ERRATA

Growth of voids in a ductile matrix: a review

P. GILORMINI, C. LICHT and P. SUQUET, Arch. Mech. 40, pp. 43-80, 1988

Since all the corrections indicated in the proofs of the paper could not be included by the
editor, the authors wish to point out the following errata to the reader. (Some additional
minor misprints are not listed, for the sake of brevity.)

Page 45: lines 13 to 30 must be moved to page 44, above 1.2. Damage and microme-
chanics, and n; should be changed into #; in Eq, (1.3).

Page 47: the last line above 2. Isolated Voids should be read as follows: ties, by J. Rice,
B. Budiansky, J. W. Hutchinson, A. Needleman, and their coworkers. A comma should
replace the full stop at the end of 6'" line from the bottom.

Page 48: a / is missing between /e and (X, ], and a 2 has been omitted between or
and (X, > in line 17.

Page 49: remove the a before generalized in line 11,
Page 53: change is into was in line 8, and € into & in Eq. (2.5).

Page 57: change /); for into /), for in line 6; the beginning of line 21 should be read as
to which a viod will tend has been etc.; replace ligh by high in line 23.

Page 61, Eq. (3.4): read 5" = sl(s—!) instead of s’ = s(s—1I).
Page 63: change 0.01,0.4 into 0.0/ —0.4 in line 7.

Page 66: change in into into (line 17), remove the comma after i) approximate expressions
(line 16), and add one after uniform strains in the footnote.

Page 67: read ii* instead of @* in the 2" equation and instead of *i* in the 5',

Page 68: read s” = s/(s—/) instead of s’ = s(s—/) in the 4'" equation, close the paren-
thesis in the 6'", and change ), into)), in the last line.

s 1
s—1 s—1

3 3
Page 69: ¢, = =5 should be replaced by ¢, = — G

Page 71: substitute E to Exﬂ two lines below Eq. (6.19).

21 2 P

Page 77: % must be replaced by —f in line 15, and E;3 by E3; at the bottom of
a P

the page.

Page 79 substitute dilatation to dilation in ref. 3, solids to solid in ref. 5, and composites
to composities in ref. [11].

Page 80: substitute voids or inclusions to voids inclusions in ref. [17].
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On the stress distribution in strongly anisotropic plates

A. BLINOWSKI (WARSZAWA)

A sysTEM of INFINITE equations of a transversely isotropic plate of arbitrary thickness is pro-
posed. Solution of the system expressed in terms of displacements satisfies the local equilibrium
conditions, normal loading conditions in integral form, and modified boundary conditions
across the thickness of the plate. Solutions in the form of infinite series are found for three prac-
tical cases and finite formulae for the model problems (loads having the form of eigenfunctions
of the Laplace operator are given). In strongly anisotropic plates of large thickness-to-span ratio
(of about 1/5) normal stress distributions considerably differ from the linear ones, stress maxima
are higher then those predicted by the simplified theory, and the corresponding deflections are
substantially different. The differences increase with increasing rigidity of the supports. Limits
of applicablity of the simplified “engineering” theory are estimated.

Zaproponowano uklad nieskonczonych réwnan plyty transwersalnie izotropowej o dowolnej
grubosci. Rozwigzania uktadu w przemieszczeniach speiiaja lokalne réwnania réwnowagi
i catkowe warunki obcigzén normalnych oraz zmodyfikowane warunki brzegowe po grubosci
plyty. Znaleziono rozwigzania w postaci szeregow dla trzech zagadnief praktycznych oraz,
zadane skoficzonymi wzorami, rozwigzania zadan modelowych (przy obcigzeniach w postaci
funkcji wlasnych operatora Laplace’a). Pokazano, ze dla plyt o silnej anizotropii przy niewielkich
rozpigtosciach (rzedu 5 grubosci) rozklady naprezen normalnych po grubosci istotnie roznia
si¢ od liniowych, maksymalne wartosci naprezen zauwazalnie przewyiszaja przewidywane
przez teori¢ inzynierska, a ugigcia réznia sie drastycznie od przewidywanych w modelu inzy-
nierskim. Roznice sa tym wigksze im sztywniejszy jest schemat zamocowania (przy zachowaniu
rozpig¢tosci i anizotropii). Oszacowano granice stosowalnosci inzynierskiego modelu.

IMpennoyena cucrema GECKOHEYHBIX YPABHEHHI TPAHCBEPCAJILHO-M30TPONHBIX ILIACTHH
IIPOM3BOJIbHOH TomnuHbl. PemieHusi B nepemeIleHHsX YHAOBIIETBOPSIOT JIOKAJIbHBIM YpaB-
HEHHUSIM PABHOBECHST , HHTET' PAJIbHBIM YCJIOBHAM HOPMAJIPHOH HAaTPY3KH X MOAN(HLKPOBAHHBIM
KPaeBBbIM YCJIOBHMAM MO TOJUIMHe ruiacTuHbl. Halinenb! peureHsss B BHAE PSALOB JUISI Tpex
[IPAKTHYECKUX 3a/]aY, a4 TAKXKe PeLIeHHUsT, BhIpAaXKaeMbleé KOHEYHbIMH dopMynamu st Mo-
OeJIPHBIX 3a/1au (MpH HAarpyskax B Buje cobcTBeHHBIX GyHKIHI oneparopa Jlamnaca). IToxa-
3BIBAETCA, UTO JNA CHJIBHO 2aHU3OTPONHBIX IUIACTHH NPH HEGONBIINX IIPOJETaX — MOPSIKA
5-H TOJILMH, PacHpeAcIeHHA HOPMAJIbHBIX HANPSHKCHMI 110 TOMIIMHE CYLIECTBEHHO OTJIH-
JaloTCs OT JIMHEHHBIX. MaKcHMaslbHble 3HAYEHHSAX HOPMANbHBIX HANpPSIKEHHI M mporuGoB
CYIIECTBEHHO OT/IMYAIOTCA OT BEJIMYMH Npe/CKa3aHHbIX MHYKEHEPHOIl Teopucii, B Ciryuae
NporH0OB 3TH pPe3yibTaThl Booblue HecomocTaBuMbl. HaGmiojaemble pasauuMsi TeM GoJiblile,
UYEeM YKECTUE CXeMa 3aKPeIJICHUA IIACTHHLI. ITpon3BOANTCS OlleHKa IPefesioB IMPUMEHHMOCTH
HHYKEHEPHOIT Teopuu.

