2.16) L, = gradx,,

and its symmetric and skew-symmetric parts are

D, = 3 (L+LD),
2.17) i
Wi = 3 (LE—LI‘T),

L’ denoting the transpose of L;.

According to Truesdell’s metaphysical principles, cf. e.g., [20, p. 221], the basic idea
of the balance laws for mixtures is as follows:

On one hand the balance postulates are given for the single constituents separately,
including convenient supply terms. Then, from the sum of the constituent balance equa-
tions, an equivalent balance law for the mixture can be derived which must have the same
form as that for single continua. The mixture balance equation yields a constraint to the
introduced supply terms. In what follows, the balance equations are given with respect
to [13]:

Balance of mass:

é§+g"div)’q = ¢,

(2.18) k

Balance of momentum:
divTi 4 o' (b' — x;)+p' = o.
2.19) k
( S’ A Ap ’ _
(p'+0o'x,) = 0.

i=1

Balance of moment of momentum:

(2.20)
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Balance of energy:

[\

gel = —p- ii—éi(e‘#l I,-;i,)+T‘ ‘Li+o'r' —divg +¢,

(2.21) K

D =o.

i=1
In these equations ¢, p’, M and & are the supply terms of mass, momentum, moment of
momentum and energy representing the transfers to ¢' caused by the other constituents
that occupy x at time 7. The quantities T%, b’, &', r’ and q are the partial Cauchy stresses,
external body force densities, internal energy densities, external heat supplies and heat
influx vectors of ¢'; TRUESDELL [20] prefers the notion peculiar instzad of partial,

After several discussions in literature on the correct form of the entropy inequality
for mixtures, compare, for example, ERINGEN and INGRAM [21], GREEN and NAGHDI [5, 22,
23], BOoweN [3, 6], MULLER [4], TRUESDELL [24] and BoweN and WIESE [25]; the nowadays
commonly accepted generalization of the Clausis-Duhem inequality is the so-called
BoweN-TRUESDELL version [20]. One possible form of this inequality is [13]

k

1 Lo, L A ’ A

(2.22) Z-éi-[—e'(wHﬂin')”P' © X +e
i=1

A N l ’ ’ y ] 3 ¥
-0 (1;1‘+2 X;* x,)+T‘ ? L'i_"e'x q - grad@‘] = 0.

For a detailed discussion of the balance laws and the entropy principle for mixtures the
reader is referred to [6, 13, 20]. In the relation (2.22), 6' are the absolute constituent tem-
peratures and 7', y' the entropy and Helmholtz free energy densities of ¢ related by
(2.23) = —0n.

In case of thermodynamical processes governed by a single temperature 0 = 6%, it is con
venient to use
k

(2.24) 2(— Wi _GH —pi - )'q—%@"ﬁ, X —0 KT - L, — ; hi- gradﬂ); 0
i=1

instead of the relation (2.22). Herein,
g]i ini,
Ht — @in:

(2.25)

are the constituent free energy and entropy functions per unit of mixture volume,
: 1 . ’

(2.26) K' = »—Q—i(&”’I—TT‘)

the chemical potential tensors as introduced by Bowen and WIese [25] and
2.27) h' = ¢’ +0H'y,

an influx vector which is the sum of the constituent heat influx and the diffusion entropy.
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3. Decomposition of deformation gradients

In the frame of second-grade solids [17, 25], the response of the model is affected by
the first and second solid deformation gradient (the subscript s denoting the solid):

3.1 R = (..., Fs, GradgFs, ...).

Thus, if the solid deformation is not purely elastic but elasto-plastic, a multiplicative
decomposition of Fg and GradsFs can be defined by the composition

3 3
(3.2) (Fs, GradsFs) = (Fs,, Gs,) o (Fs,, Gg,),
where
(33) Fs = Fs.Fs,
and
_ 3 3 23 23
(34) Gradst = (FSeGSp)g'*‘ [(GSEFSp)"s'TFSpFT'

In Eq. (3.4), (.3.‘.) is the symbol of a tensor of third order, (...)? indicates a contraction
23
of the arguments in brackets towards a third-order tensor and (...)T its transposition

with respect to the indices 2 and 3.

