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Group theoretic approach for solving time-independent
free-convective boundary layer flow on a nonisothermal vertical
flat plate

Y. Z. BOUTROS, M. B. ABD-EL-MALEK and N. A. BADRAN (ALEXANDRIA)

THE TRANSFORMATION group theoretic approach is applied to present an analysis of the problem
of steady laminar free convection from a nonisothermal vertical flat plate, wherein a number
of possible surface-temperature variations with position, T, are derived. The obtained set of
nonlinear ordinary differential equations with the appropriate boundary conditions are solved
numerically using a fourth-order Runge-Kutta scheme and the gradient method. Heat transfer
results, for different values of Prandtl number Pr = 0.7, 1, 2, 6 and 10, are presented, as tem-
perature and velocity distributions for two cases of surface-temperature variations with position.
A plot of the Nusselt-Grashof relation against n, exponent of surface temperature variations
with position, is illustrated for Pr = 0.7, 1 and 2. Comparison with other techniques is plotted
and the variation of thermal boundary layer thickness, ér, with the Prandtl number, Pr, are
plotted for the two cases of surface-temperature variations with position.

Podejscie oparte na teorii grup zastosowano do analizy problemu ustalonego, swobodnego
przeplywu laminarnego wzdluz nieizotermicznej pityty pionowej wprowadzajac szereg mozli-
wych skokow temperatury powierzchniowej T,. Otrzymany w ten sposob uklad nieliniowych
rownan rozniczkowych zwyczajnych ze stosownymi warunkami brzegowymi rozwigzano nume-
rycznie stosujgc schemat Rungego-Kutty czwartego rzedu i metode gradientow. Wyniki doty-
czace przepltywu ciepla dla réznych wartosci liczby Prandtla Pr = 0.7, 1, 2, 6 oraz 10 przedsta-
wiono dla dwéch przypadkéw zmiennosci temperatury powierzchniowej. Podano wykresy
zalezno$ci liczby Nusselta-Grasshoffa od parametru n, wykladnika zaleinosci temperatury
powierzchniowej od polozenia, dla Pr = 0.7, 1, oraz 2. Rezultaty poréwnano z wynikami
uzyskanymi innymi metodami, podajac rowniez zalezno$¢ grubosci termicznej warstwy powierz-
chniowej dr od liczby Prandtla Pr dla dwoch przypadkdw zmiennosci temperatury powierzchnio-
wej z polozeniem.

ITomxona, omMMpAIONIMIICH HA TeOpHIO TPYI, MPUMEHEH IJIA aHa/IM3a YCTAHOBHBILIEHCA 3aqauH
cB0GOTHOrO JIAMHHAPHOI'O TEUEHHSI BIOJbL HEM30TEPMHUECKOH BEPTHKANbHON IUIMTBI, BBO/A
PAN BO3MOXKHBIX CKayKOB IOBepPXHOCTHoM Temmepatypbt T, . ITonmyuyennas takum oGpasom
CHCTEMa HEIMHEHHBIX OObIKHOBEHHBIX auddepeHIInaIbHbIX YPABHEHHI C COOTBETCTBYIOIIMMHI
TPaHUYHBIMH YCJIOBHAMH pellicHa YHCIEHHO, NpHMeHAA cxemy Pynre-Kyrra uerBepToro
NPoAdKa H METOX TPajlHeHTOB. Pe3Vy/IbTaThl, KAaCAKOIHECA TEUECHHMA TENJa IS PasHbIX 3Ha-
genmit yucna Ilpannrnsa Pr = 0,7, 1, 2, 6 1 10, npeacTaBieHbl IS ABYX CIIyyaeB Iepe-
MEHHOCTH IOBEPXHOCTHOH Temneparypbl. lIpuMBefeHbI QOuarpamMmbl 3aBUCHMOCTH 4YHcia
Hyccensra-I'pacmioda or nmapamerpa n, TIOKa3aTeNsl 3aBUCHMOCTH IIOBEPXHOCTHONM Temiepa-
TYpPBI OT HOJIOXKeHus, ans Pr = 0,7, 1 n 2. PesyneTaThl CpaBHEHbI C pe3yJbTaTaMu, MOJIY-
YEeHHBIMH OPYTHMH METONAMH, IPUBOLA TOXKE 3aBHCHMOCTh TEPMUUECKOM TOJIUIMHBI I10BEPX-
HOCTHOTO cJiod Or oT yucna [Ipanarnsa Pr gisi ABYX CiAyuyaeB IEPEMEHHOCTH IIOBEPXHOCTHOR
TEMIIEPaTyPhl C IOJIOMKEHHEM,

