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Growth of voids in a ductile matrix: a review 

P. GILORMINI, C. LICHT and P. SUQUET, Arch. Mech. 40, pp. 43-80, 1988 

Since all the corrections indicated in the proofs of the paper could not be included by the 

editor, the authors wish to point out the following errata to the reader. (Some additional 

minor misprints are not listed, for the sake of brevity.) 

Page 45: lines 13 to 30 must be moved to page 44, above 1.2. Damage and microme­

chanics, and n1 should be changed into n, in Eq, (1.3). 

Page 47: the last line above 2. Isolated Voids should be read as follows: ties, by J. 'Rice, 

B. Budiansky, J. W. Hutchinson, A. Needleman, and their coworkers. A comma should 
replace the full stop at the end of 6th line from the bottom. 

Page 48: a 1 is missing between the and (1:'11 ], and a 2 has been omitted between or 

and (1:'22 > in line 17. 

Page 49: remove the a before generalized in line 11. 

Page 53: change is into was in line 8, and E into e in Eq. (2.5). 

Page 57: change 1); for into 1), for in line 6; the beginning of line 21 should be read as 
to which a viod will tend has been etc.; replace /igh by high in line 23. 

Page 61, Eq. (3.4): reads'= sl(s-1) instead of s' = s(s-1). 

Page 63: change 0.01,0.4 into 0.01-0.4 in line 7. 

Page 66: change in into into (line 17), remove the comma after i) approximate expressions 

(line 16), and add one after uniform strains in the footnote. 

Page 67: read fa* instead of u* in the 2nd equation and instead of •j• in the 5th. 

Page 68: reads' = sf(s-1) instead of s' = s(s-1) in the 41
h equation, close the paren­

thesis in the 6th, and change ), into)), in the last line. 

3 1 

3 s=-1 3 s=-1 
Page 69: c2 = 

2 
should be replaced by c2 = -- G 

2 

Page 71: substitute E to Erxp two lines below Eq. (6.19). 

2p 2p . 
Page 77: -

2 
must be replaced by -

2 
in line 15, and £33 by £33 at the bottom of 

a p 

the page. 

Page 79: substitute dilatation to dilation in ref. 3, solids to solid in ref. 5, and composites 

to composities in ref. [11]. 

Page 80: substitute voids or inclusions to voids inclusions in ref. [17]. 
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Shakedown of shell-like structures 
allowing for certain geometrical nonlinearities 

D. WEICHERT (LILLE) 

To ANSWER the question whether elastic-plastic structures will adapt to variable loading his· 
tories, extensions of the classical shakedown theorems by Melan and Koiter to a certain class of 
geometrically nonlinear problems are given. Material hardening is taken into account by using 
the concept of hidden variables. It is shown how the extended theorems fit with existing plate­
and shell theories to predict their long-time behaviour. Focussing on the extended Melan's 
theorem, the method is illustrated by a numerical example. 

Aby odpowiedziee na pytanie, czy konstrukcje spr~i:ysto-plastyczne podlegaj'l przystosowaniu 
do zmiennych historii obci'li:enia, wprowadzono pewne rozszerzenie klasycznych twierdzen , 
Melana i Koitera o przystosowaniu, pozwalaj'lce uwzgl~dnic pewn'l klas~ zagadnien geome­
trycznie nieliniowych. Dzi~ki koncepcji zmiennych ukrytych uwzgl~dniono efekt wzmocnienia. 
Pokazano w jaki spos6b te rozszerzone twierdzenia pasuj'l do istniej'lcych teorii plyt i powlok, 
pozwalaj'lc zarazem przewidywac ich zachowanie si~ przy dlugotrwalych pr6bach obci'li:enia. 
Opieraj'lC si~ na rozszerzonym twierdzeniu Metana zilustrowano metod~ post~powania przy­
kladem liczbowym. 