It is known from several publications on continuum theories of single continua [26-34]
that a multiplicative decomposition of Fs into elastic parts Fs, and plastic parts Fg, is
connected with the suggestion of a stress-free intermediate configuration incompatible
with the existence of partial derivatives such as

Fs. = grads.Xx,

(3'5) FSp = Grangsz,

Xs. denoting the position of particles X* in the intermediate configuration and grady.
partial differentiation with respect to xs,. In the case of homogeneous deformations,
however, Eq. (3.5) generally holds. On the other hand, if one defines the intermediate
configuration achieved from the actual one after a total removal of the external loads,
the intermediate configuration is not stress-free in the ‘frame of nonhomogeneous defor-
mations but still contains residual stresses “defined as the permanent stresses remaining
in the body after unloading™ [30]. Then Fs, and Fg, must be understood as the reversible
and globally irreversible parts of Fs. Following this, the decomposition (3.4) would imply

23 23
(3.6) GradsFs = (Fs.Grads Fs;;)E + {[(grads.Fs,) Fs, 2" Fs, 12T,
where

3
GSe = gradSzFSey

G.7) ”
Gsp = Gradst,,

has been used.
For convenience, in index notation, Eq. (3.6) yields

(3.8) (Fs)as, ¢ = (Fse)ax(Fsp)as, ¢+ (Fseax, s(Fsp)as(Fsplsc
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the small Latin subscripts belonging to the actual, the small Greek subscripts to the inter-
mediate and the capital Latin subscripts to the reference configuration of ¢°. Note in
passing that grads, Fs. and Gradg F, are proper second gradients with the symmetries
23

grads.Fs, = (grads,Fs.)",

23

GradgFs, = (GradgFs),)".

Using the terminology of push-forward and pull-back transformations, cf. e.g., [32],
the two terms of the right-hand side of Eq. (3.6) can be interpreted as follows: In the first
term, the first basis of Grads Fs, is transformed by push-forward with Fs, from the inter-
mediate to the actual configuration; in the second term, the second and third bases of
grads, Fs,. are transformed by pull-back with Fs, from the intermediate to the reference
configuration of ¢°.

However, proceeding from a general concept decoupling elasticity from plasticity,
the stress-free intermediate configuration together with the definitions (3.2)-(3.4) must be
applied as the conceptual basis for elasto-plastic porous media. Thus, in the frame of the

constitutive theory for second-grade solids, the variables Fs and Grads Fg can be replaced,

33 3 3
in the sense of a mathematical model, by Fs., Fs, and Gg., G5, where G5, and Gg, stand

for the purely elastic and plastic parts of Grads Fs. Therefore, (3.1) be rewritten in the
form

3.9

33
(3.10) A = #(...,Fs., Fs,, Gs., Gsp, -..)-
3 3
Given (3.10), Fs,, Fs, and Gg,, Gs, are taken as independent constitutive variables. With-

3 3
out loss of generality, it is understood that Gg, and Gy, have the character of proper
second gradients.

Thus
3 3 23
GSe = (GSe)T:
3.11) 32

3 3
GSP = (GSp)T-
The multiplicative concept (3.3) is compatible with the following additive decomposition

of strain tensors, compare, for example, [30-34]: In a material description, the Langrangian
strain of the solid

(3.12) Es = % (F5Fs—1)

can be decomposed into purely plastic parts Es, and elastic parts Es, defined as the differ-
ence between Eg and Eg):

1
ESp = 'i (Fg‘-pFSp_I)s

1
(3.13) Ese =5 (FsFs—Fs,Fs,),

Es = ESB+ESp-
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Then, by push-forward of the Langrangian strains with F{, '(...)Fs,, an equivalent repre-
sentation of Eqgs (3.12) and (3.13) relative to the intermediate configuration is

1
s = E(FgeFSe—Fg;lFE,} )

1
G.14) Ts, = 5 A-F5;'Fsp),

1
rSe = "Z_(F.ger_I))

I‘S = rse"f'rsp.

