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Growth of voids in a ductile matrix: a review 

P. GILORMINI, C. LICHT and P. SUQUET, Arch. Mech. 40, pp. 43-80, 1988 

Since all the corrections indicated in the proofs of the paper could not be included by the 

editor, the authors wish to point out the following errata to the reader. (Some additional 

minor misprints are not listed, for the sake of brevity.) 

Page 45: lines 13 to 30 must be moved to page 44, above 1.2. Damage and microme

chanics, and n1 should be changed into n, in Eq, (1.3). 

Page 47: the last line above 2. Isolated Voids should be read as follows: ties, by J. 'Rice, 

B. Budiansky, J. W. Hutchinson, A. Needleman, and their coworkers. A comma should 
replace the full stop at the end of 6th line from the bottom. 

Page 48: a 1 is missing between the and (1:'11 ], and a 2 has been omitted between or 

and (1:'22 > in line 17. 

Page 49: remove the a before generalized in line 11. 

Page 53: change is into was in line 8, and E into e in Eq. (2.5). 

Page 57: change 1); for into 1), for in line 6; the beginning of line 21 should be read as 
to which a viod will tend has been etc.; replace /igh by high in line 23. 

Page 61, Eq. (3.4): reads'= sl(s-1) instead of s' = s(s-1). 

Page 63: change 0.01,0.4 into 0.01-0.4 in line 7. 

Page 66: change in into into (line 17), remove the comma after i) approximate expressions 

(line 16), and add one after uniform strains in the footnote. 

Page 67: read fa* instead of u* in the 2nd equation and instead of •j• in the 5th. 

Page 68: reads' = sf(s-1) instead of s' = s(s-1) in the 41
h equation, close the paren

thesis in the 6th, and change ), into)), in the last line. 

3 1 

3 s=-1 3 s=-1 
Page 69: c2 = 

2 
should be replaced by c2 = -- G 

2 

Page 71: substitute E to Erxp two lines below Eq. (6.19). 

2p 2p . 
Page 77: -

2 
must be replaced by -

2 
in line 15, and £33 by £33 at the bottom of 

a p 

the page. 

Page 79: substitute dilatation to dilation in ref. 3, solids to solid in ref. 5, and composites 

to composities in ref. [11]. 

Page 80: substitute voids or inclusions to voids inclusions in ref. [17]. 
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On thermodynamics of elasto-plastic porous media ( *) 

W. EHLERS (ESSEN) 

THE PAPER concerns a macroscopic description of fluid-saturated porous media via mixture 
theories extended by the volume fraction concept. Proceeding from second-grade materials, 
elasto-plasticity is taken into account by means of a multiplicative decomposition of the first 
and second solid deformation gradient. The constitutive theory is discussed on the basis of the 
example of an immiscible binary model consisting of an elasto-plastic solid matrix saturated by 
one viscous liquid. For this binary model the thermodynamical restrictions and several con
stitutive equations are offered assuming the system to be governed by a single temperature and 
constrained by an incompressibility condition for both constituents. 

Praca dotyczy makroskopowego opisu cial porowatych nasyconych ciecZ<l przy uzyciu teorii 
mieszanin uzupelnionej poj~iem udzialu obj~toSciowego. Wychod:z<lC z teorii material6w 
drugiego r~u uwzgl~dniono wlasnoSc:i spr~zysto-plastyczne drog<~: faktoryzacji pierwszego i dru
giego gradientu odksztalcenia. Teori~ r6wnan konstytutywnych om6wiono na przykladzie 
binarnego modelu skladaj<~:cego si~ ze stalej, spr~zysto-plastycznej matrycy nasyconej ciCC:z<l 
lepk<~:. Dla takiego modelu binarnego przedstawiono ograniczenia termodynamiczne i szereg 
r6wnan konstytutywnych zakladaj<~:c, ze uklad jest okreslony przez jedn<~: temperatur~, a oba 
jego skladniki spelniaj<~: warunek nieSc:isliwosci. 

Pa6oTa I<acaeTcH Mai<poci<onH'tleci<oro onu:caHHH nopHCT:biX Ten HaChiJ..UeHHhiX )l{lf,lJ;I<OCTbiO 
npH HCllOJib30BaHHH TeopHH CMeceif, llOllOJIHeHHOH llOHHTHeM o6"heMHOro YtiaCTHH. licxo,o;H 
u:a TeopHH MaTepHanoB BToporo nopH,o;I<a, ytJTeHhi ynpyro-nnacru:t~eci<He caoH:craa nyreM 
<t>ai<TOpH~HH nepaoro u: BToporo rpa.o;HeHToB .o;e<t>opMal.U{H. TeopHH onpe.o;emnomu:x ypaa
HeHHit o6cy>K,L\eHa Ha npHMepe 6U:HapHOH MO)J;eJIH, COCTOHJ..QeH H3 TBep,o;oif, ynpyro-nnaCTH
tJeCI<OH MaTpH~hl HaCbiJ..UeHHOH BH3I<OH >KH)J;I<OCTbiO . .IlJIH Tai<OH 6HHapHOH Mo,o;eJIH npe,o;
CTaBJieHbi TepMO,ll;HHaMH'tleCI<He orpaHH'tleHHH H pH,ll; onpe,o;eJIHIOJ..UHX ypaaHeHHH, npe,o;no
naraH, tJTo cu:creMa onpe.o;enHeTCH o.o;Hoii TeMnepaTypoH:, a o6a ee I<oMnoHeHThi y.o;osne
TBopHIOT yCJIOBHIO HeC>KHMaeMOCTH. 