1. Introduction

SINCE SCHMIDT and BECKMANN [1] in 1930, a considerable amount of work has been done
on steady free convective flow from a heated vertical plate. In 1953 OsTrRACH [2] applied
numerical solutions to solve the reduced equations in solving the problem of laminar
free convection flow and heat transfer about a flat plate parallel to the direction of the
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generating body forces. Studies of surface temperature variations for the steady case
have been pursued by numerous authors from various points of view. FINSTON [3] in 1956
and YANG [4] in 1960 carried out an original study of SCHMIDT and BECKMANN [1] through
similarity solutions in two cases; (i) vertical plates and (ii) cylinders. In parallel, SpAr-
rOW and GREGG [5, 6] in 1956 and 1958 studied the same problem using numerical solu-
tions. In 1963 BRINDLEY [7] extended the method widely used by MEexsy~ [8], in 1961, for
finding solutions in terms of asymptotic expansions to the problem of free convection
in a boundary layer. One will find attractive discussions on the subject in LEvy [9], SCHUN
[10], CHAPMAN and RUBESIN [11], BURMEISTER [12], and LiGHTHILL [13].

The mathematical technique used in the present analysis is the parameter-group trans-
formation. The group methods, as a class of methods which lead to reduction of the num-
ber of the independent variables, were first introduced by BIRkHOFF [14, 15] in 1948 and
1960, respectively, where he made use of one-parametric transformation groups. Some-
what earlier, MORGAN [16] in 1952, presented a theory which has led to improvements
over earlier similarity methods. In 1952 MicHAL [17] extended Morgan’s theory. Later
on, MORAN and GAcGaloLl [18, 19] in 1966 and 1968 presented a general technique for
similarity analysis using group theory. Integral methods were first used in 1921 to solve
boundary-layer problems by voN KARMAN [20] and POHLHAUSEN [21]. GOODMAN [22-24]
in 1957, 1961, and 1964 applied, extensively, the integral methods to solve one-dimensio-
nal transient heat conduction, whereas SFEIR [25] in 1976 considered the case of two-
dimensional steady conduction. For additional discussion on integral methods, one may
consult LONGFORD [26] and BURMEISTER [12], Chapter 8.

Although this review is not comprehensive, it is clear that all these investigations are
limited to studies of similarity solutions since the similarity variables can give great physi-
cal insight with minimal efforts. In SHULMAN and BERKOVSKY [27] one finds vast sum-
mary tables of the variable and boundary conditions ensuring similarity problems.

In this work we present a general procedure for applying one-parametric group trans-
formation to the set of governing partial differential equations and the boundary conditions.
Under the transformation, the partial differential equations are reduced to simultaneous
ordinary differential equations with the appropriate boundary conditions. The equations
are then solved numerically using a fourth-order Runge-Kutta scheme and the gradient
method given in ZerTL [28].

2. Formulation of the problem

Consider a natural convective, laminar boundary layer flow along an infinite vertical
plate in an isothermal fluid of temperature 7, far from the plate. The plate has non-
uniform surface temperature T,, > T, (i.e., heated plate case). Figure 1 illustrates this
situation.

Under the assumption of constant fluid properties 8 (the volumetric coefficient of
thermal expansion), v (the kinematic viscosity), and o« (the thermal diffusivity), along
with the application of the Boussinesq and boundary layer approximation, the equations
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FiG. 1. Physical model of laminar boundary layer in free convection on a hot vertical flat plate.

expressing conservation of mass, momentum and energy for the physical model shown
in Fig. 1, respectively, are as follows:

du  Jv
_du  _ du = o*u
2.2 o i — Tl
( ) u ax +7j ('); igﬁ(T‘ T(.c-)+w ajjz ?
— - s
(2.3) : anT _oT o*T

U +v o = ey,
ax Y dy dy?

where the (+) denotes the heated plate case and cooled plate case, respectively, and g
is the acceleration due to gravity.
The boundary conditions appropriate to the problem are

v=0, u=0, T,=T,(x) at y=0,
(2.4) _ o
u=0, T=T, as y- .
Dimensionalize the variables according to
x=x/L, y=(G¥y/L, T=(T-T,)AT, 0=TT,,
u=ulU, ©=(Gr¥a/U,

8*
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where L is some arbitrary reference length, AT = T, —T,,, T, is some arbitrary refer-

ence temperature, U is the characteristic velocity given by U = (gﬁLADjZ', Gr is the
Grashof number defined by

2.5 Gr = gpL*AT)?.
In dimensionless form, Egs. (2.1) to (2.3) become
du ov

@0 o Ty =Y

du du ou
(2-7) u "'ai— +o 73; = T+ .73,);27,

2

(2.8) g 0T 9T _ 1 &T

ox dy  Pr ay*’
where Pr is the Prandtl number defined by
2.9 Pr = v/a.
The boundary conditions become
=0, wu=0, T=Tu(x) at yp=0,
(.30) u=0, T=0 as )y o 0.