By push-forward of Eqs. (3.12) and (3.13) with F%-1(...)Fs' or, respectively, of Egs.
(3.14) with F1;!(...) F5,', we obtain the Almansian strain tensors of the spatial formulation

As = 5 (-FI-'F5),

1
o Asp =  (F1 ' Fsl —FI-'E5 ),

1
Ag, = E(I—FE;IF@'),

As = ASe+ASp-
Furthermore, the multiplicative concept implies that we have only two proper spatial

velocity gradients, namely Ls and Ls,,, the former relative to the actual, the latter relative

to the intermediate configuration:
Ls = sFs',
(3]6) 'S (FS)S’ S—l
Lsz = (FSp)SFSp_~
Their symmetric parts are
1

Ds = E(LS+L§)’

1
Dsz = 5 (Lsz +L§pz) .

3.17)

Dy thus defines the solid deformation rate of the spatial configuration and Dys,, the purely
plastic deformation rate of the intermediate configuration. By push-forward with
F37'(...) F5., Ds,, can be transformed to yield

1

(3.18) D, =,

Fg‘:i(Lsz +L§pz)FS_e1 .

Combining Egs. (3.17), and (3.18),
(3.19) Ds. = Ds—Ds,
is a convenient measure for the elastic contribution to the spatial solid deformation rate.

Following the concept of Lit or OLDROYD derivatives [30-34], respectively, Egs. (3.17),,
(3.18) and (3.19) can be expressed as follows:
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Ds = ﬁs = (As)s+LiAs+AsLs,
Dy, = Ag, = () +LEAg,+AsLs,
Ds, = ﬁSp = (Asy)s +LEAsp+Ag,Ls,
Ds = Ds.+Ds, = AsetAsy.

(3.20)

-

A
The symbol (...) defines the upper Lie derivatives relative to the actual configuration

(3.21) () = ()i +LIC.)+ (. )Ls.

Of course, the concept of Lie derivatives, in a more classical terminology defined simply
as convected derivatives, means nothing else than first pulling the respective tensorial
object back to the reference configuration, then, taking the time derivative (...)s and
finally pushing it forward into the configuration where it comes from. Thus it is only
natural that the upper plastic Lie derivatives

(3.22) ()8 = (.)5+LE,.(.)+(...)Ls,.

of the strain tensors I'y, I's, and T, relative to the intermediate configuration, compare
Eqgs. (3.14), are equivalent to pulling Egs. (3.20) back with Ff,(...) Fs,,

A
T'9)f ils
(3.23) Tse)p { = Fie(Ag, Fse
(:I:‘Sn);‘;5 ﬁ
Sp

T = Ts)p +Tse)p
where from Eq. (3.17),
(3'24) (I‘Sp)pA = Dsz~

Finally, by pull-back of the relation (3.23) with Fg,(...) Fs,, one obtains the strain rates
of the solid reference configuration:

(Es)s T's)p
(3.25) (Eso)sj = FI,{ Ts)f i Fs,,
(Esp)s (Tsp)f

(Es)s = (Ese)s+ (Es))s.

Note that the left-hand side of the relation (3.25) can also be obtained by pulling Eqs,
(3.20) back with FZ(...) Fs,

4. Constitutive assumptions

As concerns the constitutive theory, we restrict our attention to a binary model consist-
ing of an elasto-plastic porous solid skeleton saturated by one viscous liquid (the sub-
script F denoting the liquid). The model under discussion be governed by the following
properties:

6 Arch. Mech. Stos. 1/89
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In its reference "positions X;(i = s, f), the volume fractions n}; and effective densities
ob® of both constituents are given and homogeneous:

Grad;n); = o,

(4.1)

Grad;oif = o.
The constituents are assumed to be inert. Thus, mass exchanges are excluded:
4.2) o' =0.
The partial stresses are assumed to be symmetric so that
4.3) Mi=0.
The model has but one single temperature
4.4 6 =6.

The system be governed by an incompressibility condition for both the solid and
the liquid material. Constituent incompressibility implies the effective densities to be
constant during deformation:

(4.5 o'® = o} = const.

Given Eq. (4.4), the temperature variation can be calculated from an energy balance of
the whole system in which the sum of the energy supplies is naught. Using Egs. (2.10)-(2.27)
together with Egs. (3.20), and (4.2)-(4.4), this balance equation can be shown to yield

(4.6) —PS_WE_OH — H(H+6divk)—pF - (xp—Xs)
—05K5 - (Dg, +Ds,)— oFKF - Dp+or'—divh = 0,
where
H = HS+ HY,
@7 h = hS+1F,

# = %(ersww),

r! denoting the inner part of the external heat supplies as defined by TRUESDELL and
TouPIN [2, section 243]. From the incompressibility condition (4.5) together with Eq.
(4.2), the balance of mass equations (2.18) prove to be balance equations for the volume
fractions

(4.8) nt+nidivx, = 0,
that can be integrated to yield
4.9) n' = nb;(detF,) .