1. Introduction 

IN THE FRAME of a macroscopic formulation [1], porous media models can be described 
via mixture theories [2-6] extended by the volume fraction concept [7-13]. Usually, such 
models are employed as an immiscible mixture of a porous elastic solid material saturated 
by an arbitrary number of fluids [10, 11]. The single constituents are assumed to be either 
compressible or incompressible. The constitutive equations for these models and the 
thermodynamical restrictions governing these constitutive equations are generally well 
known. However, there are only a few papers on elasto-plasticity for saturated porous 
media, cf. e.g., [14], most of them, e.g., [7, 14-16], using a rather simplifying thermody
namical approach which neglects the second-grade character [17] of the single constituents 
as introduced to mixture theories by MOLLER [4]. In general, the definition of second-

(*)The paper was presented at the 4th Bilateral Polish-German Symposium "Mechanics of Inelastic 
Solid and Structures", September 13-19, 1987, Mogilany, Poland. 
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74 W. EHLERS 

grade materials implies that the partial densities and density gradients of the fluid constit
uents and the first and second deformation gradients of the solid constituents are taken 
as independent constitutive variables. For immiscible mixtures such as porous media 
models, in addition, the volume fractions and volume fraction gradients are allowed to 
affect the mixture response [9-11]. 

The contribution of the present article is to show how an elasto-plastic solid material 
applies _to the general theory stated above. Proceeding from second-grade materials, 
elasto-plasticity is taken into account by means of a multiplicative decomposition of the 
first and second solid deformation gradient. After a brief introduction to mixture theories 
including the volume fraction concept, the problem is discussed basing, for simplicity, 
on the example of an elasto-plastic solid matrix saturated by one viscous liquid. For this 
binary model the thermodynamical restrictions along with several constitutive equations 
are offered assuming the system to be governed by a single temperature and constrained 
by an incompressibility condition for both the solid and the liquid material. A simplified 
<:onstitutive model related to the general one by means of a principle of constituent 
separation is included. Throughout this paper direct notation will be used, cf. e.g., [18]. 

2. Preliminaries 

The present section offers a brief review of kinematics, balance laws and the entropy 
principle for mixtures together with the· concept of volume fractions. In what follows, 
all introduced functions are assumed to be sufficiently smooth in space-time. 

Consider fA as an arbitrary region of bulk volume V bounded by a surface of!J of area 
A. Then, for a mixture of k immiscible constituents q;; with particles Xi, each q;; occupyi~g 
its constituent volume Vi, a macro~copic formulation implies a model of superimposed 
continua where at any time t each spatial point x of the current configuration is simul
taneously occupied by k different particles X 1 of constituents q;i. These particles, of course, 
proceed from different reference positions X;. Thus each constit1,1ent is assigned its own 
motion 

(2.1) 

The volume fractions 

(2.2) 

are defined as the local ratios of the constituent volumes V; with respect to the bulk volume 
V: 

{2.3) 

For any model without voids the volume fractions are constrained by 

k 

{2.4) Y, n; = 1. 
..:....1 
i=l 
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ON TIIERMODYNAMICS OF ELASTO-PLASTIC POROUS MEDIA 75 

Given the relation (2.3), it must be noted that the definition of volume fractions as scalar 
quantities restricts the theory to models with an isotropic distribution of the different 
constituents. For the porous skeleton this restriction implies that only such solid materials· 
can be considered that have an isotropic pore structure. Anisotropic pore structures 
might be taken into account using additional definitions like "structural permeabiJity 

tensors" [19]. 
Associated with each cpi is an effective density eiR which is defined as the mass of cp,1 

per unit of constituent volum~ and a partial or bulk density e; defined as the mass of cpi 
per unit of bulk volume. The density functions are related by 

(2.5) 

The density of the whole model or the mixture density, respectively, is 

k 

(2.6) (} =}; (}i. 
i= 1 

From the relation (2.1), each constituent is assigned its own velocity and acceleration field 

(2.7) 
, ax,(X~, t) 

Xt = --0-t---, 

Using the inverse motion function, an equivalent representation of Eqs. (2. 7) is 

(2.8) ~~ = ~1 (x, t), ~~ = ~1 (x, t). 

The mean velocity 

k 

(2.9) 
. 1 ,, ·' 
X = -- L.J (!'X; 

(} i= I 

represents the barycentric velocity of the mixture. The velocity of cp; relative to the mean 
velocity field, 

(2.10) 
, . 

Ut = Xt-X, 

is called diffusion velocity. 
If Fis a differentiable function of (x, t), then, owing to the relation (2.8)b k independent 

material time derivatives of r can be introduced: 

(2.11) 
, ar , 

F 1 = aT+gradF· x,. 

According to Eq. (2.9) the material time derivative of the mixture is 

(2.12) 
. ar r = Tt+gradF· x, 

where 

(2.13) r,-i' = gradF. Uj. 

In Eqs. (2.11)-(2.13) the symbol grad denotes partial differentiation with respect to the 
spatial position x. 
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From the relation (2.1), the deformation gradient of qi and its inverse are 

(2.14) 
F, = Grad1x, 

F; 1 = gradX1, 

W. EHLERS 

Gradi characterizing differentiation with respect to the reference position Xi of qi. 
Given Eq. (2.7)b the material velocity gradient of cpi is defined by 

(2.15) 

From the relation (2.8) 1 , the spatial velocity gradient of q;i yields 

(2.16) L1 = grad~1, 

and its symmetric and skew-symmetric parts are 

(2.17) 

L[ denoting the transpose of Li. 