qT06bi otsetHTh Ha sonpoc no,[(nemaT JIIf ynpyro-nnacrnqeci<He KoHcrpyKrum npHcnoco6ne­
HlliO K nepeMeHHbiM lfCTOplfHM HarpymeHHH, BbiBe,[(eHO HeKOTOpoe paCI.I.IIfpeHife KJiaCCI{­
'l!eCKHX teopeM MenaHa 11 KoH:tepa o npHcnoco6neHHH, no3BOJIHIO~HX y'l!I{TbiBaTb HeKotopbiH: 
KJiacc reoMetplfqecKH HeJIHHeHHhiX npo6neM. Enaro.[(apH KoHuenuHH HeHBHhiX nepeMeHHhiX 
y'l!TeH 3cpcpeKT ynpo'l!HeHHH. IloKaJaHo KaKHM o6pa3oM 3TH pacrnHpeHHhie teopeMhi no.[(­
XO,[(HT K cy~eCTBYIO~IfM TeopHHM llJIHT I{ o6oJIO'l!eK, ll03BOJIHH O,[(HOBpeMeHHO npe,[(CKa3bl· 
Bath HX nose,[(eHHe npH: npo,[(oJimHTeJII>HhiX lfCllhitaHHHX HarpymeHHH. OnHpaHCb Ha pacrnH­
peHHYID TeopeMy MenaHa, MeTo,[( HJlJIIOctplfpoBaH 'lllfCJIOBbiM npHMepoM. 

1. Introduction 

THE CLASSICAL shakedown theorems by MELAN [1,2] and KolTER [3] provide methods to 
predict whether elastic-plastic bodies may or may not fail due to the unlimited accumula­
tion of plastic strains during their loading history. These methods have found broad 
application and can nowadays be considered as standard tools in the design of structures 
[4-6]. A drawback, howe\-er, is the fact, that they have been derived within the framework 
of geometrical linearity, so that the influence of progressive changes of the shape of the 
structure during the deformation process cannot be taken into account. In many cases 
this may be without any major importance, in other cases, as for example in the assessment 
of metal plate- and shell-structures, theoretical predictions may be poor compared to 
experimental results. The first to tackle this problem was MAIER [7] who started from an 
a priori discretized description of structures and gave a criterion for their shakedown, 
taking so-called "second-order effects" into account and using piecewise linear yield con­
ditions. KoNIG investigated in several papers [8, 9] the influence of geometrical effects 
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62 D. WEICHERT 

on the stability of the deformation process for particular structures under certain assump­
tions on the deformation mpdes; in a similar way, NGUYEN Quoc SoN and GARY [10, 11] 
studied the possibility of destabilization of the shakedown-process due to successive 
plastic deformations. In several papers [12-14] the authors discussed the shakedown-prob­
lem within the framework of geometrically nonlinear continuum mechanics and gave 
an extension of Melan's theorem applicable to situations where information about the 
expected deformation pattern is available. Because of the assumed additivity of the purely 
elastic and purely plastic part of the strain measure, the proposed method is particularly 
suited for shell-like structures undergoing moderate rotations at small strains [13, 18]. 

In this paper Melan's and Koiter's shakedown theorems are reviewed in the light 
of geometrically nonlinear continu~m mechanics. Material hardening is taken into account 
by using the concept of internal ("hidden") variables in the form as developed by HALPHEN 
and NGUYEN Quoc SoN [19] and applied first by MANDEL [20, 21] in the context of the 
geometrically linear shakedown-theory. Finally it is shown how the extended theorem by 
Melan . can he applied to shell-like structures and a numerical example is presented com­
paring the shakedown-domains of a cylindrical shell for hardening and ideal-plastic ma­
terial behaviour. 

2. Basic relations 

The quasi-static motion of a body fA with the initial volume "//' is described by the 
Cartesian coordinates [x1 , x 2 , -x3 ] of its material points which have at the beginning of 
the process at time -r = 0 the values [X1 , X 2 , X 3 ] used throughout the paper for reference. 
The deformation of fA can then be described by the displacement vector u, the deformation 
gradient F and the Green-Lagrange strain tensor E, defined by their components 

(2.1) u1 = x1(X)-X" 

(2.2) Fij = ,jij + Ut, j' 

(2.~) 2Eii = Fk,Fk1 - r5iJ, 

respectively. Latin indices run from 1 to 3 if not stated otherwise; summation convention 
over repeated indices is adopted. Here B is the Kronecker symbol and the comma denotes 
the partial derivative of the considered quantity with respect to the coordinate following 
the comma. We assume that the surface f/ of !A consists of disjoint parts f/ F and f/ K, 

where the distributed forces f* and displacements u* are prescribed respectively. With ­
t as the first Fiola-Kirchhoff stress tensor, p* as the given voluminal force and n as the 
outer normal vector on f/, the equilibrium conditions in "//', the statical and kinematical 
boundary conditions are given by 

(2.4) tji,j = -pi in"//', 

(2.5) n1 t11 = /;,* on f/p, 

(2.6) u1 = ui on f/K, 

respectively. For the constitutive law we assume that the total strains E can be additively 
decomposed into a purely elastic part Ee and a purely plastic part EP so that 

(2.7) E = Ee+EP. 
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SHAKEDOWN OF SHElL-LIKE STRUCTURES 63 

This decomposition, not valid for arbitrary deformation processes, has been shown 
in [18] to be justified within given error bounds in particular situations, including the 
case of moderate rotations accompanied by small total strains. This is of special relevance 
to the investigation of shell-like bodies. 

