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On the motion of a drop of a viscous incompressible fluid
in an ideal incompressible fluid

W. M. ZAJACZKOWSKI (WARSZAWA)

THE EXISTENCE and uniqueness of local in time solutions of a motion of a drop of a viscous
incompressible fluid (described by the Navier-Stokes equation) bounded by a free surface
in an ideal incompressible fluid (described by the Euler equations) is shown. The existence is
proved in such Sobolev spaces that the equations are satisfied classically. To prove the result
there is assumed that density and viscosity of the viscous fluid are much larger than the density
of the ideal fluid.

Pokazano istnienie i Jednoznacznosc lokalnych w czasie rozwnqzan ruchu kropli cieczy lepkiej
mescxsllwej (opisanej rownaniami Nawera—Stokesa) ograniczonej swobodna powierzchnia
w cieczy idealnej niescisliwej (oplsanej réwnaniami Eulera) Istnienie zostalo udowodnione
w takich przestrzeniach Soboleva, ze powyzsze rownania s3 speinione klasycznie. Aby udowod-
ni¢ powyzszy rezultat przyjeto, ze gestos¢ i lepkos¢ cieczy lepkiej sa duzo wieksze niz gestosé
cieczy idealnej.

IToxasaup! CyliecTBOBaHHE M €IMHCTBEHHOCTH JIOKAJIGHBLIX BO BPEMEHH DELICHUH IBHIKEHHS
KaIjIi BSISKOA HeCOKMMAaeMoil >KuaKocTH (ommcanHo# ypaBHeHusm# Haspe-Crokca) orpanm-
YeHHOH cBo0OAHON NMOBEPXHOCTHIO B HACAJILHON HECKNMAEMOM >KHAKOCTH (OIMCAaHHON ypaB-
HeHuAMu Jiurepa). CyuecTBoBaHMe I0KA3aHO B TAKHX mpocTpancTBax CobGosieBa, UTo BhIIIE-
VIIOMAHYTHIE YPAaBHEHHST YAOBIETBOPEHBI Kiaccwuecku. UTobbI MoKa3aTh 3TOT Pe3YJIBTAT
TIPHHATO, YTO TUIOTHOCTh ¥ BA3KOCTh BA3KOH YXMIKOCTH MHOTO GoIbINe, UeM TUIOTHOCTb HAe-
ANBHOM MHMIKOCTH.

1. Introduction

WE coNsIDER the motion of a drop of a viscous incompressible fluid in an ideal incom-
pressible fluid. We assume that the surface of the drop is a free surface. It is the
intersurface between these two fluids which is built up of the same moving particles of
simultaneously viscous and ideal fluids.

A motion of the viscous incompressible fluid in the drop is described by (see [4])

(1.1)

010y, +v V) +Vp, =¥V, =0, f; in QT
divy, =0 in O,

Y=o = V10 in &,

where Q7 = U £2,,x {t}, £,, is a domain of the drop in a moment ¢ and 2, = 2,,

1e(0,T)

is its initial domain. Moreover, v, = »,(x, t) is the velocity of the fluid in the drop, p,
= pi(x, t) the pressure, f; = f,(x, t) the external force field per unit mass, » the viscos-
ity coefficient, p; = const the density.
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We consider a motion of an ideal fluid in the exterior domain 2,, = R3\\ (£2,,u02,,).
To omit technical difficulties (connected with the behaviour of solutions to the Euler
equations at infinity) we assume that the viscous and ideal fluids fill up a bounded domain
£ < R3? with a boundary I" (£2,,|_J£2,, = ). Knowing that only local existence theorems
for the Euler equations are known, we can assure that the drop does not meet I" by assu-
ming that the domain £2 is sufficiently large and the drop is sufficiently far from 7" at the
initial moment. Therefore a motion of the ideal fluid in £2,, which is exterior to £2,, at
time 7 is described by (see [4])

92('”23'4"’2 ) Vv2)+vp2 = Q;fz n !};,

(1.2) divy, = 0 in 01,
Yale=0 in 0,
v nlp=0 on I'"M=TIx(0,7)),
where 07 = U 2. x{t}, 2, = 2,, is the domain in the initial moment, », = v,(x, 1)
(e(0,T)

is the velocity of the ideal fluid, p, = p,(x, t) the pressure, f; = f5(x, t) the external
force field per unit mass, n|; is the unit outward vector normal to I", p, = const the
density.

Finally the following boundary conditions are imposed on the free intersurface

(1.3) (7,01, p)=To(vs, p)li =0 on ST,

where ST = \J Six{r}, S = 382, is the boundary of the drop in the moment 7,
1e(0, T)

nls, is the unit outward to £, and normal to the S, vectors, T, and T, are the stress ten-
sors of viscous and ideal fluids, respectively, such that

(1-4) T (v, )pl) =P I4+2vD(v,),
(1.5) T2(va, p2) = —pa1,
where 7 is the unit matrix,
1 [ o .
D;;(v) = 3 (—3}1 + —é-xi)’ i,j=1,2,3,
is the deformation tensor.

v ;
Let S, be given by the equation ¢(x,t) = 0. Then njs, = ng and the following

kinematic condition holds:

Pr

— - on §,.
Vel '

(1.6) YR =V, n =

Therefore the surface S, can be constructed either by curves determined by

(1.7) B D), Fio= xS =Sy
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or by

d.
(1.8) ij—z'l’z(x, t), x§,=0 =xOGS,

what means that the boundary of the drop is built up of the two kinds of fluid particles.
The initial velocities »;4, i = 1, 2, have to satisfy the compatibility conditions

(1.9 divy,o =0, i=1,2.