Dt = ~ (L1+LT), 

Wt = ~ (Lt-LT), 

According to Truesdell's metaphysical principles, cf. e.g., [20, p. 221], the basic idea 
of the balance laws for mixtures is as follows: 

On one hand the balance postulates are given for the single constituents separately, 
including convenient supply terms. Then, from the sum of the constituent balance equa
tions, an equivalent balance law for the mixture can be derived which must have the same 
form as that for single continua. The mixture balance equation yields a constraint to the 
introduced supply terms. In what follows, the balance equations are given with respect 
to [13]: 

Balance of mass: 

(2.18) 

Balance of momentum: 

(2.19) 

6: +eidiv~i = ei, 
k 

Eei =0. 
i=l 

divT;+e;(b;-~1)+P; = o. 
k 

l, (pi +(/~i) = 0. 

i=l 

Balance of moment of momentum: 

(2.20) 
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ON THERMODYNAMICS OF BLASTQ-PLASTIC POROUS MEDIA 77 

Balance of energy: 

e' ~: ~ -P' · ~.-e• ( •' + ~ ~. · ~.)+T' · L,+e'r' -divq' +e'. 
(2.21) 

In these equations ej' pi' Mi and ei are the supply terms of mass, momentum, moment of 

momentum and energy representing the transfers to q;i caused by the other constituents 
that occupy x at time t. The quantities Ti, bi, ei, ri and qi are the partial Cauchy stresses, 

external body force densities, internal energy densities, external heat supplies and heat 
influx vectors of q;i ; TRUESDELL [20] prefers the notion peculiar inst~ad of partial. 

After several discussions in literature on the correct form of the entropy inequality 
for mixtures, compare, for example, ERINGEN and INGRAM [21], GREEN and NAGHDI [5, 22, 

23], BOWEN [3, 6], MULLER [4], TRUESDELL [24] and BOWEN and WIESE [25]; the nowadays 

commonly accepted generalization of the Clausis-Duhem inequalit~ is the so-called 
BOWEN-TRUESDELL version [20]. One possible form of this inequality is [13] 

k 

2 -~, [ -e'<.Pl+lil'1'>-P' · ~.+e' 
i= 1 

(2.22) 

" • ( • } 1 1 ) . } • ·] - e' "P' +2" xt · x, + T' · L,- Of q' · gradO' ~ 0. 

For a detailed discussion of the balance laws and the entropy principle for mixtures the 
reader is referred to [6, 13, 20]. In the relation (2.22), (Ji are the absolute constituent tem

peratures and r/, "Pi the entropy and Helmholtz free energy densities of q;i related by 

(2.23) 

In case of thermodynamical processes governed by a single temperature 0 = (Ji, it is con 
venient to use 

k 

(2.24) ~ ( - Pf - OHi -pi . ~i- _!__ ei ~~ . ~~- (!i KTi . L, - !_ hi . grad o) ~ 0 
i= 1 2 (J 

instead of the relation (2.22). Herein, 

(2.25) 
'J'i = (!i"Pi' 

Hi= (!i'YJi 

are the constituent free energy and entropy functions per unit of mixture volume, 

(2.26) Kj = ~ ('J'i I-TTi) 
e' 

the chemical potential tensors as introduced by BOWEN and WIESE [25] and 

(2.27) hi = qi + (JHiu1 

an influx vector which is the sum of the constituent heat influx and the diffusion entropy. 
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78 W. EHLERS 

3. Decomposition of deformation gradients 

In the frame of second-grade solids [17, 25], the response of the model is affected by 
the first and second solid deformation gradient (the subscript s denoting the solid): 

(3.1) &l = &l( ... , Fs, GradsFs, ... ). 

Thus, if the solid deformation is not purely elastic but elasto-plastic, a multiplicative 
decomposition ofF s and Grads "F s can be defined by the composition 

(3.2) 

where 

(3.3) 

and 

3 3 

(Fs, GradsFs) = <Fse, Gse) 0 (Fsp, Gsp), 

3 3 23 23 

-(3.4) GradsFs = CFseGsp)~+ [(GseFsp)~TFsp)~T. 

In Eq. (3.4), (.~.) is the symbol of a tensor of third order, ( ... )~ indicates a contraction 
23 

of the arguments in brackets towards a third-order tensor and (.-.. )T its transposition 
with respect to the indices 2 and 3. 

It is known from several publications on continuum theories of single continua [26-34) 
that a multiplicative decomposition of F s into elastic parts F se and plastic parts F sp is 
connected with the suggestion of a stress-free intermediate configuration incompatible 
with the existence of partial derivatives such as 

Fse = gradszX, 
(3.5) 

Fsp = GradsXsz, 

Xsz: denoting the position of particles X 5 in the intermediate configuration and gradsz 
partial differentiation with respect to Xsz· In the case of homogeneous deformations, 
however, Eq. (3.5) generally holds. On the other hand, if one defines the intermediate 
configuration achieved from the actual one after a total removal of the external loads, 
the intermediate configuration is not stress-free in the fframe of nonhomogeneous defor
mations but still contains residual stresses "defined as the permanent stresses remaining 
in the body after unloading" [30]. Then F se and F sp must be understood as the reversible 
and globally irreversible parts ofF 5 • Following this, the decomposition (3.4) would imply 

(3.6) 

where 

(3.7) 

has been used. 

23 23 

GradsFs = CFseGradsFsp~+ {[(gradszFse)Fsp)~TFsp}~T, 

3 

Gse = gradszFse, 
3 

Gsp = GradsFsp 

For convenience, in index notation, Eq. (3.6) yields 

(3.8) 
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ON THERMODYNAMICS OF ELASTO-PLASTIC POROUS MEDIA 79 

the small Latin subscripts belonging to the actual, the small Greek subscripts to the inter
mediate and the capital Latin subscripts to the reference configuration of q;s. Note in 
passing that gradsz F se and Grads F sp are proper second gradients with the symmetries 

(3.9) 

23 

gradszFse = (gradszFse?, 
23 

GradsFsp = (GradsFspf· 

Using the terminology of push-forward and pull-back transformations, cf. e.g., [32], 
the two terms of the right-hand side of Eq. (3.6) can be interpreted as follows: In the first 
term, the first basis of Grads Fsp is transformed by push-forward with Fse from the inter
mediate to the actual configuration; in the second term, the second and third bases of 
gradsz F se are transformed by pull-back with F sp from the intermediate to the reference 
configuration of q;s. 