It is important to note that constituent incompressibility does not imply macroscopic
incompressibility of ¢' since from Egs. (2.5) and (4.5), the bulk densities o' can still change
through changes in volume fractions. On the other hand, as it is well known, incompressiblity
of all the constituents of the respective medium gives rise to a certain constraint to be
incorporated into the entropy inequality of the model. Such a constraint has first been
suggested by MiLLs [35] in the frame of a mixture of incompressible Newtonian fluids
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and, later, by CRAINE [36], ATKIN and CrAINE [37], BoweN [10, 38] and DE BOER and
EHLERS [13]. From Eq. (4.8) and the material time derivative of Eq. (2.4) following the
motion of one of the both constituents, the constraint for the present model is

(4.10) nS Adivxs +nFAdivxe+ Agradn® - (xp—%s) = 0,

where A is a Lagrangian multiplier with the dimension of a stress.

Using Eq. (4.10) along with Egs. (2.19),, (2.20),, (2.26), (3.20)4, (4.2), (4.3) and (4.7),
the entropy inequality (2.24) turns out to yield

@411)  —WS_WE_BH— (pF — Agradn®) - (Xp—Xs)

—(0°K5—n®Al) * (D5, + Ds,)— (" KF —nFAI) - Dg — -!19— h- gradf > 0.
From the preceding considerations, the present model is defined by the balance equations
for the volume fractions (4.8), the balance of momentum (2.19) when using Egs. (2.26),
(4.2) and (4.3), the energy balance (4.6) and the entropy inequality (4.11) together with
the following set of independent constitutive equations which, from the principle of equi-
presence, must be functions of a common set of variables ¢:

4.12) (Wi, H, 'K —n' AL, h, pF — Agradn®) = Z(p).
Concerning the plastic range, a flow rule for Dg, must be added:
(4'13) D5p= A(q?:&: 939”: )T

In writing Eq. (4.13), it is understood that < is any stress measure, ¢ any objective stress
rate and » a material or hardening parameter, respectively. The specification of T and ¢
depends on the yield or failure condition in connection with both the loading criteria and
the flow rule (associated or non-associated) used for the respective model. An extension
of the set of parameters as used in Egs. (4.13) including further parameters or internal
variables is of course possible but not necessary for what follows since we are only inter-
ested in the thermodynamics of elasto-plastic porous media.

In the frame of second-grade materials, several suggestions have been made in litera-
ture for the possible choice of constitutive variables [6, 8, 10, 11, 37, 38]. For immiscible
mixtures such as saturated porous media, however, the volume fractions and volume
fraction gradients should be generally allowed to affect the response of the model [9-11].
Within the range of incompressible porous media, there seems to be seme confusion since
even BoweN [10, 38] uses two principally different choices of constitutive variables which
would apply to the present model in the frame of a purely elastic skeleton as follows:

(4.14) @, = {0, grad0, Fs, GradsFs, nF, gradn, Xs, X;}
is a modified version of Bowen [10],
(4.15) @2 = {0, grad®, Fs, GradsFs, Xs, X¢ }

corresponds to BOwWEN [38]. Concerning Eq. (4.14), Bowen accepts a dependency between
the arguments of ¢,. Proceeding from the assumption that only independent variables
should affect the response, we will deduce a modified version of Eq. (4.15) from a more
general point of view.

6*



84 W. EHLERS

For a compressible immiscible mixture consisting of an elastic skeleton saturated by
a single viscous fluid
(4.16) @3 = {0, grad0, Fs, GradsFs, n¥, gradn®, o, grado®, Xs, X¢, L¢}

holds. Equation (4.16) corresponds to the compressible model of Bowen [11, 38] except
that Ly has been added due to fluid viscosity. Formally, Eq. (4.16) can be obtained by
consulting Cross [17] from an immiscible mixture of viscoelastic constituents using the
symmetry group for second-grade fluids. Note in passing that 5 and grad »° are excluded
since from Eq. (2.4):

n® = 1—nf,

@.17) gradnS = —gradnf.