To prove the existence of solutions of the above problems we introduce the Lagran-
gian coordinates & = (&', &2, £3) by the relation (see [2])

(1.10) x =&+ [w(E,dz = X, (6, 1), EeQ,
0

where x = (x',x2,x%) and u,(§,?) =»,(X, (§,t),t). The transformation describes
a relation between Eulerian and Lagrangian coordinates. Assume that £, is given, then
Q= {xix=x(&,1), £€,}, where x(£,1) = X, (£, 1) is a solution of the following
Cauchy problem:

d
(1.11) '5? =0 (6, 1), Xhoo = EE€D,.

Moreover, for &€ S we get that S, = {x:x = x(&,1), £€S}.
Using Eq. (1.10) and the notations introduced by Solonnikov in [6, 7, 8], we write
the problem (1.1) with the boundary conditions (1.3) in the form

7] .
0, ;Tl —vV,z,iul +V. g1 =08 in Qf =02,x(0,7),
(1.12) V. -u =0 in  Qf,
Utli=o = Y10 in  Q,

[Thu, (i, g0, Dllges = Ta(g2)n(€, lees  on ST,
where
QT =0,x0,T), ¢, 0 =p(X(&,0,0), a2 = p2(X, (,0),1),
&€, 1) =fi(X, (£, 0,1),

o8
Vi, = A,V = -V,

T,.(u, q) is a matrix with elements

JE™ dut gE™ Buf)
—q5u+”(7x,~§§m toxi o
and the summation over repeated indices is assumed. Since the Jacobi matrix of the

transformation & — X, (§,1) = x is equal to one, elements of matrix 4 are minors of
the matrix
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t
o\ _ [ o) )
Moreover, n(§, ) = n(X, (&, 1)) = n, (£, 1).
Therefore, for a given ¢, the problem (1.12) determines »,, p, and £2,,. Then we can
treat the problem (1.2) in a known domain £2,,. To consider the problem (1.2), we replace

it by the following system of problems:

1 : ~
(1.13) Vortvy Vi, = — . Vp,+f, in QF,
2
Valieo = ¥20 D 2,

where p, is treated as a given function and

-91—Ap2 = Wy + Wi AL, 0 O,

2

(1.14) A W s YRR o &,
0, on S;
—l"ég-z—‘ = +'V2"V2'Vﬁ+f2'ﬁ on I‘,
02 dn|r

where v, is treated as a given function.
To solve Eq. (1.13), we introduce the characteristics

(1.15) @%ﬂ =1, (¥(x,1;9),5), y(x,t;1) = x,

so we write Eq. (1.13) in the form

d 2 » 15 8),
(1.16) - (y(xdst 9,5) = *?Z‘VyPZ(J’(x,f;S), s)+f2 (v(x, 15 5), 5),

72 (¥(x, 1,0),0) = 930 (¥(x, 7, 0)).
Integrating Eq. (1.16) along the characteristics, we obtain

117 wy(x, 1) = vy (¥(x, t;O))+f[_7,l—V),p2(y(x, t;5), )+ (y(x, t;s),s)]ds.
0 02

To solve the problem (1.14) with », determined by Eq. (1.17) and in the correspondence
with the problem (1.12), we extend the vector », suitably (we need some reqularity which
will be formulated later) on £2,. Let #, be the suitable extension (see (4.3) and the Hestense
method [1], Ch. 9) such that

(1.18) v, nlp=0.
To apply the transformation (1.10) with the vector #,, we introduce

(&, 1) = 7, (X5,(5,0), 1) = 7, (x(£, 1), 1), where £eQ,,



ON THE MOTION OF A DROP OF A VISCOUS INCOMPRESSIBLE FLUID 311

s0 £, = {x:x = X;(§,1), £ €Q,}. Therefore we have the relation

(1.19) x =&+ [ @, 9)ds = Xz (6, 1), E€Q,.
0
Using Eq. (1.19) in Eq. (1.17), we obtain
(1.20)  wp(&,0) = v (X5,(§, 1), 1) = v20(y (X5, 1), £, 0))
I 1
+ f[ = E*Vypz(J’(X;,(E, 1), t;5), s)+f(y(Xz (&, 1), 5 5), s)]ds.
o L 2

Applying Eq. (1.19) to Egs. (1.14) gives

1
™ Azq9: = =V, Vi u, +V5 - g2, Eef,,
7.4
1 _ _
(1.21) ?n:;V:,qz = —(Ua,tuy - Viuy) ng +g,0n;, E€8,
2
1 _ _ _
g—n:,-V:lqz = Uy Uy~ Vyng +8g: 15, ¢el,
2

where

@, 1) = pa(X;(5,0),1), Eef,, and d; =Vi.
Finally we introduce some notations. Let £ be an arbitrary domain in R". By || ||1,5,4>
I>0, p>1, we denote the usual norm in Sobolev-Slobodetski space W;(£2) and by
llp,e the usual norm in L,(Q), where Q is equal either to 2 or 2T = 2x (0, 7). In the

anisotropic Sobolev-Slobodetski space W'"/3(2T), I > 0, p > 1, we denote the norm
by |l |lt, p.oT- Moreover we introduce

[l ||L,(o,'r;wf,((n) = |1, p.q. 0T

and

Il ||L,(o,r;W;(m)nL;(o,r;W;(m) = [l llla, 2%
where

ullcsco, s wzean = [[DatllL,c0, T: w2 ans

and also

[l |[Lp(o,T;Wg(p))nl.},(o,r;w;(m) = || IHb,.QT-
Finally we assume

I 1|w{,~",;(g’") = [ lli,x,p,q. 2™

The aim of this paper is to prove the local existence of solutions to the problems (1.1),
(1.2), (1.3). The importance of this problem consists in the fact that a free boundary
problem to the Euler equations is considered. The author does not know any result about
a free boundary problem to the Euler equations. However, the problem is not strictly
a free boundary problem for an ideal fluid; the free surface is an intersurface between a
viscous and an ideal fluid. The occurrence of the viscous fluid is essential in the proof of
the existence. But to prove the existence of the solutions, we have to assume that density
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of the viscous fluid and a viscosity coefficient must be much larger than the density of
the ideal fluid. Therefore the existence is shown for such a fluid in the drop which is very
dense and viscous, so the drop behaves similarly to a rigid body.