Linear kinematical hardening is taken into account by using internal parameters 
according to the concept of "generalized standard material" developed in [19] and applied, 
e.g., in [14, 20-23]. For this, generalized stresses s = [a, n], generalized elastic-strains 
ee = [Ee, w] and generalized plastic strains eP = [EP, x] are introduced. Here, a is the 
second Piola-Kirchhoff stress tensor which is related to the first Piola-Kirchhoff stress 
tensor t by Fki O'ki = tiJ. Then the codimensional vectors n, w and x of internal ("hidden") 
parameters describe the actual state of hardening (see also Fig. I as the symbolical repre­
sentation of a material element consisting of sliding-elements (dry friction) and springs 
to illustrate the role of internal parameters). 

a b c 

1T 

Fro. 1. One-dimensional representation of the material model: (a) undeformed state, (b) kinematical 
quantities in the deformed state, (c) statical quantities in the deformed state. 

In particular, we assume for the elastic part of the material law the linear relationship 
ee = if: s, or, in index notation, 

(2.8) 

The number of internal variables is denoted by r; L and Z are constant, positive definite 
and symmetric material tensors; for ideal plastic material Zmn is equal to zero. By defini­
tion we have w +x = 0, so that for processes starting from the virgin state we get w +n = 0 
[14, 22, 23]. 

For the plastic part of the material behaviour we assume the existence of a convex 
and fixed yield surface ~ in the space of generalized stresses s with 

(2.9) g;-(s) ~ 0 

for all physically admissible states of stress. Convexity and the normality rule can then 
be expressed by the COndition (s- S): eP ~ 0, Or, in indeX notation, 

(2.10) 
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64 D. WEICHERT 

Here s and eP denote the true state of generalized stresses and generalized plastic strain 
rates, respectively, whereas s is any generalized stress field satisfying the inequality (2.9). 

We note that in the context of the shakedown theory, kinematical hardening has first 
been discussed by MELAN [2]. He used Prager's hardening rule and gave a criterion for 
shakedown under the assumption of unlimited hardening. In recent years this concept has 
been used by several authors ([24], see also [6]) and the introduction of piecewise linear 
yieldconditions made problems of this type accessible to methods of linear programming 
(e.g., [7]). The assumption of unlimited hardening, common to all aforementioned papers, 
has the advantage that time-independent residual stress fields used in the proof of Melan's 
theorem and in its numerical application do not have to fulfill any requirement of static 
admissibility. From the physical point of view, however, it seems to be more realistic to 
consider an upper limit for hardening as, otherwise, certain loading cases would lead to 
an unbounded loading capacity and only failure due to alternating plasticity can be detec­
ted [6]. This problem can be tackled by checking f-or limited ductility and imposing limi­
tations on relevant parameters of plastic deformation [25]. Consequently this requires the 
computation of strains, e.g., by a step-by-step method. The method presented herein 
includes the limitation of hardening by imposing limits on the internal ("hidden") par­
ameters n. Practically this can be interpreted as a simple two-surface model for plastic 
behaviour [15, 16] where the limitation of internal parameters n is equivalent to the assump­
tion of a fixed loading surface [15-17] and the calculation of strains can be avoided. 

3. The extended shakedown theorems 

We assume that at a fixed time TR the body ~ has already undergone deformations 
with finite displacements with respect to the initial configuration at time T = 0 so that 
11 is at time TR in the reference configuration !JR in quasi-static and stable equilibrium 
with the extermil agencies aR, consisting of the prescribed loads and surface displacements. 
In the sequel we restrict our considerations to loading histories characterized by the motion 
of a fictitious comparison body PJ0 , having at TR the same field quantities as PJ but reacting, 
in contrast to f!J, purely elastically to the additional external loads L1a, superimposed on 
aR for -r > -rR. Namely we assume that f!J0 would perform under the action of L1a motions 
L1u0 in the vicinity of !JR, small in the sense that L1u?,1 ~ Ff} where FR is the deformation 
gradient of 11 in the configuration QR (see Fig. 2). Then the following extension of Melan's 
theorem holds: 