However, the present model contains an incompressible liquid, i.e., of and grad o" are
no longer independent but functions of nF and grad »f. Thus, Eq. (4.16) reduces to Eq.
(4.14) except that Ly has been included. From this point of view, Eq. (4.14) describes
a compressible elastic skeleton saturated by one incompressible liquid. Since our solid

material is incompressible,
n' = 1—njs(detFs)~?,

(418) gradn® = nfs(det Fg) 'F1 4 (F~!Grad, Fy)!
holds where
(4.19) Grads(detFy) — detFs(FI-! GradgFy)!

together with Egs. (4.1), (4.9) and (4.17) has been used.
In Eq. (4.19), (...)* indicates a contraction of the arguments in brackets towards a vector.
Again, for convenience, the index version of Eq. (4.19) is

(4.20) [det(Fs)apl.c = [det(Fs)asl(Fs ') n(Fs)ar. c -

Given the relation (4.18), ¥ and grad »" are no longer independent but functions of Fg
and GradgFs.
From these considerations, the relation (3.10) and (4.16) combine to yield

3 3 g i
(421) ¥ = {Oﬁ gradG, F525 FSp) GSea GSpa Xs, XF, LF};

Eq. (4.21) thus representing the set of independent constitutive variables for an incom-
pressible elasto-plastic porous skeleton saturated by an incompressible viscous liquid.
In the frame of a purely elastic skeleton Eq. (4.21) reduces to Eq. (4.15) except that Ly
has been added.

Further modifications of Eq. (4.21) are due to the principle of material frame-indiffer-
ence. Combining Egs. (4.12) and (4.21), the principle requires that

(422) [V, H, Q@K —n'ADQ", Qh, Q(pF — Agradn)]
e 3 3 i ’ 5
= ‘%[0’ Qgrad05 QFSeQra QFS[)9 MSes MSp7 é‘l"QX‘I‘QX{, QLFQT+QQT]’
where ¢ is an arbitrary time-dependent vector representing a translation, Q a time-depend-
ent proper orthogonal tensor representing a rigid rotation in terms of the actual configu-

ration and Q an independent proper orthogonal tensor specifying a rigid rotation in
terms of the intermediate configuration.
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3 3
The third-order tensors Mg, and M5, are defined by

M. = ([QGs* Q" P Q"7
(423) 359 o Se. s
MSp = (QGSp)g-

Using standard arguments, cf. e.g., [6], Eqs. (4.12), (4.13), (4.21) and (4.22) finally combine
to
W', H, 'K —n' 21, h, pF — Agradn®) = 2(¢),
(4.24) Ds, = A(¢, &, ()Is, %, ...)7T,
o = {0, gradf, Fs,, Fs,, Gs,, Gsy, xp—xs. Dy ).

Equations (4.24) represent the constitutive assumptions as used for the subsequent con-
siderations.

5. Thermodynamical restrictions

For the present model, thermodynamical restrictions result from the dissipation prin-
ciple (4.11) together with the constitutive assumptions (4.24). In the frame of mixture
theories, however, the general procedure proves to be rather laborious, producing plenty
of lengthy formulae that are beyond the scope of this paper. Thus, only the main results
are listed below. Using standard arguments as introduced to the thermodynamics of single
continua by CoLEMAN and NorL [39], extended by arguments as used by BoweN [6] and
combined with several symmetry and skew-symmetry conditions [13], it can be shown that

PS = ¥S(0, grad, Fs,, Fs,, Xp—Xs),

G.1) Wr = W0, grad0, F,, Fs,, Xp—Xs),
gﬂa H= f(ea FSes FSp)
and
. !
(5.2) H = =0
where
(5.3) Pl = S L pF

is the inner part of the free energy of the mixture. In addition,

oY oS ;o
(5.4) SKS—nsAI = i— FTE‘—%f ® Xp—X
) e Wty T
and thus from (2.20), (2.26) and (4.3),
T S ; i
(5.5) TS = (i ¥+ 2 Gie—xs).