To prove the existence of the solutions of the problems (1.1), (1.2), (1.3), we replace
it by a system of problems (1.12), (1.20), (1.21). In Sect. 2 a result about the existence
of solutions to the problem (1.12) for a given g, is formulated. This section is based on
results of Solonnikov [9]. In Sect. 3 the existence of solutions of the problem (1.21) for
given u; and u, is shown by the method of successive approximations (see Lemma 3.5).
Moreover, the regularity of u, expressed by the problem (1.20) is shown (see Lemma 3.4).
Finally in Sect. 4 the existence of solutions of the problem (1.1)-(1.3) is proved (see The-
orem 4.1).

The motions of a viscous incompressible fluid bounded by a free surface were con-
sidered by SoLonnikov [6, 7, 8].

2. Existence of solutions of the problem (1.12)

To prove the existence of the solutions of the problem (1.12), we write it in the follo-
wing form:
011y, —WViu +Veq, = ——v(V?—V,z,,)u,+(V5—V,,l)q, +t51=F in 1

diveu, = (divg—div,)u, = G in T,

@1 Uile=o = %10 in 2,

ToDy,(u)n =0 on S7,

ny (Txu,("u ‘h)—Tz(‘h))E =0 on ST,
where no = ny(£) is the unit outward vector normal to § at &, 7, = 7,() is a tangent

ARo(®)
|Ano(&)]

dinates & To obtain the boundary condition (2.1),, we have used
I (T, (41, 91) = T2(g2))n = 29D, (u)n = 0,

because [Ig = g—n(g-n) and Eq. (1.3) is satisfied.
i

Moreover, knowing that —:% A;j = O, we have that 4;; o = 0 so G = divgR. In the

above considerations we assumed that 7, - 7 is separated from zero, what always holds

for sufficiently small time.
To use the result from [9], we rewrite Eqs. (2.1) as follows:

, the index £ denotes that the operators are taken in coor-

vector to S, n(§, t) =

oty —wWViu,+Veqy = F, diveu; = G in 0QF,
2.2) Uili=0 = Y10 in 2,,
To De(uy) o = To (De(ur)o— Dy (u))n) = H on ST,

no Tye(uy, )Mo = No (Tle(“x s q1) o — Tlul(ul s ql)ﬁ)‘*'ﬁo ‘ng; =K on ST.

Using Theorem 3.2, from [9] (see also Theorem 2 in [8]) we have:
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THEOREM 2.1. Assume F € L,(0, T; W3(27)),v10 e W*22(2,), G € L,(0, T; W2(21)),
R, R, e L,(0,T; W;($,)), Di,He W, !pt2-12p(8T), E'eS, |af <2, KeL,0,T;
W3-1r(S)), Se Wi=tP. Moreover, some compatibility conditions are satisfied

23) divDive =0, DitoDWo)nels =0, |z <2, for p>3, x'eS.

Then the problem (2.2) has a unique solution such that D¥u, € Wi (27), D¥q, € L,(0,
T; Wy(2,)), Diqls € W, !P12=122(ST), o] < 2, and
(24) ‘ !2:2(0’}|Dzu1”2.1?. nTi“*'HDg%“l,p.p. ﬂ;"+|]D°€‘q1|S||1—1/p.F.ST)
X<
< C(T)(”FHZ,II.IJ.DT+”7’10H4—2[p, p.2, t1Glla, p, p. a7 + IRz, p. p. a7 +IRlI2, p. p, o7

+| lzz”D?, Hll1-1/p, p. 57 +|I1Kll3-1/p. p, p.57)>
x| =<

where &' € S, ¢ = min{o,,v} and ¢(T) is a nondecreasing function.

Now, by Theorem 3 from [8] one obtains

THEOREM 2.2. Assume Dif; € L,(R®*x (0, T)) and are Lipschitz continuous with res-
pect to x, |a| <2, vo€ W*2IP(Q)), q.ls €L,(0, T; W312(S)), Se Wi UP and the
compatibility conditions (2.3) are satisfied. Then, for t < Ty, where T is sufficiently small,
there exists a unique solution to the problem (1.12) such that D¥u, € W2'(2), Diq, €
€ L,(0, 1; WHQ.), Diqils € WiH1pH2=120(8"), || < 2 and
@3 FZ(GHDZuIH2.p.ﬂf+“Dl;41“1.p.p.!21‘+”ng1|s‘”1—llp-p.s')

jel<

< C(Tl)(“leZ.m.m.R’x(O.r)+H""IOH‘Q-—ZIP-D..QL'F||q2'SH3—l[p.P.P.S')'

RemArk 2.3. To obtain Eq. (2.5), we have used

-1

»
(2.6) 181112, p. p, o7 < T2 f1]2, w. . R2x 0. (1 +T P ||H1|lz.p.p.{z_{)2-

3. Existence and regularity of solutions of the problems (1.20) and (1.21)

Theorem 2.2 implies that we have to prove the existence of solutions to the problems
(1.20) and (1.21) in such a class that g, € L,(0, T; W3(82,)).