1. Introduction

IN PLATES and shells made of laminates and fibrous composites the shear moduli corres-
ponding to the shear deformations which do not change the length of the reinforcement
fibres, differ from the Young modulus corresponding to tension parallel to the fibres by
at least one order of magnitude. Non-applicability of the Love-Kirchhoff hypothesis
to structures of such kind may easily be demonstrated in the limiting case described
by e.g. SPENCER [1], i.e. in the case of inextensible reinforcement fibres, when the entire
normal stresses acting in cross-sections of a layer subject to bending are transmitted b
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infinitesimally thin surface layers. PIPKIN and EvVERSTINE considered in paper [2] the
problem of bending of a cantilever beam, reinforced by almost inextensible fibres and,
using the boundary layer method, obtained quantitative results indicating a strong stress
concentration in finite surface layers and a considerable contribution of shear deforma-
tions to the resulting beam deflection. The considerations remain practically unaltered in
the case of cylindrical bending of a layer.

In the present paper a model will be proposed, enabling effective solution of the prob-
lems of bending of transversely isotropic layers and avoiding the necessity of utilization
of the hypothesis of linear displacement distribution across the plate thickness. The
model proposed, based on power series expansions of the displacements, is the result of
unsuccessful attempts aimed at refining the simplified, “engineering” model by means
of polynomial representations. Final results of the procedure make it clear that they
probably could have been derived by applying to the anisotropic material the procedure
used by A. I Lurie [3] in the analysis of isotropic layers of finite thickness and thick
plates.

This possibility was exploited by S. G. Lexunitskil [10] who, by applying an entirely
different approach, derived the equations of infinite order for several functions which'
could be used to express the displacement field of a transversely isotropic infinite layer.
For a particular case of a layer acted on by transversal forces, the set of functions reduces
to a single function, and a series of operator functions — to a series of operators. It seems,
however, that S. G. LekHITSKII reducing the general problem of antisymmetrically
loaded plate to the problem of a plate loaded by transversal forces, unnecessarily narrows
the class of solutions to potential displacement fields (e = 1, 2) by assuming two of the
three displacement functions sought for to vanish, while it would be sufficient to assume
that they satisfy certain infinite differential equations. It is not clear, however, if it would
then be possible to avoid the series of operator functions (that is, actually, double operator
series). Unfortunately, S. G. LEKHITSKII does not suggest any practical methods of
solution of the boundary value problems, or even any methods of determination of the
displacement function for infinite layers. The approach to be proposed here resembles
also that presented by L. H. DONNELL [4] but cannot be considered as its generalization
to anisotropic materials.

2, Remarks on the simplified theory of transversely isotropic plates

In order to draw the attention of the reader to the “classical” assumptions and their
influence on the form of the S. Germain equation in the case of transversal isotropy, let
us follow the natural course of derivation of the simplified plate theory consisting in inte-
gration of the local equilibrium equations across the thickness of the plate. Other methods
of derivation do not expose so clearly the role of the consecutive assumptions.

Consider a plate of thickness 24, its middle surface perpendicular to the x;-axis which
is parallel to the distinguished direction of transversal isotropy, Fig. 1. The constitutive
equations written in the Cartesian coordinate system {x;, x,, x3} have the following
form (cf. [5, 6)):
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.

e
/

X1

F1G. 1. Plate scheme, reference frame.

Oup = (& +P33) Oup+ 215 &g,
(2.1) Ouz = 21 €a3,
033 = 6833+ﬁ3w,
where Greek indices take the values 1, 2, repeated indices denote summation. No assump-
tions are made concerning the values of elastic constants «, 8, 8, uy, 4, as yet, though
they should obviously satisfy the conditions of positive elastic energy and non-negative
Poisson’s ratio. The cases when the shear modulus y; is smaller than the remaining elastic
moduli by at least one order of magnitude will be of special interest in the analysis to
follow.
Transversal deflection of the middle surface will be denoted by w(x,, x,), and normal
load applied to the plate — by P(xy, X,).
In order to obtain the equations of the simplified plate theory it is necessary to make
the following assumptions:

(a) o33 = 0 plane stress condition,
(b) | 32l un = 0
=0 no tangential load condition,

(© Uy = —X3W, straight normal condition.

Here f, are components of body forces acting in the plane of the plate; comma denotes
differentiation with respect to the corresponding Cartesian coordinates.
Condition (a) yields the following form of constitutive relation for ous:

2
(2.2) Cup = (d—-“%—) Epy 651;3 +2,u2 Eafp
Equations of equilibrium are written in the form
Oappt0a3,3 = 0,
Ou3,a+033,3+f3 = 0.

On multiplying the first equation by x; and integrating by parts over the interval
(—h, h) (condition (b) being used), we obtain

(2.4 My, 3—Se =0,

@.3)
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where
h h
M, = fo‘aﬁxsdx;,, Sy = faasdxa.
n Zh

Integration of the second equation (2.2) yields the relation
(2.5) Sa,q,+P = O,
where

h
P50'33|x3=,,—0'33|x3=_,,+ ffsdxs
Zh

is the normal load of the plate.