: 7
Se (Xp—Xs
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The remaining or dissipative part of the entropy inequality yields

12 ’ A aTI
(5.6) = l gradf - m—(x;—xs) * f* —Ds, - [sts—nsﬂ'*' Fs. “oF, F§,FE.
P
P! ows ’ '
— T Fi.+ —— Xr—X
(Fs.Fs.—D) oF,, 5 (e —%5) ®(xr s)]
F ’ ’
"‘Dp' [QFKF‘—HFAI'F ——,ag’—, ®(XF'—X3)] = 0,
o(Xp—Xs .
where
oPs oPF
(57) m=h+6——8'6-“s+0—a—e“llp,
) n N wr 3 \1 F 3 \1
£ = p"~/1gradn"+FsT:1(——gF Gs,) +F5 ! F§;1(-—g§j Gs,,) ;
Se Sp

The inequality (5.6) is now evaluated near the thermodynamical equilibrium for the mix-
ture [6] or the so-called mixture equilibrium, respectively. This state defined as the minimum
state for the inequality (5.6) implies that ¢ from Eq. (4.24), reduces to ¢,,

3 3 ’ ’
(58) ¢o = {6, grada =0, FSe, FSps GSes GSps Xp—Xs =0, DF = 0}5
and
(5.9) Ds, = 0.

In the elastic range, Eq. (5.9) generally holds. In the plastic range, Eq. (5.9) holds in case
of neutral loading of hardening materials. In a strong equilibrium state, i. e., if the left-
-hand side of the inequality (5.6) vanishes, it is easily seen that

m(¢o) = o,
(5.10) t(¢o) = o,
(¢"KF —n L)(ho) = 0.

Concerning the general procedure, compare, for example, [6, 13].

Near the equilibrium state, a linear expansion of ¥'5, ¥F, m, fF and (o"KF — nF 21) about
¢ = ¢, yields
Ws = Yls(@’ FSe- FSp)9

¥¥ = ¥¥(0, Fs., Fs,),
(5.11) m($) = —fodo) grad 6+ bao(¢o) (Xr — Xs),
£7(¢) = — (o) grad 0 — o, (o) (% — Xs),
(@K™ —n"A)(¢) = — 24" ($o) DR —v"($o)(D5 - DI,
where the principle of material frame-indifference (4.22) combined with Eq. (4.24), along

with several arguments as explained in [6, 13] has been used. In Eq. (5.11)s,

(5.12) D? = Dy— ; (D, DI
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From Egs. (2.20), (2.26), (4.3), (5.5) and (5.11), we obtain the following results:

= (PS—n*DI+ 3}?’ FZ,,
F = (PF—n" )1+ 2u" D2+ (Ds - DI,
! r s F
(5.13) h = —fygrad 0+ Oop(xp—x5)— 0 a—g;—us—ﬂaa—g;-up,

pF = —apgradf— 05,,()2}?'— is) + Agradn®

o AN e OFFE OV
"'Fge ( ane GSe) —Fge lF.]S-p ( anp GSp) .

Given Egs. (2.27), (4.7), and (5.7);, we have two different formulae for the influx vector
h, namely:

g’s orr
h=m-0—— ae -0 'a—e'llF,

h = ¢+qf +0H5us+6H ;.

(5.14)

In assuming
(5.15) ¢*+qF = —Bygrado,
it follows from Egs. (2.10), (4.7),, (5.2) and (5.3) together with Eqs. (5.7); and (5.14) that

S
HS = (aay;' +0(0)5

F
HF = —(%m—ae).

Thus, it is felt that «, is an entropy coupling parameter for the present single temperature
model; f, is the coefficient of thermal conductivity for the whole system. However, since

(5.16)

m = h = ¢°+q" is the heat influx whenever Xp = y’(s = x and, therefore, up = ug =o,
Eq. (5.15) also represents the constitutive equation for the heat influx for the model
without diffusion.

Given the relations (5.6) and (5.9), the parameters o, , g, ©F and »* are constrained by
(5.17) =0, fo=0, wF=0, »520.

As shown in [13], «, can be determined by the coeflicient of permeability k& which, of
course, is not a constant but depends on ¢,:

F
(5.18) «, = %lbl-

In Eq. (5.18),
(5.19) b =bS = bF

has been assumed.
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The quantities uF and »* are the macroscopic shear and bulk viscosity parameters of
the liquid. Note in passing that even if the liquid is incompressible, usually

(5.20) D; -1 = divx; # 0.