At first we need

Lemma 3.1. Let i7; € L, (0, T; W3(£2,)), p > 3 and & = &(x, t) be the inverse transfor-
mation (1.19). Then one has

(B.1) &>, )] < ePy(lillz, p1.01), x€825, te(0,7),
(B2)  |&xdp 0, < eP3(lI"1ll2, 50Dl 2,5, 1,07,  1€(0, T),
(3.3)  |&uxelp. 0, < Ps(llii]l2, .1, altalls, . 1.07,  £€(0,T),

where Py(x) is a polynomial of degree k with respect to x which does not vanish with x.
Proof. Knowing that {&.} is the inverse Jacobi matrix to {x;} with a determinant
equal to one, we have

t
~ 2 ~ ~
& < o1+ [1uelds) < eQ+ Nl w1007 < ePa(lnllznsop), P> 3.
0

4 Archiwum Mechaniki Stosowanej 3/90
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The form of the Jacobi matrix {£,} implies

t t
(34) Bl < (14 [17e(E, 91 ds)” [1ee(8, )] ds.
0 0

Hence L,(£2;), p > 3, the norm of the relation (3.4) gives the relation (3.2). Differentia-
ting twice, the Jacobi matrix {£.} gives

B9 eeel < (14 [liise€, 9)1as)'( [ lings@, )ids) (14 [ 1@, 5)ds) [ litygeelds.
0 0 0 0

Taking L,(£2,), p > 3 the norm of the relation (3.5) gives the relation (3.3). This ends

the proof.
LemMMA 3.2. Let @, € L, (0, T; W2(22,)), p > 3. Then for the transformation (1.19),

one has
(3.6) x| < c(1+ldll2,p1,07), &€(0,7),

(3.7 |xelp.a, < clliallzp.1.0r, 1€(0,7),

(3'8) ||xl”k.p.92 < c”alllk.P.in te (O’ T): k = 0, 1.

t
P roof. The relation (3.6) follows from |x,| < 1+f|z715(5, s)ds < e(L+|[iyll2,p.1.07)»
0

t
p > 3. Differentiating Eq. (1.19) twice with respect to & implies |x.| < of |t21: (&, 5)|ds,

so taking the L, norm gives the relation (3.7). From (1.19) we have x, = it,(¢, t), hence
the relation (3.8) follows easily. This concludes the proof.
Now we consider the problem

=o(¥(x,1;5),5), ¥x,t;0)=x, x€£,,

(3.9) dy(xd’st; S)

and w-n=v,-non S, w-n=0onrI.
““Lemma 3.3. Let y = y(x, t; s) be a solution of Eq. (3.9), x € 2,, and x = x(¢, 1),
Eef,, te (0, T) be determined by the transformation (1.19).

Assume that @, i, € L,(0, T; W3(£2;)), p > 3, where &(&,1) = o(x(&, 1), ). Then

(3.10) [y < cexp[Pa(lldllz. p. 1. D) D]z, 5.1, 0715
i/p
GID  ([Irm (0, 1:5)PdE) < Palllisllz, . 1, a7) PRI, p, 1, 01)
22
% exp[Pa(||# ]2, p. 1, aD)l|@l]2, p. 1. 07],

(3.12) |yl < H(;’HI.p.!?zpz(“alnz.p.x.ﬂ:) eXp [P4(”i21”2.p.1,9{)”5)“2.)':,1,97;],

* i/p . .
(3.13) ( J |.V:x(x(§, 1), t; S)fpdf) < @1 ([ld4]]2, p.1.9§"s”w|“2.p.1.n})
2
X [HJJ”z.p.l.xz{‘*‘Hf;)Hx.p.rz:],

where @, is an increasing function, P, is determined in Lemma 3.1.
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Proof. For solutions of Eq. (3.9) we have

(3.14)  |yAx,t;9)] < cexp[sup flm,(y(x t; s)lds] cexp[fﬂm( )z, p. g,,ds]
because y(x,t; s) € £2,, and p > 3. Therefore we consider

319 e, Mz = [ (@l +o,7 + o) ay) "

{23

< e [ 1 PIE 2P + el (8,17 + &, +1317)dE) < Palllis]]s,p. 1, a)1ll2, .0
£

where we used that 2,,2y = &+ J #,(¢, v)dr, £€2,, det {?g}} =1 and @, 1) =

= w(y(£, ), t). From the relations (3.14) and (3.15) the relation (3.10) follows.
From Eq. (3.9) we have

d
"&S_yxx(x’ t; S) = wyy(y(x’ t; S)’ S)yi(xa t; s)+w,.(y(x, t; S)yxx(xs t; S)

SO
14 t
Yadd € € [ 19206 13 9) Pl (v, Ml dsexp [ loy(y, 5)|ds.
0 0
Using the relation (3.10), we get
1/ pe %
316) ([ 13alx(@, 1), 13 )] " < cexplPallidilla po 1, ap)llé]1z, 5. 1.07) %
2,
t
1/,
x fds(f |w,,(y(x(§, t),t;s), 5)|"d§) &
(] 2,