From Eq. (2.6) it is seen that there exists a nondimensional stream function y(x, y)
such that

- W .
@.11) u=3. v=-3,
Egs. (2.7) and (2.8) become
dy  d*w dy dyp >y

_ ik AL S oY _er. 4+ %Y

(212 Iy Tyix ~ ox g vt e
. i 120

2.13) T, ay 5—6--+8-?—q)- _3_1}, _r dy dl _ | d

dy  ox dy dax Y ax dy  Pr v gy’
and the boundary conditions (2.10) become

%(x,m ” % (x,0) =0, 6(x,0) =1,
(2.14) x , Y
lim 2% (x,5) =0, lim6(x,») = 0.

y—+0 a}’ y—x©

3. Solution of the problem

The method of solution depends on the application of one-parametric group trans-
formation to the system of partial differential equations (2.12) and (2.13). Under this
transformation the two independent variables will be reduced by one and the system
of equations transforms into a system of ordinary differential equations in only one
independent variable which is the similarity variable. For more details about the method
we recommend HANSEN [29].
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3.1. The group systematic formulation

First, the procedure is initiated with the group G, a class of one-parametric group
a with the form

3.1) G:S = C(a) S+ K*(a),

where S stands for x, y, v, 0, T, and the C and the K are real-valued and differentiable
with respect to the parameter of the group a.

3.2. The invariance analysis

The transformations in Gy, (3.1), are for the dependent and independent variables
only. To transform the differential equation, transformations for the derivatives can be
obtained directly from G, via chain rule operations:

S = CUCyS, i=x,y,
(3.2) S = (C[C'C)Sy, i=x,y and j=ux,p,
Siju = (CICCCR) Sy, i=x,y, j=x,y and k=x,y,
where S stands for v, 0 and T,.
Equation (2.12) is said to be transformed invariantly under Egs. (3.1) and (3.2) when-
ever
(3.3) "/’y‘l’y.x"Px’/J;}y_eTw_"'?’};yy = H(a) [wy'/"yx_'/"xww“-OTw“'Pwr]a
for some function H, («¢) which may be constant. Substitution from Eqs. (3.1) and (3.2)
into Eq. (3.3) yields
(3.4)  UC/CH(C)p,ppe— [(CHP/CHCY ]y, yp,, — (C°CTIOT,

- [Cw/(cy)a]wyyy_— R, = H, (a) [1/‘))'1/))'.‘ YWYy 0T, — ’/’yw] »
where
R, = [C°KT]0 + [CTK")T,.

Invariance of Eq. (3.4) implies

R =0,
which is satisfied by taking
(3.5) KT = K% =0,
and
(3.6) [(C)?/CX(C)] = [Cy/(C’)] = [C°CT] = Hi(a).

In a similar manner, the invariant transformation of Eq. (2.13) gives

(37) (CTCWCB/C'VCX) [Tu-% 0.\' + O(Tw)xwr - Twwx B}] - PLI' [CTCG}/(C:)Z] Tw 6 vy R2

1 -
= HZ(a) [T\\!V);vex'*'e(Tw)x'nUy— Tw'})xay_ Pr T‘VOJ’!J E]
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where
(3.8) R, = [K"C“’CT/C”C‘]%(TW)x—[KTC"’C“/C"Cy]nyGy-i—[KTC“’C"/C"Cy]zpyB,,

— o KTCUCYI0,,.
For invariability, we should have
39 H,(a) = [CTCYC[CCF] = [CTC/(C)],
and

R, =0, which yields K7 = K? =0.
Moreover, the boundary conditions (2.14) are also invariant in form whenever the con®
dition
K =0,

is appended to Eqgs. (3.5), (3.6) and (3.9).
It is obvious that when K” = 0, the transformation of the boundary condition 8(x, 0)

= | implies, that (x, 0) = 1, which is only satisfied if
(3.10) =1,

Combining Eq. (3.6), and (3.9) and invoking the result (3.10), we get
3.11) C*=C'Ccv, CT = C*/(CH

Therefore, Egs. (2.12), (2.13) and the boundary conditions (2.14) are invariant in
form under the group

[¥ =[CCIx+K*,
[y =y,
(3.12) G,:{fg = [C*]y+KY,
| T = [C*/(C)°]T,,,
o =o.