Substituting Eq. (2.4) into (2.5) and writing 0,5 (and then M,;) in terms of the deriva-
tives of displacements u,, and later, due to condition (a), in terms of the deflection deriva-
tives, we obtain

2.6) 2 Doddw = P,
where Dy = (a+2u,—f3/8) k3, and 4 is the two-dimensional Laplace operator.

The reason why the plate rigidity is denoted by (2/3)D, and not, as usual, by D, will
be explained later. The inconsequent assumption of o,3; (and hence of S,) being different
from zero, despite the condition (c), will be not discussed here.

Let us stress the fundamental role of the assumption (a) which makes it possible to
express the stresses o,; in terms of the derivatives of displacements u,, and thus to reduce
the problem to a two-dimensional one. Rigorous analysis would lead to the conclusion
that assumption (a) implies the entire normal load to consist of suitably selected body
forces. All a posteriori “implanted” stress distributions ¢35 making it possible to satisfy
the actual loading conditions at surfaces x; = +# are of a rather “cosmetic” character,
since (1) — they violate either the constitutive relations (e.g. it is assumed that g = 0),
or the equilibrium conditions or, finally, the Beltrami—Michell equations; (2) — they are
of no practical meaning from the point of view of the material strength conditions deter-
mined mainly by the normal stresses due to bending. Similar assumptions constitute
the basis for the Reissner theory; however, replacement of assumption (c) by a weaker
assumption of linear distribution of stresses throughout the thickness of the plate makes
it possible to take into account the effect of shear deformations upon the value of plate
deflection.

3. Differential equations of infinite order

In order to describe actual stress distributions in strongly anisotropic plates it is neces-
sary to discard the hypothesis of linear displacement (stress) distributions across the plate
thickness.

There are no reasons for replacing the linear distributions with e.g. cubic ones (or of
any other particular power); to the contrary, it is probable that hyperbolic functions
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should be involved, cf. [2]. Thus let us keep all powers in the MacLaurin expansions of
the displacement fields expressed as functions of x;. Let

° o\ 2K+
w=—h Yoo, (2]
k=0

£ 2%
S X
U3 = g’(k)(.\] Y xz) (’f) .
k=0

Making use of the fact that every three-dimensional vector field may uniquely be repre-
sented in the form of a sum of potential and solenoidal components, let us write (in two
dimensions) the formula

3.1)

R
where
€1 =€, =0, €, =—6;=1,

and @'®, @"'® are certain scalar-valued functions. Let us assume the condition ¢35 = 0
to be satisfied at each point of the body, i.e. the condition analogous with that used in the
simplified theory.

It will be satisfied provided the relations hold true

h2g Ad'®

k+1) _ ° F _

(3-3) # o (2k+2)

Moreover, assume the first two equations of equilibrium (2.3) to be satisfied for o« = 1, 2.
It should be noted that the equations are to be satisfied locally, at any point, not in the

integral form. By evaluating the corresponding fields and performing the necessary differ-
entiations we obtain

(3.9 (D1 AD'® + @'k +3) 2k +2))
2
+(h52 A@fk""+(1§f}§"+l’(2k+ 3) 2k + 2))6‘,}3 =0,
1
=05 162y vony 003
where

h2
D=2 | 8 e

In view of the uniqueness of decomposition into the potential and solenoidal parts, both
expresions in parentheses in (3.4) must simultaneously vanish.

Let us finally assume the surfaces x; = +/to be free of shearing stresses, 013\“: s = 0.
The latter condition is satisfied provided

(3.5) D Ck+1DDP+ D PR D 2k + DPIPE,; = 0.
k=0 k=0 k=0



42 A. BLINOWSKI

Relations (3.3), (3.4), (3.5) enable us to express all functions @'® and ¥® in terms of
derivatives of a single function F(x,, x,), and all functions @"'® — in terms of derivatives
of another function G(x,, x,).

Without going into extensive and tedious transformations, let us present the final
formulae for displacements.

_ (—1* (x3)2“+1( ®) PPRALC )
_h2(2k+1)‘ e D’fAF_a‘i‘eaﬁ Ih AGnB §

_y Ly P AGAEN N
"3‘k=0 el |mr "8 \w) |AF

(3.6)

Function G must satisfy the relation

3 (-1)“(Mzh’)k"" }
37 <@\ ) 9=

In Eqgs. (3.6), (3.7) symbol (Zl) denotes k-tuple application of the Laplace operator.

Careful readers may observe that the consideration could have been started from the
Egs. (3.6), (3.7) since, what can easily be seen by substitution, the displacement fields
written in the form (3.6), with the additional condition (3.7), identically satisfy the original
postulates

@) 033 =0,
(3.8) (b) Oup.p+0uz,3 =0,
(©) Oxsly sy = 0-

Equations (3.6) and (3.7) have been derived from the assumptions (3.1) and conditions
(a’), (b’), (¢’) and hence it seems that they should constitute the sufficient condition for
simultaneous satisfaction of Egs. (3.1) and (3.8); the problem of necessity of that condition
requires additional analysis which, however, will not be dealt with in this paper. Observe
moreover that Eq. (3.7) allows for a trivial solution G = 0, though non-trivial solutions
may also be found: let, for instance,

(3.9) G(x,, x;) = Aexp (ﬁaw%)
Then
= k — T 1
w0 Scorfn] i oly/ 5o
( ) g( ) ‘ulh (2k)! cos h b2 G,

so that Eq. (3.7) is satisfied provided

1 1 @Qu+D)a? g ~
(3]1) 2 S b2 = —4}12— "u—z (n == 1, 2, )
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In accordance with the postulate (3.8 a") the third equation of equilibrium is reduced
to the form
(3‘12) Ua3,a+f3 = 0.