The last factor is estimated by

G17) [ ds( [, (y(x(E 1) 13 5), $)PIEx dy) " < sup (&4l )e
0 t

$22¢

ilp

t
x [ ds( [10,,(»(xE. 0, 15 5), ) dy)
0 (227
it
Using the relation (3.1) and that x, = 1+ [w,(y(x, t; ¥), T)dr which is estimated by
0
G18)  Ix,) < e(1+ [loy(r, Dldr) < e+ Pu(li] 2, .1, D) l1ll2. p. 1,07
V]
(see th: relations (3.14) and (3.15)), the relation (3.17) is bounded by

t
P 2910 313,17 ds( [ 1o,y (x(E, 1), 13 5), s)Pdy)e.
$2as

4%
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Now, to estimate the last integral we use the relation (3.15) so we finally get the relation
(3.11).

t

From Eq. (3.9) we have y, = —w(x, 1)+ fruyy,zlr, )
0
t
3.19) |yl € |wlexp f!w,.(y, 7)|dT < \”)|CXPJ (-, Dllz.p.0,, dT
< Pz(““xflz.r:.1,nz)|J‘-U“Lp.!)ZCXP PA(Hﬁl!fz.p,1.91‘)”‘3”2.1:.1,!2!]-

Hence the relation (3.12) is satisfied. From the expression of y, we get the problem

d
(320) _dS_ yrx(xs [ S) = w_v,v(ya s)y.\-)'r TWy Vx5 Vixls=t = A(U,‘—(X, t)-

Integrating Eq. (3.20), we obtain

t t
(3.21)  [pexlx, 25 9)] < exp flwy(y(x, t;s).s)\dslj 0yl yxllyelds + o (x, )]
0 0

Repeating the considerations from the proof of the relations (3.10) and (3.11), we show
the relation (3.13). This concludes the proof.

LemMA 3.4. Assume that & e L(0,T; Wi(2,), q,,4, € L,(0, T; W3(R,)), vy €
€ Wi(2,), f€ L0, T; W2(R*), p > 3. Then u, described by Eq. (1.20) belongs to
L., T; W;(£,)) and

(322 zlla, powar < Billliallz, 1. a7 12 p, 1.0 [20ll2. .0,
1 l
+'§“|i‘h'|2 P 1, QT||”1||3 p.1, r)T+ S qulb p.1.at T falla, o s r3xc0. 1]
2

where @, (a, b) is an increasing function.
Proof. From Eq. (1.20) we have

I3

(323)  llualla,p,0, < IP2o(¥(x(&, 1), £50))]]2,p.0, +||f[ _ ,912 Voo v(x(£, 1), 1;5), 5)
0

+f2(_V(x(§» 1), t; 5')7 S)]dS”z,p,uz ,

where x(&, 1) = X5 (§,1), § €82, and y = y(x, 1;5) is determined by Eq. (3.9). At first
we consider the first term in the right-hand side of the relation (3.23). It is sufficient to
consider the second derivatives only. Knowing that y(x, ¢; 0) € 2, for x € £2,,, we get

2
(3.24) i"zo,gelp.ﬂz(e) = |v30. yy.Vixs +720 'y(}’uxg‘l”}'xxee){p 2,08

< suply. |25Up'x¢x 20, yplp, 0,0t suPlT’vo ;[SUPIQ' [Vexlpog,
fel), Ec0, te, e,

+ sup vz ,\SHPMerer 2,06
e,
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where L,(£2,(1))) denotes the space of integrable functions with respect to the Lehesque
measure dz. Using Lemmas 3.1 +3.3, one obtains

(3.25) Wzo,ss‘p.nz(s) < @;(H'Jl?gz,p,: ,.r)ga! M)Hz.p,l ,.oj) (i"zo.n-ip,g, @+ Hvzo,yJ 1 ,p,n,(e))-

Changing the variables 2, € & — p(x(§,1),7;0) € 2,, we get d& = |&,||x,ldy so by
the relation (3.25) we obtain

(3.26) i@v;o(y(«\‘(f, 1, 1; 0))“ 2,02, S ‘pi(ﬂﬁlHz,p,1,.r)’;;“a)”2,p,1,QE)””ZO(Y)HZ,::,:%(:;)»

where W}(£2,(n)) denotes the space with respect to the variables 7.
Now we consider the second term in the right-hand side of Egq. (3.23). Let us
consider the first term only

t
Hof Vj,pz(y(x(E, £)s63.3); S)dsiiz,p,uz(e)

< [ds( [ (V2V,0200, )1 +19:Y,0200, 917+ 1¥,p2(0, )17)E) ",
0 Q2;

where y = p(x(&,1),t;5), £€,, hence
f
) 2 P 2 2 r 2.,2yg3 v 2 P P Y
s dS ’ (Ixﬁéyxv7p2| +ix5yxxvyp2i +lx§ }’xVszl T ngyxvypzl +|vyp2| )dE .
0 2,
Knowing that y = y(x, t; 5) € 2,,, using Lemmas 3.1 +3.3 and the relation (3.18), after
changing the variables 2, € £ — y(x(&,1), t;5) € 2,,, we obtain

t t
H ’ o =
G2 || [Vupa(r. 9|, , o 0y < PoUlll2 p.1,078l13,p.1 01) [ dSIIV, 2203y M pomcnr
0 0

Making use of the fact that there exists a Lagrangian varable ¢ € 2, such that y = £+

+f171(i,', 7)dr, one has
]

! r .
de”Vsz(.V’S)Hz,p,ou <) ds(f(?‘h.ccc@+3¢Tz.c:Cyny+Q2,nyylp
¢ o g

; /P
+|q2,ECC§+q2,yny{p+|q2,CCy}p)dc) )
where ¢,(C, s) = p,(¥(C, 5), ). By Lemma 3.1 the above expression is estimated by
@;(Hﬁllb,p,l,!?;'i!"b”Z_p,l,!)E)(l +HﬁlH:;,p,l,n{!)”Qz”s,p,l,of‘