Therefore, »* must be generally incorporated into the .theory. Finally, in case of plastic
loading we have

(5.21) Dy, # 0

instead of Eq. (5.9).
Given ¢ = ¢,, it follows from (5.6) along with (2.20), (2.26), (4.3) and (5.10) that

o’ 0T
(522) Ds,- [TS—(TS—nSA)I—FSE—aﬁFsTpFEe+ +(FSeF§e_I)_gF‘S_‘ fe] =0,
P e

where the last two terms in square brackets must yield a symmetric tensor. However,
if ¢ # ¢o, the inequality (5.22) can be understood as a sufficient condition, a restriction
for the rate of plastic work.

6. Simplified constitutive theory

Considering applications of the preceding theory, it would appear that some simpli-
fications are necessary. Since the constitutive equations (5.13) and the restriction (5.22)
depend on the choice of the free energy functions ¥° and ¥, it seems to be reasonable
to introduce simplifications with respect to these functions. Up to now the principle of
equipresence has been used in the sense of a “rule to guide us when'we come to set up
constitutive equations in the first place” [40, p. 135]. However, there are other theories
like the theory of “multiphase mixtures” of PASSMAN, NUNZIATO and WALSH [41] where
the principle of equipresence is generally substituted by another principle called the “prin-
ciple of phase separation”. Porous media models as discussed in the preceding sections
have been introduced in the same sense as in theories of multiphase mixtures, namely,
as mixtures with immiscible constituents. Thus, to simplify the constitutive equations for
the present model, one may apply a modified version of the principle of phase separation
cited above.

We now introduce a “principle of constituent separation” by the fact that the free
energy densities 3% and »* depend on its own constituent variables only. Thus, from Egs.
(2.25),, (5.11), and (5.11),

IIIS(G, FSes FSp) = QSRHS(FSQ’ FSp) ,lpS(B’ FSes FSp)a

(6.1) W0, Fs,, Fs,) = o"*nF (Es,, Fs,) 7 (6).

Note in passing that the volume fractions as kinematic variables must depend on both
the elastic and the plastic parts of the solid deformation gradient, compare Egs. (3.3),
(4.9) and (4.18),. Note further that y°(0, Fs,, Fs.) corresponds to a model first proposed
by GREEN and NAGHDI [42].
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Using Eq. (6.1) along with the relations (2.5), (2.25);, (3.3), (4.5), (4.9), (4.17); and
(5.3),

P! yFE oS
[l /L B Sl | | W A
62) o ( - )F” O,
holds where
én® SET—1
(6.3) '5FI;‘ = —N FSe

has been used.
Thus, Egs. (5.13), and (5.13), reduce to

! oy’
TS = —nSpl+05 - F— FL,,
(6.4) e om0

TF = —nfpl+2u DR+ (Dr - DI,
where
WF

can be interpreted as the unspecified hydrostatic pressure acting on the whole model.
Furthermore, it can be shown with the aid of the relations (2.5), (2.25),, (3.3), (3.4),
(4.18) and (6.1), that

. 1 1
T-1 _dg,{F, - T-1|/T-1 a_TF . )_ Eﬂi F
(6.6) FSe ({')Fse Gse +FS= FSp anp Gsp = nF gradn 3
where
,6!{”— —ns._yii g;],
(6 7) ane nf
. 245 = {’_ FI-!
o, e
together with
s
(6.8) 76* = —nSFI;!
Fs, '

have been used.
Given Egs. (5.13),, (6.5) and (6.6), the momentum supply or the interacting force
per unit of mixture volume between the solid and the liquid material, respectively, yields

(6.9) p* = pgradnf —aygrad 6 — o, (Xp — Xs).