However, proceeding from a general concept decoupling elasticity from plasticity, 
the stress-free intermediate configuration together with the definitions (3.2)-(3.4) must be 
applied as the conceptual basis for elasto-plastic porous media. Thus, in the frame of the 
constitutive theory for second-grade solids, the variables F s and Grads F s can be replaced, 

3 3 3 3 
in the sense of a mathematical model, by Fse, Fsp and Gse, Gsp where Gse and Gsp stand 
for the purely elastic and plastic parts of Grads F s. Therefore, (3.1) be rewritten in the 
form 

3 3 
(3.10) ~ = ~( ... , Fse, Fsp, Gse, Gsp, ... ). 

3 3 
Given (3.10), Fse, Fsp and Gse, Gsp are taken as independent constitutive variables. With-

3 3 

out loss of generality, it is understood that Gse and Gsp have the character of proper 
second gradients. 

Thus 

(3.11) 

3 3 23 

Gse = (Gse)T, 
3 3 23 

Gsp = (Gsp)T. 

The multiplicative concept (3.3) is compatible with the following additive decompos_ition 
of strain tensors, compare, for example, [30-34]: In a material description, the Langrangian 
strain of the solid 

(3.12) 1 (FT Es = 2 sFs-1) 

can be decomposed into purely plastic parts Esp and elastic parts Ese defined as the differ
ence between Es and Esp: 

(3.13) 1 T T ) Ese = 2(FsFs-FspFsp, 

Es = Ese+Esp· 
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80 W. EHLERS 

Then, by push-forward of the Langrangian strains with FI; 1
( .•• )Fsp\ an equivalent repre

sentation of Eqs (3.12) and (3.13) relative to the intermediate configuration is 

1 
rs = 2(FleFse-FI; 1 Fs,1), 

1 
rsp = 

2
(1-FI; 1Fs,1), 

(3.14) 

rse = ~ (FleFe-1), 

rs = rse+rsp• 

By push-forward of Eqs. (3.12) and (3.13) with FI- 1 ( ..• ) Fi 1 or, respectively, of Eqs. 
(3.14) with Ff; 1

( •• • ) Fs-/, we obtain the Almansian strain tensors of the spatial formulation 

1 
As = 

2
(1-FI- 1Fs 1

), 

(3.15) 
A _ _!_(FT-1F-1-FT-IF-t) Sp - 2 Se Se S S , 

I 
Ase = 2(1-FI; 1 Fs}), 

As= Ase+Asp· 

Furthermore, the multiplicative concept implies that we have only two proper spatial 
velo9ity gradients, namely Ls and Lspz·, the former relative to the actual, the latter relative 
to the intermediate configuration: 

(3.16) 

Th~_ir symmetric parts are 

(3.17) 

Ls = (Fs)~Fs\ 
Lspz = (Fsp)~Fs,J,. 

Ds = ~ (Ls+LD, 

I T ) 
Dspz = 2 (Lspz+Lspz · 

Ds thus defines the solid deformation ra~e of the spatial configuration and Dspz the purely 
plastic deformation rate of the intermediate configuration. By push-forward with 
Fie- 1 

( .•• ) Fs-j, Dspz can be transformed to yield 

(3.18) 

Combining Eqs. (3.17)1 and (3.18), 

(3.19) Dse = Ds-Dsp 

is a convenient measure for the elastic contribution to the spatial solid deformation rate. 
Following the concept of LIE or OLDROYD derivatives [30-34], respectively, Eqs. (3.17)11 

(3 .18) and (3 .19) can be expressed as follows : 
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(3.20) 

D. 

D. 
Ds =As= (As)~+LrAs+AsLs, 

D. 

Dse = Ase = (As e)~+ Lr Ase + AseLs, 
D. 

Dsp =Asp= (Asp)~+L~Asp+AspLs, 
D. D. 

Ds = Dse+Dsp = Ase+Asp· 

The symbol ( ... ) defines the upper Lie derivatives relative to the actual configuration 

D. 
(3.21) ( ... ) = ( ... )~ +Lr( ... )+ ( ... )Ls. 

81 

Of course, the concept of Lie derivatives, in a more classical terminology defined simply 
as convected derivatives, means nothing else than first pulling the respective tensorial 
object back to · the reference configuration, then, taking the time derivative ( ... )~ and 
finally pushing it forward into the configuration where it comes from. Thus it is only 
natural that the upper plastic Lie derivatives 

(3.22) ( ... )~ = ( ... )~+L~pz( ... }+( ... )Lspz 

of the strain tensors rs, rsp and rse relative to the intermediate configuration, compare 
Eqs. (3.14}, are equivalent to pulling Eqs. (3.20) back with Fie( ... ) Fse, 

(3.23) 

where from Eq. (3.17)2 

(3.24} (r sp)~ = Dspz. 

Finally, by pull-back of the relation (3.23) with Ffp( ... ) Fsp, one obtains the strain rates 
of the solid reference configuration: 

(Es)~ } { (r s)~ } 
(Ese)~ = FIP <rse)~ Fsp, 
(Esp)~ (r sp)~ 

(3.25) 

(Es)~ = (Ese)~ + (Esp)~ · 

Note that the left-hand side of the relation (3.25) can also be obtained by pulling Eqs. 
(3.20) back with FI(. .. ) F5 • . 