3.3. The absolute invariants

First, consider the absolute invariant of the independent variables, which is called
“the similarity variable”. According to a basic theorem from group theory, see [19],
the new independent variable, #(x, y), is an absolute invariant of a one-parametric group
if, and only if, 5(x, ) satisfies the following first-order differential equation:

on an _
(3.13) (a1x+a2)—g+a3yw =0,
where
oy = ac (a®).

da
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K~
w5 = 2 (@),
ac?
4=z @)

and &° is the identity element of the group.

The standard techniques for linear partial differential equation indicate that two
possible, general classes of solutions may be obtained for Eq. (3.13). Accordingly, we have
two forms of the similarity variable # leading to two cases of similarity representation.

Case 1. Corresponds to «y # 0

The solution of Eq. (3.13) in this case gives

(3.14) n = f(y(Ax+B)"),

or, simply taking f to be the identity function, we have

(3.15) n =y (%),

where

(3.16) 7, (x) = (Ax+ B)",

and the constants A, B, and m are given by

(3.17) A=0wo;, B=ua,, = —o3fay.

The constants 4 and B may be chosen arbitrarily.
Case 2. Corresponds to «y =0
The solution of Eq. (3.13) in this case gives

(3.18) n = f(Kye™).
Again, taking f to be the identity function, we get
(3.19) n = ym,(x),
where

(3.20) 7, (x) = Ke'*,
and r = —a5/a,, K is a positive constant.

3.4. The complete set of absolute invariants

The importance of the absolute invariants lies in the fact that they become the simi-
larity variables, i.e., the variables of the similarity representations. Besides, the absolute
invariant 7 of the independent variables, the complete set of absolute invariants of the
group includes also three independent g:g,, g, and g5 corresponding to the three depen-
dent variables 0(x, »), v(x, ») and T, (x).

The procedure to be followed in deriving g is similar to that used in obtaining 7.

Since, from the group (3.12), 0 is itself an absolute invariant, then we have

(3.22) gi(x, y; 0) = 6(n).
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The following form for the invariants g, and g; in terms of the x, v, and T, variables
can be established:

(3.23) g20x, 9) = ¢, (p/I'(x)) = F(n),
and
(324) g3(x1 Tw) = ¢2(Tw/w(x)) = T(’?)

Without loss of generality, the ¢ in Eqgs. (3.23) and (3.24) can be selected to be the identity
functions.
Then Egs. (3.23) and (3.24) reduce to

(3.25) p(x, y) = I'(x) F(n),
(3.26) To(x) = w(x)T(n).

Since w(x) and T,(x) are independent of y whereas n depends on it, then 7 must be
equal to a constant, and

(3.27) T,(x) = Too(x).

The functions I'(x) in Eq. (3.25) and w(x) in Eq. (3.27) are to be determined to get a simi-
larity representation.

Finally, to obtain the similarity representation, let us reduce of the system of equa-
tions (2.12) and (2.13) to a system of ordinary differential equations. This can be achie-
ved as follows:

Substitution for 6, p and T,, and their partial derivatives from Egs. (3.25) and (3.27)
into Eq. (2.12) yields, after dividing by =", where = and I" are =, and I';, respectively,
for case 1, =, and I', for case 2, and rearranging the terms, the following equation

(3.28) F"'+(T"‘°) e+(r )FF"_(£+ F’; )F'Z - [,
s’ 7 7 7

where the primes mean differentiation of each function with respect to its own variable.

In Eq. (3.28), the first term has the constant coefficient unity. Therefore, for this equa-
tion to be reduced to an expression in the single independent variable 7, it is necessary
that the remaining coefficients be constant. This results from the fact that I', = and
are independent of y. Thus we have

11[
(3.29) —=a,
(3-30) F’;TZ“ = Cz,
T,
(3.31) E“’T = Cs,

where C,, C, and C; are constants to be determined. Substituting Egs. (3.29)-(3.31)
into Eq. (3.28), we get

(3.32) F" 4+ C304+C,FF'—(C,+C,)F? = 0.
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CaSE 1. 7, = (Ax+B)"
From Eq. (3.29)

N Cl m+1
TG) = g WrHarmt
Substitution into Eq. (3.30) yields
m
€2 = g1 0

and from Eq. (3.31) we deduce that the function w(x) has the form

C,Cs

(3.33) () = T

. (Ax+B)4m+1'

Though the constants T, and C; are arbitrary, they may be equal to unity. Then w(x)
will take the form

(o}
(3.349) w(x) = (m-FT)?t (Ax + B)tm+1,

Without loss of generality, we can take

(3.35) C, =4(m+1) and C, =4m,
which, when substituted into Eq. (3.32), yield
(3.36) F'"+0+4+4m+1)FF'—4Q2m+1)F'? = 0.