Similar considerations can be applied to the last term in the relation (3.23), where we have
made use of the fact that

p-1 2
nguz,p,l,.of < CT"fz”z,-n,m.R’x(O.T)(l+CT u H”le,p.p..Q{)

This concludes the proof.
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Now we show the existence of solutions to the problem (1.21). To do this we consider

'91— A:q; = QL(AE—A;,)Qz—V’L“zVEI% +divg, = Hi+H,+H;, &€,,
2 2
1 _ 1 = — —
(3.28) Q—”o k V;‘Iz = 97 (o - Ve_”;! : V}])Qz‘(“z,:"‘”z E vituz)"}}',“gz cny
2
Ehl-*-hz"*_}hs EES’
_ 1 _ _ _ _
9—1‘ no* Veq, = E—("o-Ve—n;,-V:,)qﬁuzqu;ln;,+gz-n:.1 =k, +k;+ks, &€l
2 2

where
- A * Ve Wo

nyls = ngls = m: EesS, W6 =Y(E,0),

— V. ¥ _ _
T(ES t) = ¢( ;1(53 t)’ t): E GS’ ”ols = W:E‘g‘[zl-s nUIF = nﬂ(‘s)

is the unit outward vector normal to I" at &.

Assuming that #; and u, are known, the existence of solutions to Eq. (3.28) will be
proved by the method of successive approximations in L,(0, T; W(£2,)), p > 3.

LeMMA 3.5. Assume

i, €L, (0, T, W,:(-Qz)), u €L, (0: T; W:(-QO)QL;(O, T, Wﬁ(!?n)),
U €L, (0, T, W3(2,)), WoeWy 'P(S), 'ewy 'r, p>3, feL,(0,T;W2R?)

and

(3.29) [pGetydx = [ qute, 0] 2%
0, | ¢

Q2

dé = 0.

Let T be sufficiently small. Then there exists a unique solution to Eq. (3.28) such that
92 € L,(0, T; W3(£2,)) and

1
(3.30) _é:”q2”3,p,p,ﬂ'{ < (1+¢2(|W1H2,p,x,9}, ”l-pol|3—1/p,p,s))”[u1”|a.nf

+¢3(|[“1“4,p,1,917’ ||ﬁ1”3,p,1,9;", ”To“s-—:/p,p,s‘ HI-'”3—1[p,p! T) [T“(Illulllli,af

+||u2‘|§,p,cc.ﬂ'f)+TH.fZ”Z,oo,oo,Rs.x(O,T)]’
where o > 0.
Proof. At first we estimate the right-hand sides of Eq. (3.28) (see [3, 1, 5])

1
||H1Ul,p.p,n{ = Q_z ”(611“55\:‘5§’)42,5'5""‘5::35(5;:)42,5”1,p,p,.(z{

t 4 t
3/
(fﬁl,edsq2,55+f&l,ﬁdsqz,e)(l+ fﬁljsds) !"l’p,p,gg
0 o ‘

0

c
£ ——

\92

C i -
< *Q— a113,p,1 ,912-(1 + iy Hs,p,l,ng)SHQsz,p,p,gg,
2
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“Hznl.p,p,!ﬂ; s P4(llﬁlllz,p.l,a}'nl“z”%,p,n,n',' <P, T”P”“zng.p.m.ng;

| (R -
lih1ll2=1/p,p,p,sT < Ez_qjl(”“l”:&,p,l,oﬂ’qlolt?:—l[p,p,s)“ull!3,11.1,.QI“VqZHZ.P,P,QZ-

Now we consider

(3.3D) ”thZ—l[p,p,p,sr = [|(u, * ﬁ;t),,—uz(ﬁzl)_, +uy - v;,(ul : ;'_;1
—Uy Uy V;,ﬁ'ﬁ,nz—lpp.p.p.s"-

We estimate particular terms in the above expression. At the beginning we consider the
first term, so we have

A.VEWO

3.32 —

Ugt

2-1p.p.p.s” S W1 ella,p 0,07+ Vets e Vi + 1y V20 [ 01

S [l"f‘@i(Hutz,p.Lo}" II‘I’()'l3—1IP.F,S)]”ul,t”Z,p,p,ﬂ"":
where 7, is defined in Q,, and

A.VETO )
“\ T4V %, ),

By [3, Ch. 2] and [1, § 18] the terms in the square brackets are estimated in the follow-
ing way:

(3.33)

.y P < (Dé(“ul”B,p,l,Q}': [1¥oll3-1/p,p,5)
-1/p,p,2,

X [y vy gllo,o,p.07 + U1 gee .o+ |ty getts ,elp,a','] .

sty gllo,o,p,07 < |1tt1ll0,0,pp, 07t gllo.0.pp7.0T < €llitr]l2,1,p,0,07I111 ¢l12,1,p,0,07

2p—q)
< TP |||ugllig or
where
1 1 1 1
—+ <1, >3 —t==1 = P
P q P Pt 21 a=#

quul,eesfp,.o{ < |u1|pp.n{|u1,eee|pp'l.nf < C||“1”z,1,p,q,nf ||l¢1,ee“z,1,p,q.x){

2(p-q)
< eT 7 |lugllZors
1 4 1 1
where —+—<3,p>3, g <p,—+ —- = 1. Finall
p q E =z P1 P2 y

[u1,eu1,ee”p,9}' < Euuelppl,oﬂun,55|pp;,n{ < C'Hu1,5”2,1,p,q.n}‘l|“1.5”2.1,p.q,9f