Stress o,; may be found if the displacements are known, hence the following relation
must be satisfied

13 fo= 2o Mo (2)] (- 1}Df AF

) ¥ h h 2k+2)! -

k=0
It is seen that satisfaction of Egs. (3.6), (3.7) is possible at the expense of impossibility
of applying the normal loads in an arbitrary manner: they must be replaced by body
forces suitably distributed across the thickness of the plate. We shall return to the problem
later, new let us concentrate upon the determination of function F(x,, x,).
Integrating Eq. (3.13) over the thickness and keeping in mind that ¢35 = 0 we obtain

the following differential equations of infinite order for the function F(x,, x,):

%+2 kD)
1k k
(3.14) i, E( D TR AF = P.

It is easily observed that by retaining the first term of the series (k = 0), Eq. (3.14) reduces
to the Sophie Germain equation (2.6). Function F is determined by Eq. (3.14) to within
the accuracy of at most one biharmonic function which makes the left-hand side of the
equation identically zero; similarly to the Eq. (3.7), non-trivial solutions of the homo-
geneous equation (3.14) may also be found like, for instance, a function of the type of
(3.9) under the condition that

Yol ) -y/olde

Relation (3.13) will be discussed in the following section.

4. Solution expressed in therms of eigenfunctions of the Laplace operator

Let the functions f,(x;, x,) (n = 1,2, ...) constitute a set of independent eigenfun-
tions of the Laplace operator corresponding to negative eigenvalues — 17,

(4.1) Afy = =1 f,.

Let the load P be represented in the form of a series of eigenfunctions

(4.2) P(xy,x) = ) Pufalxs, o).
n=1

Function F(x;, x,) will be sought in the form of an analogous series

(43) F(x.[ H x2) = Zann(xl’ xl)'
h=1
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From the property of mutual independence of functions f, it follows that the infinite order
equation of the plate theory (3.14) will be satisfied if equations

4.4) oF, 2%+2 pujanes - p
4 @k+3)!

are fulfilled for any », what implies

P, D? 1
2Dy p.(y.chy,—shy,)’

(4.5) F, =
where
VYn = |/1—);l,,, Ay = 1/1? = 0.

Substitution of the representation (4.3) into the formulae for u, and u; and summation
of the series yields

% Sh(y" h) X ho( x5\
46 ”2 , E,f".a—h(f)m.ﬁg(f) Dy AFy.e,

L Y[y, B ()]s
(4'7) Uz = D1 ~ [ﬂjh Ch}’n (5 h Yn h nf;l

1| Do mp 2
ey =Y () Jare
where AAF, = 0

In Egs. (4.6), (4.7) it was assumed that G = 0, and terms other than the biharmonic
ones resulting from the homogeneous equations have been disregarded. This is due to the
fact that the known solutions of (3.7) and of the homogeneous equation derived from (3.14)
are eigenfunctions of the Laplace operator with positive eigenvalues. Taking them into
account would lead to trigonometric functions of argument y,x;/h appearing in the for-
mulae (4.6), (4.7). Such case will not be considered in this paper. Displacement ficlds
(4.6), (4.7) correspond to the following stresses, moments, transverse shears and body
forces:

h 5 2 D
4.8) oy = D, 2 Fl,,y,lsh(y,1 };13—) [(a—%)f,', Oup — z'uz—y;—f"'“ﬂ]
n=1 B
h
—/1();3) [( %)AFoéaﬁ*FzﬂzFo aﬂ] !-;2 (h) D, AF, 45,

= Do S _chly. 22 1. Do (xa)
(49) Ou3 = 71“DT — IChyn Ch(yn h )]an;na 2 h [1 h AFO s
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2/ «Chy,—shy, 2u,D
4.10) M _-—?—Z ”-C—”y——sl F, [(a—ﬁ*)fn Onp — ﬂ; ‘f.,aﬁ]

2 2 W
_?hB [(a—%—) AFO 6&/3 +2’l,2 Fo,aﬁ:l + TS— /1:2 DIAFO,o!ﬁ;

D nhn hn
(4'11) S“= 2 0 'VC }’y S Y4 F,,,,q *DOAF()&,

(412) 3 Dzh 2 Vn [Ch‘}/“ ch (}'n h )] n./;i

Substituting here the values of F, from Eq. (4.5) we may write also the relations (4.6)-(4.12)
in terms of P,.

This is a suitable moment to return to the problem of estimation of the error resulting
from the artificial scheme of application of the load enforced by the model. Let us first
estimate the possible values of coefficients D; and y,. Elementary but time-consuming
transformations lead to the following relation

E.h?

2
1-v;,

4.13) D, = ;
where E; is Young’s modulus corresponding to simple tension in the direction perpen-
dicular to that of transversal isotropy, and Poisson’s ratio v, relates the strain measured
in the direction perpendicular to the tensile forces (and the distinguished direction) with
the strain measured in the direction of simple tension: for instance, in case of simple
tension parallel to the axis x;,

611 = Ereyy4
(414) 11 L°11

€22 = —VrL&11-
If the plate considered is reinforced by fibres perpendicular to the x;-axis, and Young’s
moduli of the reinforcement exceed by orders of magnitude the corresponding moduli of
the matrix, the first rough estimate yields the results

E; ~ kE,,
(4.15) 11—k
1231 ~ Mm ’

where k is the volumetric percentage of reinforcement, E, — Young’s modulus of the

reinforcement material, uy — shear modulus of the matrix material. If u, <€ E;, we may

write

Dy, | k(1-K)E,
h "~ (I—J’f.L)MM

Assuming k = 0.2-0.3, v, = 0.3, Ez/upm ~ 3-102, we obtain a reasonable estimate

1 & 50 h? (ratio Ez/uy =~ 3+10% corresponds e.g. to carbon fibre reinforced epoxy
resin [3]).

2

(4.16) D, ~
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For a simply supported rectangular plate the following set of eigenfunctions of the
Laplace operator may be used:

. MAX; . ATX,
Jom,m = sin -sin ;
h I

where 1,, I, are dimensions of the plate. Then we obtain A,y = }/1/I7+1/I3, and with
!, = 1, = 10k (h denotes one half of the plate thickness) we finally obtain A¢,q, =
AV 210k, y.p = .