Similarly, for Eq. (2.13) we get the following ordinary differential equation:
1
(3.37) Br 0" —C,F'0+C,F§’ =0,

where the constant C, is given by

P ’
(3.38) Co =~ = 4(4m+1).
Tw
Then Eq. (3.37) reduces to
(3.39) %6”—4(4m+1)F’6 +4(m+1)Fo' = 0.

Now, if we put 4m+1 = n, then the equations for T\,(x), n(x, y) and I'(x) take the form
(3.40) T.() = (Ax+ By,
(3.41) n(x,y) = y(Ax+B)"~Di4,

(3.42) rix) = % (Ax+ B+ I
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Now the problem of Case 1 reduces to solving the equations
F"+n+3)FF'-2(n+1)F?*+6 =0,

(3.43) 1
o 0 —4nF 0+ (n+3)F0' = 0

with the boundary conditions

F(0) = F/(0) =0, 6(0)=1,

G44) F'(x) =0, 0(c0) = 0.

The boundary layer characteristics are
(a) the vertical velocity

(3.45) u = % (Ax+ BY™+DI2F (y).

(b) The horizontal velocity

(3.46) v = —(Ax+B)" "V [(n+3)F+ (n—1)nF'].
(c) The coefficient of heat transfer

(3.47) g = —(dx+B)Sr-DI*g'(0).

Equations (3.43) are the same as those obtained by YANG [4] and SpaRrROW and GREGG
[6] using different methods.

CASE 2. @, = Ke™

Following the same procedure as that used in Case 1, Egs. (2.12) and (2.13) become

(3.48) F" 4+ Cy0+C, FF"— (C,+ C;)F™? = 0,
(3.49) _P}F 8" — C.0F +C, F§’ = 0,

which are similar to those obtained by [4] and SpaARrROW and GREGG [6] using different
techniques. Here the quantities C;, C,, C3 and C, are defined by Egs. (3.29)-(3.31) and
(3.38).

From Eqgs. (3.29) and (3.30) we find

C,=0C,, C4=3C+C,, ]‘2=K—C;—19’x
and from Eq. (3.31) we get
(3.50) o(x) = K*—

The possible form for T, is

(3.51) T, = — %=,
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Without loss of generality, values of C,, C; and «; may be assigned. With C; = 1, a3 =
= — 1 and C, = 1, Egs. (3.48) and (3.49) become

FIH+B+F H_2F12 oy O,

(3.52) 1
—0"—40F' +F0' =0
Pr

with the same boundary conditions as those in Egs. (3.44).
The boundary layer characteristics are
(a) The vertical velocity

(3.53) u= ‘:; 2= F'(n).

(b) The horizontal velocity
(3.54) v = —e*(F+nF).

(c) The coefficient of heat transfer

(3.55) g = — —i_ 57%0(0).

4. Numerical results

Equations (3.43) with the boundary conditions (3.44), for Case 1, and Egs. (3.52)
with the same boundary conditions (3.44), for Case 2, describe the two-point boundary
value problem. It is more convenient to reformulate the problem in terms of a set of five
first-order ordinary differential equations of an initial value problem. The five equations
are solved simultaneously by the fourth order Runge-Kutta scheme. Two initial conditions
at n = 0, besides the three conditions given, must be guessed and iterated on to satisfy
the remaining boundary conditions at # = co. The gradient method was applied to iterate
the corrections to the two guesses. The results were obtained for F(), F'(n), 6(n), and
0'(n) for 0.7 < Pr £ 10.0 and —0.8 £ n £ 1.0 (in Case 1).

The numerical results, for the two cases of study in Sect. 3, were computed at the Uni-
versity of Alexandria, Faculty of Engineering, Computer model PDP 11/70, and the
results are presented and discussed in the following section.