Finally, using the same procedure as to obtain Eq. (6.2),

Keal L
anp nF

holds and thus, from the relations (5.22) and (6.5),

N

610 T PAN

oFs,

09,S ow’s
(6.11) Ds,- lTS+n5p1-gSFSe—f-L FI ¥, + (Fs FL, —1)° — Fé‘e] > 0.
OFSp 6FS£
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In the inequality (6.11), the last two terms in square brackets must form again a symmetric
tensor. It should bé noted that the results (6.4), (6.9) and (6.11) of the simplified model

differ from the results that would have been achieved from the usual simplifying assump-
3 3
tions, namely when the second solid deformation gradient or Gs. and Gg,, respectively,

is omitted from the independent variables (4.24),. In that case ¥'F proves to be independ-
ent of Fg,, Fs. what, of course, is an unrealistic result as far as » is not a constant, cf.
Eq. (6.1),.

In the isotropic range, as it is well known, the functional dependence of y* on Fs,, Fs,
can be substituted by

(6-12) ws(e’ FSE) FSp) =* 1/)5(65 ESes ESD)'

Then, since Eg, = Es.(Fs., Fs,) and Eg, = Eg,(Fs,), cf. Egs. (3.13), the restriction for
the rate of plastic work yields

S
(6-13) DSp'[TS"'nsPI_QSFSe‘aL‘Fge Z 0
ars,
where, from the chain rule,
oS OEs )T o’ oy’
6.14 - e) . _
&1A) Fs, (6FSe Eg, FseFso okan oEs, Fi
and
oy’ (3Es )T oy’ (6E5 )T oy’ oyS oy
6.15 = e r _
619 5 =\or,,) o, T\ oF,.) oE,, ~ ®eFsem D5y g —+Fsp 75—
together with
oS ( oT's )T oy’ S
16 - L -
s ?Es, 9Es, | T, Fs, T, i

has been used. As concerns the inequality (6.13), a possible interpretation of
(6.17) A L

is that this quantity represents the back-stress tensor of kinematically hardening solids.
However, assuming circumstances where »* is independent of Eg, such that

(6.18) ys = ys(0, Es.),
the restriction for the rate of plastic work reduces to
(6.19) Ds, (TS+npl) 2 0

The relations (6.18) and (6.19) correspond to a liquid-saturated elastic ideal-plastic skeleton
as proposed by DE Boer and KowaLski [14] or DE BoErR and EHLERS [16].

Note in passing that, as usual in theories of constrained materials, the rate of plastic
work depends on the so-called extra stresses of the solid,

(6.20) T; = T° +n%pl,
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which are functions of the deformation process. Thus, from Eqs. (6.4); and (6.14)
oy’

s _ S
(6:21) =

where

Vi S S
(6.22) ‘adpif—s; = F5, Fs.! —;Z’? Fi;'Fs; !
has been used. Equation (6.20), however, which also represents the partial or peculiar
solid stresses in the frame of empty porous media with constituent incompressibility or the
effective stresses in the frame of soil-mechanical problems, generally contains deviatoric

as well as hydrostatic parts, the latter due to possible variations of porosity.

7. Concluding remarks

A unified macroscopic approach to thermodynamics of saturated elasto-plastic porous
media has been presented. Especially the simplified constitutive model must be suggested
as a convenient tool for applications.

However, since in finite theories of porous media even the elastic strains are not neces-
sarily small, an elasticity law of the Hookean type does not cover the possible range of
elastic deformations. Imagine, for example, an empty sponge of incompressible rubber
material, then, even the hydrostatic deformations can be of such magnitude that within
a macroscopic formulation any elasticity law of the Hookean type must fail. Thus, it
seems to be more convenient to prefer elasticity laws of the MURNAGHAN type [43] or
SiMo-PISTER type [44]. A modified version of the latter extended towards finite elasticity
of porous media will be presented by the author in [45].

To cover the plastic range, a yield or failure condition for ductile materials has been
proposed by DE Boer and Kowarsk1 [14]; brittle or granular materials such as soil or
concrete have been discussed by pE Boer and EHLERS [16]. An improved yield condition
together with a non-associated flow rule has been given by DE Boer [46]; it reflects the
results of three-dimensional shear testing including the effects of extension and compression
as obtained in the frame of soil mechanics, for example, by experiments on clay or sand,
cf. e.g., [47-49]. A complete description of incompressible, liquid-saturated elasto-plastic
porous media together with a detailed analysis of the elastic as well as the plastic response
will be the subject of a forthcoming report [50]. Within the preceding theory, the problem
of fluid flow through rigid porous media has been discussed in [13].
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