In case of circular symmetry (circular plate clamped at the circumference)
fo = Jo(Ayr/a) (cf. Sect. 5, Example III), J, denoting the Bessel function of order zero
and A, — consecutive zeros of the Bessel function of order one (J;(4,) = 0), taking
a = 5h for the previously determined value of D, we obtain y; = 5.419.

Assume now that in a certain case we obtain y; = 5 and Dy = 50 h2. On the basis
of the previously discussed results, such values should be considered as extreme and cor-
respond to thick, rigidly clamped plates. Let us estimate the order of magnitude of the
ratio of mean normal stress at the surface to the applied load P. With reasonable accuracy
this ratio may be replaced by the ratio of the first terms of the corresponding expansions

Oua o Dy Do—pz thy, _ Dy 14w, thy, 00
2P © h* 2D, y,—thy, h* 4  y,—thy, T T

4.17)

This means that, in extreme cases, surface load does not exceed 25%; of the mean stress at
the outer surfaces x; = +/A. Without committing any considerable errors in the evaluation
of material strength, the stress field obtained may thus be modified by “implantation”
of the stress field o35 locally satisfying the third equilibrium equation and the surface
conditions corresponding to the actual loading scheme of the plate. If, for instance, the

plate was loaded at the surface x; = —#A, the suitable assumption should be
RN %”"Ch”"_Sh(”%)
(4.18) 033 = 5 P, vchy.—shy, —1\|f

n=1
The following equalities hold then true
033lx3=—n = P,
4.19) U33|x3=h =0,
Ou3,at 033,53 = 0.
To improve the accuracy, field 0,5 should be completed by the term o,
(4.20) Oup = B/0033 = 03397 /(1—7Ly),

where v, is the Poisson ratio governing the strain in the plane of isotropy under simple
tension parallel to the distinguished direction. Obviously, such stress field usually does
not satisfy the first and second equilibrium equations; however, the error committed is
the smaller, the smaller are the derivatives of P with respect to variables x,, and the smaller
is the constant S as compared with d.
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Observe, moreover, that if the fictitious body force distribution simulating the load
were of the form shown e.g. by Fig. 2, a risk could arise of generating fictitious normal
stresses of the order of

B18) [ fixi, xz, ).
0

If, however, f; is expressed in terms of P, (by inserting (4.5) into (4.12)), we obtain

o - *3
1 y,.[ch Yn—C¢h (?.. = )]

2 = :
@.21) fs =3, s vy Prfa

X3

B |

FI1G. 2. “Pathological” loading of plate by fictitious body forces.

Coeflicient of the term P,f, at the middle surface of the plate lies within the interval
(1, 1.5) for any value of y,, so that except for certain “pathological” cases (this author is
unable to suggest any example), replacement of the actual load with fictitious body forces
is equivalent to the transfer of the loads from the outer surface to the region of the middle
surface of the plate.

5. Examples

I. Rectangular plate simply supported at the edges (Fig. 3)
For loads given in the form

. mux, . nmx
(5.1) P = P, n»sin ——L sin — %
Il 12
X2
l4
Y S S E i
| |
| |
! n
| Py
*1

Fi1G. 3. Simply supported rectangular plate.
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and with F, = 0, G = 0, we obtain

X3
PwmD (”‘"""’ h )

5.2 Oup = h
( ) . 2DO Yim.n) ch Yin,m — sh Yan,n)

,32) . N7X, P, ( . mMAXy . NAX; ) ]

X || e——]sin ! sin Oup — 2 sin sin 5
[( 11 L, ot fa V(zm.n) 2 L af

(5.3) sin 2% gjn X2

W= P(m,")D% 11 lz

2DO Yim, u!(?’(m ) th Yim, n))

where

m*  n?
Yim,m = ﬂl/D1 (?*‘Tg) .

Here w denotes the plate deflection at x; = +4; according to the simplified theory
this is the deflection of the middle surface. In the present model this is not true, the differ-
ences being, however, of secondary importance.

Assuming similar load within the framework of the simplified plate theory (SPT), the
following results are obtained:

3 Dl X3 P (m,n)

4 =
(5.4) OupB(SPT) 2 D, V(Zm.n)

ﬂz) . N7X, D, ( mnx, . N7X, ) ]
X lo— sin XL gin TT*2. Sup—2, sin— — sin "
[( ll lz Mo y(m n) ll 12 B

3 DiP . mMAX; . NAx
14 (m,n) sin 1 si 2 .

5.5 W, = — n
( ) e 2 DO ??m. n) 11 12
Introduce the notations
_ Wern  _ 3Yem—thyem,mn)
(5'6) C(m,n) = W = ?(3111.:1) L)
X3
3 m,n. )
G.7) oy = P _ fim, )( h Yom,m Y n, m) = Sh Yiom, w
. m,n) — - 3 3
Ca sh (J’(m. n %) Fighuh

It is easily seen that for yim,»y — 0, i.e. for the plate of infinitesimal thickness, both magni-
tudes tend to unity. By disregarding the summation signs in Eqs. (4.7), (4.8), (4.10) it is
found that the assumed form (5.1) of the eigenfunction yields the following identities:
Uslag = 0,

(5.8 Oaphalgloa = 0,

Musnanglog = 0.
Here n is the unit vector normal to 2. It means that the boundary conditions of free
support of the plate edges (rectangle /, x /,) are satisfied.
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We are not going to discuss here the problem of non-vanishing twisting moments since
it has been extensively discussed within the framework of the classical plate theory, and
the present model does not contribute anything new to the problem. Obviously, result
(5.8) remains valid if the load is represented by a finite sum of expressions of the type of
(5.1), or even by an infinite series, provided the corresponding series for u; and g, are
uniformly convergent in the neighbourhood of the boundary of the region, thus securing
the continuity of the corresponding functions at points approaching the boundary (for
points lying at the boundary they are identically zero since all terms of the expansion
vanish).