4. Constitutive assumptions 

As concerns the constitutive theory, we restrict our attention to a binary model consist
ing of an elasto-plastic porous solid skeleton saturated by one viscous liquid (the sub
script F denoting the liquid). The model under discussion be governed by the following 
properties: 

6 Arch. Mec!J. Stos. 1/89 
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82 W. EHLERS 

In its reference ·positions Xi{i = s, f), the volume fractions n~i and effective densities 
e~~ of both constituents are given and homogeneous: 

(4.1) 
Gradin&i = o, 

Gradi e~~ = o. 

The constituents are assumed to be inert. Thus, niass exchanges are excluded: 

(4.2) ei = o. 
The partial stresses are assumed to be symmetric so that 

(4.3) 

The model has but one single temperature 

(4.4) () = ()i. 

The system be governed by an incompressibility condition for both the solid and 
the liquid material. Constituent incompressibility implies the effective densities to be 
constant during deformation: 

(4.5) eiR = e~~ = const. 

Given Eq. (4.4), the temperature variation can be calculated from an energy balance of 
the whole system in which the sum of the energy supplies is naught. Using Eqs. (2.10)-(2.27) 
together with Eqs. (3.20)4 and (4.2)-(4.4), this balance equation can be shown to yield 

Is 'F • • • "F I I 

(4.6) -Ps-PF-OH-H(O+Odivx)-p · (xp-xs) 

-e5Ks · (Dse+Dsp)-eFKF · DF+gr1 -divh = 0 , 

where 

H = ys+HF, 

(4.7) h = hs+hF, 

1 ,r = _ (esrs +eFrF), 
e 

r 1 denoting the inner part of the external heat supplies as defined by TRUESDELL and 
TouPIN [2, section 243]. From the incompressibility condition (4.5) together with Eq. 
( 4.2), the balance of mass equations (2.18) prove to be balance equations for the volume 
fractions 

(4.8) 

that can be integrated to yield 

(4.9) 

It is important to note that constituent incompressibility does not imply macroscopic 
incompressibility of q;i since from Eqs. (2.5) and (4.5), the bulk densities ei can still change 
through changes in volume fractions. On the other hand, as it is well known, incompressiblity 
of all the constituents of the respective medium gives rise to a certain constraint to be 
incorporated into the entropy inequality of the model. Such a constraint has first been 
suggested by MILLS [35] in the frame of a mixture of incompressible Newtonian fluids 
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and, later, by CRAINE [36], ATKIN and CRAINE [37], BoWEN [10, 38) and DE BOER and 
EHLERS [13]. From Eq. (4.8) and the material time derivative of Eq. (2.4) following the 
motion of one of the both constituents, the constraint for the present model is 

(4.10) ns A.div~s +nFA.div~F+ A.gradnF · (~F-~s) = 0, 

where A. is a Lagrangian multiplier with the dimension of a stress. 
Using Eq. (4.10) along with Eqs. (2.19h, (2.20)h (2.26), (3.20}4 , (4.2), (4.3) and (4.7), 

the entropy inequality (2.24) turns out to yield 
Is IF • AF F I ' 

(4.11) -'Ps-'l'p-OH-(p -A.gradn) · (Xp-Xs) 

1 . 
- (esKs- n5 A.l) · (Dse + Dsp)- (eFKF- nF AI) · DF- 0 h · grad() ~ 0. 

From the preceding considerations, ~e present model is defined by the balance equations 
for the volume fractions (4.8}, the balance of momentum (2.19) when using Eqs. (2.26), 
(4.2) and (4.3}, the energy balance (4.6) and the entropy inequality (4.11) together with 
the following set of independent constitutive equations which, from the principle of equi
presence, must be functions of a common set of variables cp: 

(4.12) (Pi, Hi' eiKi -ni A.I, h, PF- A.gradnF) = at(cp}. 

Concerning the plastic range, a flow rule for Dsp must be added: 
I 

(4.13) Dsp = A(cp, a, Os, "' ... )-r. 

In writing Eq. (4.13), it is understood that 't' is any stress measure, a any objective stress 
rate and " a material or hardening parameter, respectively. The specification of -r and a 
depends on the yield or failure condition in connection with both the loading criteria and 
the flow rule (associated or non-associated) used for the respective model. An extension 
of the set of parameters as used in Eqs. (4.13) inc~uding further pa1ameters or internal 
variables is of course possible but not necessary for what follows since we are only inter
ested in the thermodynamics of elasto-plastic porous media. 

In the frame of second-grade materials, several suggestions have been made in litera
ture for the possible choice of constitutive varhbles [6, 8, 10, II, 37, 38]. For immiscible 
mixtures such as saturated porous media, however, the volume fractions and volume 
fraction gradients should be generally allowed to affect the response of the model [9-11]. 
Within the rapge of incompressible porous media, there seems to be s@ffie confusion since 
even BowEN [I 0, 38] uses two principally different choices of constitutive variables which 
would apply to the present model in the frame of a purely elastic skeleton as follows: 

(4.14) F F I ' cp1 = {0, grad(), Fs, GradsFs, n, gradn, Xs, Xp} 

is a modified version of BowEN [10], 

(4.15) 

corresponds to BowEN [38]. Concerning Eq. (4.14), Bowen accepts a dependency between 
the argume~ts of cp 1 • Proceeding from the assumption that only independent variables 
should affect the response, we will deduce a modified version of Eq. (4.15) from a more 
general point of view. 