If there exists a time-independent field of generalized residual stresses se = [(ie, ~] 
satisfying the conditions 

X 

FIG. 2. Motion in the vicinity of a reference configuration. 
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SHAKEDOWN OF SHELL-LIKE STRUCTURES 65 

(3.1) 
(FfJdfct), 1 = 0 in "Y, 

niFfJ Gkt) = 0 on !/F 
and 

(3.2) §' (SR + (XiJs0 + S!l) ~ 0, a> 1, 

where sR is the state of generalized stresses in the reference-configuration and L1s0 is the 
time-dependent purely elastic response of f!l0 to L1a, then the original body f!l will shake 
down. 

For the proof given in [12] for an elastic-ideal plastic material the non-negative form 

(3.3) W(sg-se) = (1/2) J [(af1 -(11JLtJktCoit-(Jk,)+(~-n~)Zmn(n~-n~)]dV 
v 

is introduced with the following definitions: 

(3.4) 

(3.5) 

a = aR +L1ao +fiJ, 1t = 1tR +~, 

cT = aR+LJaO+(iQ, 1ts = 1tR+n!!. 

Heres = [a, 1t] is the actual state of stress and ss = [as, 1ts] is a safe state of stress defined 
by the fact that the inequality (2.9) is satisfied in the strict sense; a superposed bar indicates 
time-independent fields. Then, with L1E~1 = L11k1 LJ a~ 1 , the derivative of W with respect 
to time, W, becomes 

(3.6) w = f [(aYj- af1)(E;1 -L1 E;0

1 - E!J)- (n~ -n~)xm]dV. 
v 

Expanding the Green-Lagrange strain tensors E and E0 into a Taylor series in the vicinity 
of the reference configuration characterized by FR, and neglecting terms of order higher 
than one according to the assumption of small motions of f?4 in the vicinity of QR, we get 

(3.7) 

(3.8) 

Eu = ( l /2)(Fk~ Fk1 + Fk~ Fkt), 
L1E~1 = (l/2)(Fk~LJP;1 +Ff}LJF;t), 

where LIF0 is the gradient tensor of Llu0
• With the relations (3.4), (3.5), (3. 7), (3.8), Eq. 

(3.6) transforms to 

(3.9) W = J [F~(oi1 -(1k1)(Fu-L1Ft01)dV- J [(au-oi1)EfJ+(nm-n:,)xm]dV. 
v v 

As F and LJF0 are the rates of kinematically admissible displacement gradients, the first 
integral in Eq. (3.9) vanishes as a weak form of Eqs. (3.1). The second integral is non­
negativ·e due to Eq. (2.1) so that W is always non-positive and negative if plastic deforma­
tions occur. Hence Melan's argument holds: As W is non-negative by definition, plastic 
dissipation is linuted and so plastic flow ceases beyond a certain instant if a field sfJ exists, 
fulfilling the relations (3.1 ), (3.2). We say that f?4 shakes down in this case. 

Similarly, an extension of Koiter's theo~em [3] can be given: It says that if there exists 
a kinematically admissible plastic strain rate cycle EP-, so that the rate of external work 
exceeds the rate of dissipation due to the associated generalized plastic strain rate cycle 

eP- = (EP-, x-] 
5 Arch. Mech . Stos. 1/89 
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66 D. WEICHERT 

(3.10) J p,ui dV + J ftu; dS > J (aiJ~~- +n~x;)dV, 
v s v 

then shakedown will not occur. A kinematically admissible strain rate cycle is defined by 

(3.11) 

with 

(3.12) 
T 

J ~£;~--- dr = L1uf.), L1u~'"" = 0 on .9' K' 

0 

where T is the period of one cycle. The proof, given for an elastic-ideal plastic materiai 
in [14], is analogous to Koiter's original proof by contradiction [3]: 

HYPOTHESIS. Despite the existence of a kinematically admissible strain rate cycle 
fulfilling the inequality (3.1 0), shakedown occurs. Then there exists an admissible field 
of generalized stresses sa with. 