The case of a constant load may be represented in the from

w (2m Dax, . (2un—1Dax,
16P L g
PR M)
) Plxy, %) = Cm—1)@2n=1)
(cf. [8], p. 52, Eq. 1.442,1); it means that
16P 1
, P, e . B
(>:10) mm = 22 @m—1)@2n—1)
and
2m—1)2 (2n—1)>
(511) Ym, n)—nl/Dl((m ) +(nlz ) )
2
Finally,
X3
(5.12) a0y = IDiP —1 2 Sh(”‘"""’T)
‘ T wDy Ld L4 (2m=1) 28— 1) Gomm O Ym0 — 5D Ve )
- B B
ol g ,8 i 2m—1)7x, i 2n—1)7x, bus
L L
D, ( @m—1)7x, . (2n—1):zx2) ]
—2u; —%-—|sin ——————sin ———= )
e y(zm,n) 11 { N7
- Slrl(2m—I1):1x1 it (2n—-ll)7rx2
EOR 3P N
) 2D, @m=1) @1=1 pommomm— B 7emm) *

Series (5.12), (5.13) and those corresponding to u, and M, (not given here) are uniformly
convergent in the neighbourhood of the boundary since the series of expansion coeffi-
cients are (at fixed values of m or n) absolutely convergent.

Distribution of stresses across the thickness of a square plate at point x, = x, = /218
shown in Fig. 4 a for the case of D, = 50 A2, [; = [, = 10h. For comparison, the distri-
butions corresponding to the first harmonic term (m = n = 1) is also given, together with
the values corresponding to both cases and resulting from the simplified theory. In Fig. 4 b
is shown the variation of horizontal displacements across the thickness. The simplified
theory is seen to yield the stresses less by about 30%, from those following from the model
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X34
A4

-

[ L I SR SR S S
0 Gap 0

FIG. 4. a. Normal stress distribution across plate thickness at the center of a simply supported square plate

(upper part; lower part antisymmetrical); conventional units. 1 — constant load, simplified model, 2 — con-

stant load, proposed model, 3 — first harmonic term (load P sin(7x,/l)sin(zx,/l)) simplified model,
4 — first harmonic term — proposed model.

b. Horizontal displacements « for x, = //4, x, = //4 Conventional units (lower part — antisymmetric):
1 — constant load, 2 — first harmonic term.

proposed here, the latter being supposed to be more accurate. The difference in displace-
ments is substantial: for uniformly distributed load the displacements are 4.417 times
greater than those following from the simplified, classical theory, and in the case of load-
ing by the first harmonic term this ratio is even greater, 4.818. These numbers should
not be considered as surprising if we realize the fact that the simplified theory does not
account for the effect of shearing stresses on the plate displacement; this effect should
be of primary importance in the considered case of small value of x, and under the as-
sumed loading and support conditions.

II. Cylindrical bending of a plate strip (infinite cantilever plate)

Consider the plane problem shown in Fig. 5. In absence of the normal loads relation
(4.5) is useless. However, the expression for the moment M, distrubution may readily
be written in the form

(5.14) Mll — S(x;—l).
Assume G = 0, function F will be sought in the form
(5.15) F= ZF,,cos ~(L+2})—”ﬁ 4C)

whence
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FiG. 5. Plate strip (infinite cantilever plate)

Displacements are written as follows:

©\
_ h \ V' 2n+ Dnx,
16 =YD Z_OF h(”" h) R

1 V[ po g ( xs) Qn+1)ax,
(5.17) u3—7)-1-;F,,[—’uTh-chy,, 5 et 32 [eos SR 4,

so that, in view of the fact that u, = 0, we obtain

3 (@n+1)ax,
el R ™= h2D ZF“’"Sh (”" ) a
Integration yields the result
(5.19) --2D-° YF ( - lp’-"-)cos Gyl
Va 21
Using the formula (1.444,6), p. 53 in [8](})
O cos(k+ 1 a [= )
—_— = = -7 < JT.
(5.20) % kT 1) i (2 |x| for n<x<m
formula (5.14) is rewritten in the form
(2k+l)7zx,
SIS Z
21 = —
(5 ) Mll (2k+ 1)2
Comparison of the relations (5.19) and (5.21) leads to the formula
SD? 1

(5.22) F,=—

DOI ')"n()’n ch Yn— sh yn) '

(*) This formula given in [8] is erroneous, summation should start from k¥ = 0 and not k = 1, cf.
the formula (0.234,2), p. 21 in that book, for x = 0 both the formulae should be identical.

4%
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On substituting this results into the Egs. (5.16), (5.19) it is readily found that the
corresponding series converge and satisfy the following boundary conditions:
Mlllx1=[ =0,

ua|x1=o = 0.

(5.23)

The problem of series (5.18) determining the stress o, is slightly more complicated.
Beyond any doubt, it diverges at x; = 0 thus reflecting, as it could be expected, the singular
character of stress at the clamped corner of the plate. Let us replace a non-trivial discus-
sion of the behaviour of that series in vicinity of the point x; = 1 with argumentation
based on “experimental mathematics” and refer to Fig. 6, where the numerically deter-
mined maximum stress value is shown for D; = 50 k2, = 10 h. The curve was plotted by
summing up 100 teims of the series (5.18) at 100 points. Thus the following boundary
condition is satisfied

O1aly,=1 =0,
M11|x1=l =0.