6* 
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For a compressible immiscible mixture consisting of an elastic skeleton saturated by 
a single viscous fluid 

(4.16) q;3 = {0, gradO, Fs, GradsFs, nF, gradnF, (/, gradeF, ~8 , ~F' LF} 

holds. Equation ( 4.16) corresponds to the compressible model of Bowen [ 11, 38] except 
that LF has been added due to fluid viscosity. Formally, Eq. (4.16) can be obtained by 
consulting CRoss [17] from an immiscible mixture of viscoelastic constituents using the 
symmetry group for second-grade fluids. Note in passing that n8 and grad n8 are excluded 
since from Eq. (2.4): 

(4.17) 
n8 = 1-nF, 

gradn5 = - gradnF. 

However, the present model contains an incompressible liquid, i.e., (/ and grad (/ are 
no longer independent but functions of nF and grad nF. Thus, Eq. (4.16) reduces to Eq . 
(4.14) except that LF has been included. From this point of view, Eq. (4.14) describes 
a compressible elastic skeleton saturated by one incompressible liquid. Since our solid 
material is incompressible, 

nF = 1-ngs(detFs)-1
, 

(4.18) gradnF = ngs(detF s)- 1Fr- 1(Fr- 1GradsFs)! 

holds where 

(4.19) Grad5 (detF5 ) = detFs(FI- 1 GradsFs)! 

together with Eqs. (4.1), (4.9) and (4.17) has been used. 
In Eq. ( 4.19), ( ... )! indicates a contraction of the arguments in brackets towards a vector. 

Again, for convenience, the index version of Eq. (4.19) is 

Given the relation ( 4.18), nF and grad nF are no longer independent but functions of F s 

and GradsFs. 
From these considerations, the relation (3.10) and (4.16) combine to yield 

(4.21) 

Eq. (4.21) thus representing the set of independent constitutive variables for an incom
pressible elasto-plastic porous skeleton saturated by an incompressible viscous liquid. 
In the frame of a purely elastic skeleton Eq. (4.21) reduces to Eq. (4.15) except that LF 
has been added. 

Further modifications of Eq. (4.21) are due to the principle of material frame-indiffer
ence. Combining Eqs. (4.12) and (4.21), the principle requires that 

(4.22) [Pi, Hi, Q(!/Ki -ni A.I)Qr, Qh, Q(pF- A.gradnF)] 
- - 3 3 • ' • 

= El[O, QgradO, QFseQT, QFsP' Mse, Msp, c+Qx+Qxi, QLFQT +QQT], 

where c is an arbitrary time-dependent vector representing a translation, Q a time-depend
ent proper orthogonal tensor representing a rigid rotation in terms of the actual configu
ration and Q an independent proper orthogonal tensor specifying a rigid rotation in 
terms of the intermediate configuration. 
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3 3 

The third-order tensors Mse and Msp are defined by 

3 3 - 23_ 23 
Mse = {[(QGse)~QT]~TQTr~T, 

(4.23) 3 -
Msp = ( QGsp)~. 

Using standard arguments, c[ e.g., [6], Eqs. (4.12), (4.13), (4.21) and (4.22) finally combine 
to 

I 

(4.24) Dsp = A.(4>, a, Os, X, ... )'t', 
J 3 I I 

4> = {0, grad(), Fse, Fsp, Gse, Gsp, XF-Xs, DF }. 

Equations (4.24) represent the constitutive assumptions as used for the subsequent con
siderations. 

5. Thermodynamical restrictions 

For the present model, thermodynamical restrictions result from the dissipation prin
ciple ( 4.11) together with the constitutive assumptions ( 4.24). In the frame of mixture 
theories, however, the general procedure proves to be rather laborious, producing plenty 
of lengthy formulae that are beyond the scope of this paper. Thus, only the main results 
are listed below. Using standard arguments as introduced to the thermodynamics of single 
continua by CoLEMAN and NoLL [39], extended by arguments as used by BowEN [6] and 
combined with several symmetry and skew-symmetry conditions [13], it can be shown that 

lJIS = 1JI5(0, grad(), Fse, Fsp, ~F-~s), 

(5.1) 

and 

(5.2) 

where 

(5.3) 

is the inner part of the free energy of the mixture. In addition, 

S S S 'l (}1Jfl T o1JIS I I 

(! K -n AI = - --F5 e- 1 , ®(xF-xs) 
8Fse 8(xF-xs) 

(5.4) 

and thus from (2.20), (2.26) and (4.3), 

(5.5) T5 = (P5 - If A)l + (J1Jfl Ffe + - ~ps 1 ® (~F- ~s) · 
8Fse 8(xF-Xs) 
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where 

(5.7) 

( 

':liTIF 3 )1 ( ()ITIF 3 )1 "p "F F T-1 u:r. - T-1 T-1 r -
f = p -A.gradn +Fse oFse Gse +Fse Fsp . oFsp Gs_, . 

The inequality (5.6) is now evaluated near the thermodynamical equilibrium for the mix
ture [6] or the so-called mixture equilibrium, respectively. This state defined as the minimum 
state for the inequality (5.6) implies that <P from Eq. (4.24)3 reduces to </J0 , 

3 3 I I 

(5.8) <Po = {0, gradO = o, Fse, Fs_,, Gse, Gs_,, Xp-Xs = o, Dp = 0}, 
and 

(5.9) Dsp = 0. 

In the elastic range, Eq. (5.9) generally holds. In the plastic range, Eq. (5.9) holds in case 
of neutral loading of hardening materials. In a strong equilibrium state, i. e., if the left
-hand side of the inequality (5.6) vanishes, it is easily seen that 

m(</J0 ) = o, 

(5.10) fF(</Jo) = o, 

(eFKF -nFA_l)(</Jo) = 0. 