(3.13) 

so that F(sa) ~ 0 holds. Here L1s'"' are extra stresses induced by eP'"" in the purely elasti­
cally reacting comparison body PA0

• As sa is statically admissible, the weak form of the 
equiHbrium conditions 

(3.14) f p,u7 dV + f f,u; dS = f o11E;}dV 
v s v 

holds true for any kinematically admissible strain rate E-, defined by 

(3.15) 

(For convenience we restrict our considerations here to homogeneous kinematical bound­
ary conditions.) Transformation of the r.h.s. of Eq. (3.14) with the help of Eq. (3.13) 
delivers 

(3.16) J [(a~+L1a~1 +L1aij+Q11)Eij]dV = J (o11 Ei~ ... +n~u;)dV 
v v 

+ J [(afJ+ Gf1)E~e1- + (n! +~)w~]dV + J [(L1a~1 +LiaiJ~E{1-]dV. 
v v 

All integrals except the first of the r.h.s. of Eq. (3.16) vanish identically under the hypoth­

esis of the proof: If shakedown occurs, the integrals of Jte'"' and w'"" over one cycle must 
be equal to zero. So, as aR, 7tR, ae and 7t{l are time-in~ependent, the second integral of the 
r.h.s. of Eq. (3.16) must be equal to zero for any complete period T. To show that the last 
integral of the r.h.s. of Eq. (3.16) vanishes, Betti's theorem is applied: 

(3.17) f [(Lia~1 +L1aij)El))dV = f (LIE:1 L11k 1 L;~ua;,)dV = f LIEf;aiJdV 
v v v 

with 

(3.18) 
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Here LlEe is kinematically admissible and a- is a field of residual stress rates so that Eq. 
(3.17) vanishes as a weak form of the equilibrium conditions for a-. Replacing in the 
inequality (2.10) s by sa, we find through the relations (3.10), (3.14), (3.16) that the hypoth­
esis of shakedown violates the inequality (3.10) so that the proof is completed. 

Both extended theorems are based upon the linearization of the strain-tensors .in the 
vicinity of the reference configuration !JR for which all field quantities are assumed to be 
given. However, QR is not necessarily physically real; any stable configuration satisfying 
equilibrium, compatibility, boundary conditions and the constitutive law for the external 
loads aR may serve as reference configuration. This is particularly helpful if only vague 
information about the expected deformation pattern of fA is available. In this case we may 
define a domain of possible configurations QR and can find out if the given conditions 
for shakedown or non-shakedown are fulfilled for all fields from this domain. 

4. Applicaton of the extended theorem of Melan to shell-like bodies 

The extended theorem of Melan states that shakedown occurs if the relations (3.1), (3.2) 
are satisfied. For applications to shell-like bodies, we have to find adequate representations 
of the equilibrium conditions (3.1) and the yield-condition (3.2), accounting for the geo­
metrical particularities and their consequences on the state of stress in the considered 
bodies. As far as the equilibrium conditions are concerned we note that their work-con­
sistent formulation is material-independent and can thus be obtained directly from the 
application of the principle of virtual work, the introduction of geometrical constraints 
and the integration over the shell-thiclai.ess, if a 2-D form is required (see, e.g., [26, 27]). 
Different shell theories, in particular in the case of geometrical nonlinearity, are defined 
by introducing different geometrical constraints and/or different error-estimates which 
are the base for omitting higher order terms in the equilibrium conditions, where these 
terms are considered to be small within a chosen order of accuracy [27-31]. In the case of 
elastic shells, a commonly used base for consistent aproximations is the elastic strain 
energy density [28, 29]. This quantity, however, is of reduced meaning in the case of elastic­
plastic shells due to the fact that in contrast to elastic shells, no unique relationship between 
stresses and strains in the shell-body exists for elastic-plastic shells. Here other estimation 
measures (e.g., displacement-based · [30, 31] or work-based [27]) seem to be more meaning­
ful. However, this problem has not yet been answered conclusively. 

Considering the material law, in particular the inequality (3.2), we note that in principle 
their pointwise three-dimensional satisfaction within the shell body is required. Due to 
the uncoupling of strains and stresses in the case of arbitrary loading histories, a two-di­
mensional form of the yield-condition (3.2) is approximative even under the assumption 
of the K.irchhoff-Love hypothesis. Exceptions are sandwich shells, sheets and membrane 
shells. However, from the practical point of view a complete three-dimensional analysis 
is too cumbersome, even after appropriate discretization in general. Helpful contribu­
tions and propositions for the solution of this problem can be found, e.g., in [5, 30-34]. 
Only for simplicity, we restrict our attention in this paper to shallow sandwich-shells 
undergoing moderate rotations about tangents and small rotations about normals to the 