Let us finally consider the condition for vertical displacements u; at the cross-section
x; = 0. This condition cannot be satisfied for the entire cross-section for any value of C,
let us demand it to be satisfied for w= u3«, - 14

(5.24)

Gt

FIG. 6. Deflection and stresses in a plate strip. 1 — deflection — simplified model, 2 — deflection — pro-
posed model, 3 — normal stress at the surface — simplified model, 4 — normal stress at the surface — pro-
posed model.

Suitable choice of C leads to

W SDi 2
Dol &t ya(yn—thy)

(5.25)

Diagram of the function w is shown in Fig. 6 together with the graphs illustrating the
behaviour of the deflection and stress o msx as determined by the simplified theory. By
replacing the condition #; = 0for x; = 0 with the condition w = 0 for x; = 0, the original
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problem is replaced with the right-hand side of the problem shown in Fig. 8. It should
be noted that the stress variation across the thickness at x, = 0.1 shown in Fig. 7 does
not substantially differ from that derived from the simplyfied theory. The corresponding
diagram for x = 0.5 / is not given since both curves for ¢y; and oy;spr are practically
identical. Slightly larger differences appear as far as displacements are concerned but,
in spite of similar geometric dimensions of the present problem, they are much smaller
than the differences established in the previous example. It may easily be observed that if

X3
h4
/2
| 1 | | 1 1 1 L
0 G11

F1G. 7. Plate strip. Stress distribution within the thickness for x, = 0.1 /. Upper part of the plate; lower
part antisymmetrical. Conventional units. 1 — simplified model, 2 — proposed model.

the cantilever plate considered here was loaded at its end by a moment instead of the
vertical force, the simplified solution would exactly satisfy the boundary conditions of
the model and both solutions would coincide. This observation as well as the formerly
analyzed example lead to the conclusion that the differences between the “accurate” solu-
tions derived here and the simplified solutions increase with increasing rigidity of the
edge supported since, at the same geometric dimensions and identical values of Dy, y,
increases with increasing A,. This conclusion will be illustrated in the following section
by an example of a plate with clamped edges.

N

31_7/*‘ L /// //// /‘l?

<
I
{ o { < |
L

F1G. 8. Accurate loading scheme corresponding to the solution.
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III. Circular plate clamped at the edge

From the example given in the preceding section it is seen that, in the case of a clamped
edge, the principal problem consists in satisfying the boundary condition u, = 0. In case
of circular symmetry the problem is reduced to
(5.26) Uypg = 0.

The second condition, similarly to the previous example, may be taken in the weaker form
(5.27) u;

= w’r:a = 0.

r=a
X3=+h

For a circular plate of radius a condition (5.26) is satisfied automatically provided the
radial displacements are expressible by a uniformly convergent Fourier—Bessel series

(5.28) U, = Z U4 (}*k %) )
k=1

with J; denoting the Bessel function of the first kind and first order, and A, — consecutive
roots of equation J;(4) = 0. Assume now that the axi-symmetric load of the circular
plate may be represented in the form

(529 P= 3 (»2).

i.e. in the form of the Dini series (with constant H = 0). Using Eq. (4.6) and selecting
properly the function F, = const we obtain

D? = P, r
(5.30) Y= 3D 2 et (JO(AR E‘)—Jo(lk)) >

k=1

with y, = VEZg/a, satisfying the condition (5.27). Condition (5.26) is fulfilled ident-
ically provided the corresponding series is uniformly convergent. Expression for stresses
has the form

X3
©  Psh|y 22
thZ ( h) {[( ﬁz) xax,,] [ r)
- Alz-£-) s, Kol B o8
G31) 0w =55 £ yechy—shy, a5 ) Qs t 22— [Jol Ay

o) o)

r

For the Dini series we have at our disposal effective formulae for evaluating the expan-
sion coefficients [9]; in our case

2 : r r ¥
(5.32) P = ”Jg(z‘)‘(_! z P(?)Jo (Z-k -;) dr.
Confining our considerations to the first term of (5.29), i.e. assuming P to have the form

P Jy(A,r/a), we obtain the following values of w and of the stress g, n,x at the center of
the plate (r = 0):



ON THE STRESS DISTRIBUTION IN STRONGLY ANISOTROPIC PLATES 55

D? P
w = 1 —Jo(4)),
(5.33) 2Dy yi(y,—thy,) ( o(M)
- _ PD, _thy,
rr(max) 2}12 yl—thy1 s

where 4, = 3.8317060, Jy(4;) = —0.40275, and y, is found from the relation following
the formula (5.30).

Values of ¢, and d, are expressed by the same formulae as in the first example, thus

Wee) _3_(?’1_th?1)

¢ = 3
w Y1

2

(5.34)

d = Orr(max, SPT) _ 3(?1 th Yi— l)
1 7 = = 3
rr(max) Y1

Assuming, as before, Dy = 50 4%, 2a = 10 h, we obtain y; = 5.4188503 and, finally,
¢; = 0.083320, d; = 0.451235. The difference in deflections is striking, and in stresses —
at least considerable. This is not due to any particular form of loading or to the circular
symmetry of the problem, but mainly follows from clamping of the edges. It is easily
verified that for a square plate with the same characteristics as in the first example, but
with rigidly clamped edges, the first eigenfunction should be assumed in the form

anl zﬂxz
Ju = cos — cos—

(for a plate occupying the region —//2 < x; <1/2: =12 < x, <1/2; I =10 k), and
the corresponding values would be ¥, 1) = 27, ¢,y = 0.0639, d¢y (, = 0.410.