2(r-9)
< el 7 ||l or,

1 1 1 1
where — 4+ — <4,p>3,g<p, —+—F=1.
p q 4 =5 D1 )41
Similarly we obtain
(3.39)  ||-u,- (ﬁil):‘*'uz ' V‘él(ux * ﬁL)”z—up.p.p,sr < qji(””x”-t-,p,hn}‘s ”TOH:!—IIP,P.S)

" T¥|luzll2,p,0.075 111 ]lla,07>
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where «' > 0 and
(3.35)  u2u2 Vi 15 ll2-1/p,p,p,sT < Cbi(l]ullh,p,l,n{, H!po+|3—1/p,p,s)TH“::H%,p.m,Q{-
Moreover, we have
[kyll2=1/p,p,p,07 < (Dé(nﬁllla,p,l,:){’ Hpns—1/p,p)|Eﬁlna,p,x,a{”vﬁnz,p,p,ng,
and
”kz”z—up,p,p.r'T < ¢;(|Iﬁ1”3,p,1,9§, ”—rH3—1[p,p) T““ZH%,P,@,QI'
Finally we consider terms with g,. Therefore we obtain
“divng|1,p,1,af+ g2 15,11,1p,0,0,s7 + 182" 5, /l2-1/p,p,p, 5"
< CT”szz,w,ao.mq)é(Hﬁn”3,1;,1,91)-

From the above estimates, Eq. (3.29) and for sufficiently small time T we obtain the esti-
mate (3.30). To prove the existence of solutions of Eq. (3.28) we use the method of success-

m
ive approximations such that in the left-hand sides of Eq. (3.28) we put g, and in the

m—1 0
right-hand sides ¢, in the place of g,. Assuming g, = 0, we show the existence in L
L,(0, T; W3(£2,)) for a sufficiently small 7. This concludes the proof.

4. Existence

To prove the existence of solutions to the problems (1.12), (1.20), (1.21), we use the
following method of successive approximations:

m+1 m+1 m+1 m+1
Q1 Uys _"’V::+1 U +V3'|+1 @1 =q1, Vmser- 4 =0 in [
uy uy uy
m+41
(4.1) U lio =10 in &,

m+1l m+

1 m
T1m+1(ul s q1 )ﬁm+1(§’ t) = T2(q2)ﬁm+1(£! t) on ST’

m
where ¢, is treated as a given function,

1 m m m
— Az q, = =V u, Vo uy+divg, in Q,,
92 uy uy uy
1 _ m m _ m -~ m ;; _ m m _ _
42) —n; Vagy = —(uy85).+uy (05).+uz Vi (uy - np) +usuy - Vg, +85 - 13
2 uy uy uy uy uy uy uy uy uy
on S,
l _ m m m . _
— 5, V5 g, = wouy - Vi ny, + g, - 1, on I,
92 uy uy Uy uy uy

m m m m

m
where u,, u,, u, are treated as given and u, is an extension of u; on £2, such that
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m

4.3 ullla,0r < clllur|lla,0r.

Finally we consider

@d) iy (£, 1) = 1o WXz (£, 1), 15 0)

+ [ [- gi V2 (0 (X, (&, 1), 15 8), ) +1:(0(X5 €, 1), £55), s)]ds
0 y uy Lt

m m m m
where u,, u;, g, are assumed to be given, y is a solution to the problem

m
dy(x,1;s)

@5 25D (e 8), YY) = x.

0 0
Moreover, we assume that u; = v,,(§, 1), u, = v,0(&,¢),and m=0,1, ....

By Theorem 2.2 for T sufficiently small there exists a unique solution to the problem
(4.1) such that

m+1 m+1
4.6) uy € Lp(0, T; WHR))NLL(0, T; WAR)), g5 €L,(0, T; Wi(2),

m+1 m+1 m
o] u, [lla,or +11 g4 ll3,p,p,07 < C(T)[anHz.m,ou.ll’x(o,r)+”1’10”4—2/p,p.nl+H%Hs,p,p,pﬂ,

where o = min{g,, u}. Next, by Lemma 3.4 we have

p—1 m

m+1
@47 |lu, HZ,p.m,DT DT P ||y, ,2,p,97s T””z”z P, :JT)

1 -1 pP—1 m
[ Ibsoll .0+l oo+ T galls ppar(1+ T talls pop.ar)|.
2

Finally Lemma 3.5 implies

| m
(4-8) 9—2 ||‘12||3.p,p,n" < (1 +¢’2(”u1|!2,p,1,n}'; ||5U0”3,1[p,p.s))|Hu1|”a.ﬂ{

P—1 m

20T (ftllaspmats 1ol i slIT 15175 T) LTI 12 0 + i B, p o 7)

+T1112l12,00,0 R 0,1 -
Introducing the quantities

m m m
x = |”u1!”a,ﬂf+!|u2|!2,p,oo aTs
4.9 o= |17’10H4_%,p191+||fx||2,m,w,a3x<0.r),

g = [v20ll2,p,0, + [1£2]12,00,0,R2x (0,

from the relations (4.6), (4.7), (4.8) we obtain

m+I 1 p—1 m
< C(T)*“ (a+”qz|]3 pp!)r)‘l’@S(Tgx) ﬁ+9_ Tr qu“3ppﬂr ’
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@10 Dl < [1+ar 7 )] 5+ 0, (75 %) (<% + 751,

where ¢ > 0, so
m+1 m ny
“.11) ; < c(T)[%— (a+gz(l+¢5)x)+92¢7(T°‘x+Tﬂ)]+¢5 [ﬁ
1 p-1 m my 1 m
+ ?‘ TP [(l+¢5)x+¢7(T°‘x +Tﬂ)]:| = G(“, ﬂ, T, —a', x) §
2

where the arguments of @;, i = 5,6, 7, are written in the relation (4.10). The function
G is a positive continuous nondecreasing function of its arguments. We have that G(«, 3,