5* 
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midsurface F of the shell (Donnell-Vlasov-Mushtari-type); in this case the governing 
equilibrium equations derived through energy-based [28, 29] and displacement-based 
[30, 31] measures of accuracy coincide. They are given by 

(4.1) 

(4.2) 

NArlr = -pA*, 

NArBtJr+(NArwltJ),r +MArlAr= -p3* 
NAr Vr = (NAr)*vr, 

MtJrvr = (MLJr)*vr, 

m 

(NtJr wiA + MAriA)vr = (Ql)*vr on arF' 

r· 
' 

where N, M, Band ware membrane forces, bending moments, the curvature tensor and 
displacement orthogonal to r, respectively; Greek indices run from 1 to 2 and a vertical 
stroke denotes the covariant derivative with respect to the following coordinate. On the 
boundary dFF, Where Statical quantities are prescribed, indicated by ( )*, the OUter normal 
vector is denoted by v and Q is the boundary force orthogonal to r. 

To apply the theory developed in the foregoing chapter, the external loads a = 

= [p, N*, M*, Q*] must be decomposed into a constant part aR, related to a reference 
R 

configuration QR which is defined by w, and a part L1a, related to a motion with small 
amplitude in the vicinity of QR of a purely elastically reacting reference shell S0 • Then 

particular solutions [N, M] for f/0 under the load L1a have to be determined for the system 
of equations 

(4.3) 
oAT o L1rR o LJr 

N BAr+(N wltJ).r+M ILJr = -L1p3* in r· ' 
NArvr = (LJNL1r)*vr, 

(4.4) MLJrvr = (L1ML1l)*vr, 

o R o 

(NArwiLJ+MArltJ)'Vr = (L1Ql)*vr On 8FF, 
R 

for all fields w related to possible configurations· QR. If, then, the time-independent fields 

(N(!, M(!) can be found, such that Eqs. (4.3), (4.4) with vanishing r.h.s. and the yield-con­
dition (3.2) in an appropriately chosen two-dimensional form 

§' 2 ( [NR +aN+ Nfl], [MR +aM+ Mfl], [nR +itf!]) ~ 0 

are satisfied, then the considered shell will shake down. The application of the sandwich­
model in our case guarantees the exact satisfaction of the yield-condition (3.2) if, alone, 
the upper and lower layer of the shell are checked. 

As a numerical example, we consider a short cylindrical sandwich shell of length L, 
radius R, wall thickness 2H, clamped at both ends, under variable internal pressure 
p = pR + L1p, L1p = upR (Fig. 3). 

Two different kinds of material behaviour are investigated (Fig. 4): 
(i) elastic-ideal plastic behaviour with uniaxial yield limit as, 

(ii) elastic-plastic linear kinematical hardening behaviour with the yield limit aF and 
ultimate loading limit a,. 
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£=2.1><10 7 N/cm 2 

R/L= 10 
V=0.3 
R/t=200 

FIG. 3. She)] under internal pressure. 

·~-----------------
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2R 

FJG. 4. Uniaxial stress-strain curves of the material model: (a) elastic-ideal plastic, (b) elastic-plastic har­
dening. 

Both initial yield surface and ultimate loading surface are assumed to be of the von 
Mises-type; we assume the elastic modulus E, Poissons's ratio v = 0.3, the uniaxial yield­
limit (]11 and the ratio asfaF to be given. Here we use the reference configurations QR deter­
mined by a geometrically non-linear incremental method. We see in Fig. 5 that the shake­
down domains are bounded by two families I and II of curves a, b, c and 1, 2, 3, char­
acterized by different values as and a8 faF, respectively. Family I defines the shakedown 
limits due to alternating plasticity and we observe no significant difference between geo-

0.5 b 

c 

0.5 

(1) Geomefr. linear 
(2} 6r =3.6·10"N!cm2 

(3) ur = 1.08 ·10 5N/cm2 

1. 0 

FIG. 5. Shakedown domains. 

1.5 

(a) No hardening 
(IJ } 6s/6r=3/2 
(c ) 6s/6r = 2 
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70 D. WEICHERT 

metrical linear and geometrical nonlinear behaviour (this agrees with observations in [25]). 
Family II describes the shakedown limit due to incremental collapse and here no signifi­
cant difference between kinematic hardening and ideal plastic behaviour can be observed. 

In our example, the geometrically refined analysis enlarges the domain of admissible 
loads for the mathematical shell model but we note that in other cases a contraction of the 
shakedown domain may be observed. 
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