Observe that the solution procedure proposed cannot be applied if the load P = const.
Then Eq. (5.32) yields the result P, = 0 for 4, # 0, while for 4, = 0 formulae (5.30)
and (5.31) for w and 0,3 become invalid. Let us approach this case in a different manner
and start from expanding F into the Dini series

(5.35) Fh) = Z E,Jo (/1,,, %)
m=1

Assuming F, = const, G = 0 and calculating S, from Eq. (4.11) we obtain

2D, 5 r
(5.36) S, = i Z Fo(yuchy,—shy,)J, (l‘a—*)-

On the other hand, simple equilibrium considerations yield, with P = const for any
r < a, the relation

(5.37) ar?P+8,2nr = 0
that is

(5.38) 5, = —12£= —P_z"(%)
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Expansion of the function f(x) = x into the Fourier-Bessel series is known (cf. [9], p. 581),
thus we obtain

(5.39) S, = aPZ z(l ﬁ)

JO(}*n)
Comparison of (5.36) and (5.39) yields
Dip 1
2D0 Yn JO(;*n) (ynCh}'n—Shyn) '
For large 4, the value of J,(4,) is of the order of A;1/2 (cf. [9]), hence the series

(5.40) F,=-

@ r\ X«
D3"2P Sh(i’n ) (Z.. 7) =
(5.41) Uy = 2
ynJO(An) (VnCh Yn— sh yn)
may be found by means of a comparison test with an absolutely convergent series to be
uniformly convergent in the neighbourhood of r = a, i.e. condition (5.26) is satisfied.

By suitable selection of constant C condition (5.27) may also be satisfied, thus the follow-
ing deflection of the plate is found:

o L
(5.42) D 1 JO(A"“)—l
’ 2DO =l }'n(yn"thyn) JO(}‘n) ’
while the stresses at the surface are given by the formula
_ Dip R thy, 1
(5-43) O’rr[_-“:'l -7 ZDO i yn_thy" JO(ZII)
Dy r\ 20, h r
x| e Jo(l a) R, a) .

—(r a
V/DI (?) Yn

It is easily found that this series diverges (as 1/4, ~ 1/(n+1/4) =) at r = a so that,
in compliance with our intuition, singularities in the rigidly clamped corners of the cros-
section appear; the singularity at r = 0 is apparent. Analogous results of the simplified
theory have the form

3Pa* r2
5.44 O B 1 TR
G4 "SeT = 128D, (1 P )
and
3Pa* | D 2r2 r?
(5.45) OrrsPTlxg= = x3T(;D—o[7z3£(lh_a2')_M2(l_"a_z_)]‘

In Figs. 9 a and 10 are shown the graphs of o,,/;,-, and w as functions of r following
from the application of our model and from the simplified, classical theory, with the same
parameters as before, D; = 50 A%, @ = 5 h, and the value of A3 u,/D = (1 —»..)/2 equal
to 0.35.
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w

F1G. 9. Deflection and stresses in a circular clamped plate, constant load. 1 — deflection — simplified
theory, 2 — deflection — proposed model, 3 — o,,-stresses at the surface — simplified model, 4 — o,,-stres-
ses at the surface — proposed model. Units arbitrary chosen.
(@) D, = 50 k2, B*uz/Do = 0.35,a=5h; (b) D, = 3 h%, k3 /Do = 0.35,a = 20 A.

0 Grr

FiG. 10. o,,-stress distribution across thickness of a clamped circular plate under constant load, » = 0.1 a;
conventional units (corresponding to case (a), Fig. 9). 1 — simplified model, 2 — proposed model.

[57]
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Periodicity of the stress diagram is of a numerical nature; the series converges so slowly
that 40 terms were not sufficient; general character of the curve has been established but
determination of the accurate form of the curve was too time-consuming to be continued.

6. Discussion

Let us consider the limits of applicability of the simplified theory. Consider the results
derived in the preceding section as accurate and treat them as reference data for estimating
the errors of the simplified theory. Determine the values of ¢, and d, for the least favou-
rable conditions of clamped edge of the plate. Results corresponding to the first harmonic
term (first eigenfunction) may be considered to be representative for practically encoun-

tered load distributions. Assume then A, = 2)/2x/I (this was the value for a clamped
square plate, analogous value for a circular plate would be 2 -:3.8317/d, d — plate diameter).

Retaining in expressions (5.6) and (5.7) for ¢, and d; only the first terms of expansions
of hyperbolic functions into power series, the following estimates of the results of the
simplified, classical theory are obtained:

Eﬁ_ < 5 aiulew

6.1 < 0. )
&1 1 @+ 27i2) 5— BB +1r)
2h Op1€s
6.2 — < 1.23-]/ ;
&2 ] (a+2u) 6— BB+ )
Here e, and ¢, denote the maximal permissible relative errors of the simplified theory,
(6.3) e, = max| ST |
(6'4) ey = max[m

In particular, for an isotropic material for which D; = (2—»)A?/(1—») and » = 0.3, the

permissible errors of 10% in w and ¢ implies, according to relations (6.1) and (6.2), the
conditions

2h/l < 1/10  for e, <0.1,
(6.5)
<

2h/l < 1/4 for e, <0.1.

The graphs of o,, (for x; = #) and deflection w of a thin, almost isotropic, circular
clamped plate under constant load are shown in Fig. 9b. The calculated stresses are seen
to coincide with the results of the simplified theory (except for the neighbourhood of the
singularity), deviations of the displacements from the more accurate values comply fairly
well with the estimates (6.1) and (6.5). In cases of less constrained systems (free or simply
supported boundaries) the more “liberal” conditions (6.4) are obtained. To conclude,
let us mention that the results of the simplified model concerning the deflections may be
improved by means of the Reissner model (in case of cylindrical bending — by means
of the Timoshenko beam model with plate bending rigidity replacing the usual beam
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rigidity); however, the errors resulting from the assumptions concerning linear displace-
ment and stress variations leading to false stress estimation in the subsurface regions
cannot be eliminated this way.

In this paper it has been demonstrated that the model considered enables us to detect
singularities what is not feasible within the framework of any plate theory based on finite
polynomial expansions; such result is also inaccessible by means of the boundary layer
method as proposed by PipkIN and EVERSTINE (cf. [6], p. 24].
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