Concerning the general procedure, compare, for example, [6, 13]. 
A 

Near the equilibrium state, a linear expansion of "1'5 , "J'F, m, fF and (eFKF -nF A.l) about 

<P = <P 0 yields 

(5.11) 

ps = 'P5 (0, Fse• Fsp), 

'tj/F = 'tJfF(O, Fse, Fs_,), 

m(</J) = -f3o(</Jo)grad0+0rxo(</Jo)(.JcF-.fc.s), 

fF(</J) = -rxo(</J0)grad0-ocv(</Jo)(Xp-Xs), 

(eFKF -nFA.I)(</J) = -2p,F(</J0)D~-vF(</>0)(Dp · 1)1, 

where the principle of material frame-indifference (4.22) combined with Eq. (4.24)3 along 
with several arguments as explained in [6, 13] has been used. In Eq. (5.11)5 , 

(5.12) 
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From Eqs. (2.20), (2.26), ( 4.3), (5.5) and (5.11), we obtain the following results: 

s (ITfS s 1\f ()lJII FT 
T = r -n ~~., + oFse se, 

TF = ('JIF -nF .A.)I+2.uFD~+vF(DF · 1)1, 

(5.13) 
I I 0'PS O'JIF 

h = -Po grad 0 + O(Xo(XF- Xs)- 0 80 Us- 0 8{) uF, 

( 
a'JIF 3 )! ( o'JIF 3 )! 

-Ff;- 1 
oFse Gse -FI;

1Ff; 1 
oFsp Gsp • 

Given Eqs. (2.27), (4.7h and (5.7)h we have two different formulae for the influx vector 
b, namely: 

(5.14) 

o'JIS (jtpF 
h = m-O--u5 -0 - - uF ao 80 ' 

In assuming 

(5.15) 

it follows from Eqs. (2.10), (4. 7)h (5.2) and (5.3) together with Eqs. (5.7) 1 and (5.14) that 

(5.16) 
( 

a'Ps ) ns = - --ao- + (Xo ' 

flF = -( a:OF -a.). 
Thus, it is felt that (X8 is an entropy coupling parameter for the present single temperature 
model; {J8 is the coefficient of thermal conductivity for the whole system. However, since 

m = h = q5 +qF is the heat influx whenever .,;_F = ~s = x and, therefore, Up = Us = o, 
Eq. (5.15) also represents the constitutive equation for the heat influx for the model 
without diffusion. 

Given the relations (5.6) and (5.9), the parameters (Xv, {18, flF and vF are constrained by 

(5.17) 

As shown in [13], (Xv can be determined by the coefficient of permeability k which, of 
course, is not a constant but depends on ¢ 0 : 

(5.18) 

In Eq. (5.18), 

(5.19) 

has been assumed. 

(/ 
(XV= Tlbl. 

http://rcin.org.pl



88 W. EHLERS 

The quantities p/ and vF are the macroscopic shear and bulk viscosity parameters of 
the liquid. Note in passing that even if the liquid is incompressible, usually 

(5.20) 

Therefore, vF must be generally incorporated into the theory. Finally, in case of plastic 

loading we have 

(5.21) 

instead of Eq. (5.9). 
Given 4> = 4J 0 , it follows from (5.6) along with (2.20), (2.26), (4.3) and (5.10) that 

[ 
s tus s,)I . (jtJfl FT T ( T I) fi.PI T] 

(5.22) Dsp · T - {r -n 11. -Fse oFsp spFse + + FseFse- oFse Fse ~ 0, 

where the last two terms in square brackets must yield a symmetric tensor. However, 

if 4> -=1 4J 0 , the inequality (5.22) can be understood as a sufficient condition, a restriction 
for the rate of plastic work. 

6. Simplified constitutive theory 

Considering applications of the preceding theory, it would appear that some simpli, 

fications are necessary. Since the constitutive equations (5.13) and the restriction (5.22) 
depend on the choice of t1ie free energy functions ps and PF, it seems to be reasonable 

to introduce simplifications with respect to these functions. Up to now the principle of 
equipresence has been used in the sense of a "rule to guide us when ·we come to set up 

constitutive equations in the first place" [40, p. 135]. However, there are other theories 
like the theory of "multiphase mixtures" of PASSMAN, NuNZIATO and WALSH [41] where 
the principle of equipresence is generally substituted by another principle called the "prin

ciple of phase separation". Porous media models as discussed in the preceding sections 
have been introduced in the same sense as in theories of multiphase mixtures, namely, 

as mixtures with immiscible constituents. Thus, to simplify the constitutive equations for 

the present model, one may apply a modified version of the principle of phase separation 

cited above. 
We now introduce a "principle of constituent separation" by the fact that the free 

energy densities 1p5 and "PF depend on its own constituent variables only. Thus, from Eqs. 

(2.25) 1 , (5.11 ) 1 and (5.11h 

(6.1) 
ps(O, Fse, Fsp) = QsRns(Fse, Fsp) "Ps((), Fse, Fsp), 

PF((), Fse, Fsp) = QFRnF(Fse, Fsp) ?pF(O). 

Note in passing that the volume fractions as kinematic variables must depend on both 
the elastic and the plastic parts of the solid deformation gradient, compare Eqs. (3.3), 

(4.9) and (4.18)1 • Note further that 1p5 (0, Fsp, Fse) corresponds to a model first proposed 
by GREEN and NAGHDI [42]. 
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Using Eq. (6.1) along with the relations (2.5), (2.25)1 , (3.3), (4.5), (4.9), (4.17)1 and 
(5.3), 

(6.2) 

holds where 

(6.3) 

has been used. 
Thus, Eqs. (5.13) 1 and (5.13h reduce to 

Ts s I s 01ps FT 
= -n P . +e oFse se, 

(6.4) 
TF = -nFpl+2,uFD~+vF(DF · 1)1, 

where 

(6.5) 

can be interpreted as the unspecified hydrostatic pressure acting on the whole model. 
Furthermore, it can be shown with the aid of the relations (2.5), (2.25) 1 , (3.3), (3.4), 