5. Discussions and comments

4
5.1. Surface-temperature varying with position for T, = i (Ax+ B)"

Profiles of dimensionless temperature 8(») in the boundary layer for different values
of the Prandtl number Pr and n = 1 (case of linearly increasing surface temperature),
are shown in Fig. 2.
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As was expected in the free convection situation, the thickness of the thermal boundary
layer, o, decreases as Pr increases. Moreover, it is observed that 6 becomes negative
in the outer part of the boundary layer. This represents a temperature defect which is
clear for Pr = 10.0.

Figure 3 shows the variation of the vertical velocity in the dimensionless form.

Also a flow reversal takes place in the outer part of the velocity boundary layer. At
low Prandtl numbers there is a small reversal of flow, while for high Prandtl numbers,
the flow reversal is much stronger.

The physical phenomenon of temperature defect and reversal flow in the outer part
of the thermal and velocity boundary layers, respectively, occurs when the surface tempera-

125
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a.50

025

0 7 0
Fi16. 4. Calculated dimensionless temperature profiles in the laminar boundary layer on a hot vertical

4
flat plate in free-convection for several values of n, Pr = 0.7, T, = i (Ax+B)".
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ture increases in the streamwise direction (as x increases in the present case). This phe-
nomenon is more pronounced for higher Prandtl numbers.

Profiles of dimensionless temperature 6(x) for different values of n and fixed value
of Pr = 0.7 are illustrated in Fig. 4 and are identical with the results obtained by SpAr-
ROW and GREGG [6].

It is clear that the temperature distribution for » < 0 differs notably from that for
n 2 0. The shape for n = —0.8 displays a hill. The shapes of the various velocity pro-
files in Fig. 5 do not exhibit great differences such as those noted in the temperature pro-
files of Fig. 4 and are identical with the results obtained by SpaARROW and GREGG [6]
by a different technique.

From the relation (3.47), the coefficient of heat transfer, g, follows the value of —6'(0).

To illustrate the dependence of the coefficient of heat transfer upon the power »

=¥ |
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1
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F16. 5. Calculated dimensionless velocity profiles in the laminar boundary layer on a hot vertical flat

4
plate in free-convection for several values of n, Pr = 0.7, T, = r (Ax+ B)".
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workers, for Pr = 0.733 and T, = constant.
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of the surface temperature distribution T, the relation between —6'(0) and » is plotted
in Fig. 6 for Pr = 0.7, 1.0 and 2.0 and is in a good agreement with the results of SpARr-
row and GREGG [6].

It is clear that there is an increase in the coefficient of heat transfer, ¢, with increasing
“n”. The negative value of —6'(0), which appears for values of n < —0.6, corresponds
physically to a heat transfer from the fluid to the plate, even though T, > T, which
has been observed by SPARROW and GREGG [6].

Figure 7 illustrates a direct comparison between the results obtained for Pr = 0.733,
n = 0 and those obtained by Scamitp and BECKMANN [1], SAUNDERS [30] and BRIND-
LEY [7]. There is a good agreement with the results of SCHMIDT and BECKMANN [1].

4
5.2. Surface temperature varying with position for 7, = — —¢e** and r > 0
r

Profiles of dimensionless temperature 6() in the boundary layer for different values
of the Prandtl number 0.7 < Pr < 10.0 are shown in Fig. 8.

8|
10
—_———— e,=0—7
............. e=10
075 cemtmmme =20
e ,9_-6.0
;;:10.0
050
0.25
o 1 2 3 4 5 & n

Fic. 8. Calculated dimensionless temperature profiles in the laminar boundary layer on a hot vertical
4

flat plate in free convection for varying values of Pr and T, = — e*'*.
r
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F1G. 9. Calculated dimensionless velocity profiles in the laminar boundary layer on a hot vertical flat
4
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plate in free-convection for various values of Pr and T\, = — ¢
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Fi1G. 10. Effect of the Prandtl number Pr on the thermal boundary layer thickness for two cases of surface
temperature distribution,
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Figure 9 shows the variation of the vertical velocity in the dimensionless form and is
in good agreement with the results obtained by SPARROW and GREGG [6].

The dimensionless temperature and velocity profiles show the phenomenon of tempera-
ture defect and flow reversal in the outer part of the thermal and velocity boundary
layer, respectively. The phenomenon behaves in a similar manner as in the Case 5.1.

The effect of Prandtl number, Pr, on the thermal boundary layer thickness, d, is

shown for the two cases in Fig. 10.
It is clear that the thickness decreases monotonically with the increase of the Prandtl

number, Pr, in both cases.
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