(4.18) and (6.lh that 

(6.6) ( 
(jlJIF 3 )! ( (jlJIF 3 )! lJIF 

FI; 1 8F s: Gse + FI; 1 FI; 1 oF Sp Gsp = 7 gradnF' 

where 

(6.7) 

H'PF s tpF T-1 
~F =n -F Fse' 

u Se n 

(j'JfF S lJIF T-1 
~F =n -F Fsp, 

u Sp n 

together with 

(6.8) 

have been used. 
Given Eqs. (5.13)4 , (6.5) and (6.6), the momentum supply or the interacting force 

per unit of mixture volume between the solid and the liquid material, respectively, yields 

(6.9) pF = pgradnF -a0 gradfJ-av(~F-~s). 
Finally, using the same procedure as to obtain Eq. (6.2), 

(6.10) (}lJfi - - (ps- s tpF )FT-1 s 01ps 
oFsp - n nF Sp +e oFsp 

holds and thus, from the relations (5.22) and (6.5), 

(6.11) Ds,· [Ts+nspl-esFs, :::, Ff,Ff,+(Fs.Ff,-I)es :::. Ff,];. 0. 

http://rcin.org.pl



90 W. EHLERS 

In the inequality (6.11), the last two terms in square brackets must form again a symmetric 
tensor. It should be noted that the results (6.4), (6.9) and (6.11) of the simplified model 
differ from the results that would have been achieved from the usual simplifying assump-

3 3 

tions, namely when the second solid deformation gradient or Gse and G5P, respectively, 
is omitted from the independent variables (4.24)3 • In that case 'J'F proves to be independ
ent ofF sp, F se what, of course, is an unrealistic result as far as nF is not a constant, cf. 
Eq. (6.1)2 • 

In the isotropic range, as it is well known, the functional dependence of 1p5 on F se, F sp 

can be substituted by 

(6.12) 1l(O, Fse, Fsp) ~ vl(O, Ese, Esp). 

Then, since Ese = Ese(Fse, Fsp) and Esp = Esp(Fsp), cf. Eqs. (3.13), the restriction for 
the rate of plastic work yields 

(6.13) Ds, · [T5 +n5pl-e5Fs. :::.Fr.];;. o 
where, from the chain rule, 

(6.14) dVJs ( BEse )T d1ps dVJS T 

BFse = BFse - (}Ese = FseFsp BEse Fsp 

and 

(6 IS) 01l ( BEse )T d1p
5 ( BEsp )T 01p

5 
T 01p

5 
01p

5 
· ~ = ~F ~E + ~F ~E = (FseFse-I)Fsp~E +Fsp~E 

u Sp u Sp u Se u Sp u Sp u Se u Sp 

together with 

(6.16) a"Ps = ( ar sp )T a"Ps = F.s 1 a"Ps FI-1 
(}Esp (}Es, ar Sp p ar Sp p 

has been used. As concerns the inequality (6.13), a possible interpretation of 

(6.17) ys = (/ dVJS 
arsp 

is that this quantity represents the back-stress tensor of kinematically hardening solids. 
However, assuming circumstances where "Psis independent of Esp such that 

(6.18) 

the restriction for the rate of plastic work reduces to 

(6.19) 

The relations (6.18) and (6.19) correspond to a liquid-saturated elastic ideal-plastic skeleton 
as proposed by DE BOER and KOWALSKI [14] or DE BoER and EHLERS [16]. 

Note in passing that, as usual in theories of constrained materials, the rate of plastic 
work depends on the so-called extra stresses of the solid, 

(6.20) 
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which are functions of the deformation process. Thus, from Eqs. (6.4)1 and {6.14) 

(6.21) 

where 

(6.22) 
a s a s 

1p - ·F-lF-1 1p FT-lFT-1 
aEse - Sp Se oAse Se Sp 

has been used. Equation (6.20), however, which also represents the partial or peculiar 
solid stresses in the frame of empty porous media with constituent incompressibility or the 
effective stresses in the frame of soil-mechanical problems, generally contains deviatoric 
as well as hydrostatic parts, the latter due to possible variations of porosity. 

7. Concluding remarks 

A unified macroscopic approach to thermodynamics of saturated elasto-plastic porous 
media has been presented. Especially the simplified constitutive model must be suggested 
as a convenient tool for applications. 

However, since in finite theories of porous media even the elastic strains are not neces
sarily small, an elasticity law of the Hookean type does not cover the possible range of 
elastic deformations. Imagine, for example, an empty sponge of incompressible rubber 
material, then, even the hydrostatic deformations can be of such magnitude that within 
a mafroscopic formulation any elasticity law of the Hookean type must fail. Thus, it 
seems to be more convenient to prefer elasticity laws of the MURNAGHAN type [43] or 
SIMo-PISTER type [44]. A modified version of the latter extended towards finite _elasticity 
of porous media will be presented by the author in [45]. 

To cover the plastic range, a yield or failure condition for ductile materials has been 
proposed by DE BoER and KowALSKI [14]; brittle or granular materials such as soil or 
concrete have been discussed by DE BOER and EHLERS [16]. An improved yield condition 
together with a non-associated flow rule has been given by DE BoER [46]; it reflects the 
results of three-dimensional shear testing including the effects of extension and compression 
as obtained in the frame of soil mechanics, for example, by experiments on clay or sand, 
cf. e.g., [47-49]. A complete description of incompressible, liquid-saturated elasto-plastic 
porous media together with a detailed analysis of the elastic as well as the plastic response 
will be the .subject of a forthcoming report [50]. Within the preceding theory, the problem 
of fluid flow through rigid porous media has been discussed in [13]. 
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