0,0,0) = K, > 0. Then there exist T, and o, such that for T'< T, gi = o, there
2

exists K > K, such that

(4.12) G(a, g, 1,2, K) <K
. Q2
Therefore for T < T3, ?U— = o, we have
2

“.13) <k m=0,1,..,

0
where x = [P10lla=2/p.p.0, +1[¥202,5,0, € K must be satisfied, too.
m m

Now we show that the sequence {u,,q;,u,,q,} converges. For this purpose we
consider the following system of problems:

01 al‘ Ul _'yvm.pl Ul +vm+1 Q = W(vri-fl m)ul_(vm-'-l_vm)ql

Uy uy uy oy uy

+./;. (X,,,+1(§, t)’ t)—.fl(le(E: t)’ t):

m+1 m
(4°14) Vm+1' U, = "'(Vm+1_vm)'u1$

uy Uy uy
m+1
U lt=o0 =
_ m+1 _ _ L _
To " Dy 1 (U Ylmpr = — 7o Dy (u)ftm 1 +70 " m(ul) "m,
uy Uy Uy uy uy
_ m+1 m+1 _ . m m _ m m
Ho* T1m+1(U1 y Q1) fmyy = _n0T1m+1(uls q1) My 1 +1, Tlm(uln ‘11)”'"
uy 1 Uy Uy

+n, Tz(Qz) "m+1 +1 Tz(‘lz )(‘m+1 Pa)s

uy uy
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'9_— A Q2 = “-(é1 '—Am l) Qz (Vm UZV u2+v uz V U2)+
2 Uy uy uy uy uy
m-—1 m-1

—(V;;I u, v; U —v;—l uZ V:;—l u2)+va .fZ(XP;(E! t); t)_v~—lf2(Xu1—l(§y t)s t)s

uy u

(4.15) Z}—n" Va0, = — (s Va—Tia_, - V... D g —(Uln ), (ul (‘m—n.,. D)

uy oy Uy u, Uy

+[u2 ("m)r‘ “2 ("m - u2 m(UJ.nm+ “J. (—m—nm—-l))

Uy Uy up
n—1 -1
+(u2 Vi— uy - ,,,_1) u, n,,,_1+(U2uz+ uz Uz) Vong,
uy Uy Uy uy
m—1m-1 -
+u, u, '(Vﬁnﬁ Va 1nm- )+f2(X (E t) t)nm_fz(X —I(E t) t)nm—l’
Uy Uy U1
1 - -, m—1m
e V Qz = =Mz Va—hg_+ Vm—l) ‘12 +(Uzuz+ uy Uy)- Ving
2 lfx uy Uy uy uy uy uy
m—1m—1
+ U U (V?;I’;iﬁ; Vm—l.nm— )+n fZ(X (E t) t) nm—IfZ(Xm I(E t) t)

Finally from Eq. (4.4) we obtain

m+1 m m—1
(4.16) U, (§,1) = ‘Vzo(J’(Xrﬁ(f, 1),1; 0))—1’20( y (X;._1(5, 5 0))

+——f[ Vmpz(y(X (60). £55), 8)+Vin- NG (le(f ), t;5), s)]ds

+ f[fz(;(X;(rS, 1), t; s),s)-fz(mil(Xf_l(f, 1), 1;5),5)|ds.

m
Moreover, Y(x, t;s) is a solution to the problem

m m m m—1 m m
“4.17) Z'dE' Y(x,t;5) = Vz(y(x, t; )+ Vi, v, (ﬁm(x, 1;5),5)¥(x, t;5), Y(x, t;5¢) = 0,

where

nt m m—1 m m
Y(x,t;8) = y(x,t;9)— y (x,8;5), Va(¥(x, t:5),5) = v2(¥(x, t;5), 5)

m—1 m m—1
— vy (¥(x,258),5), Pulx, 1;8) € V(x, 5 5), ¥ (x,89)],

[ee, B] is a segment between « and f.
At first we find an estimate for solutions to the problem (4.14). Using Theorem 2.2
gives

m+1

m+1 m+1 m m+1
4.18) o[l U; le,!JT'*‘H Q1ll2,p,p,07 < @[l uy l13,p,p,07 ”U1I3,p,p,n‘f) {10 l13.p.1.07



324 W. M. ZAJACZKOWSKI

m m
[(4{?) : [“ule,p,p,Q{'i‘ g, |2,p,p,.o}'+”f1 L 0,T; Lin* R3]
con
m—1 m+1

+11Q2ll2.p.p.0 + || 92 ll2.p,p.01l| Uy [l2,p.1.01}

where we made use of the fact that f; . is Lipschitz continuous with respect to x(f; €
€ Lip!(R3%)). From the relation (4.18) for sufficiently small 7, one obtains

m+1 m+1 m+1 m m
(4-19) 0'|||U1|“b..of+”Q1 Hz,p,p,n}' < ?’2(“ Uy ||3,p,p,.0f’||"1Hs,p,p,nl;) ) HQzllz,p,p,.rﬂz’-

Assuming that f; , is Lipschitz continuous with respect to x(f, € Lip!(R?)), we obtain
from Eq. (4.15)

1 m m m . m
(4-20) ?2— ||Q2“2,p,p,n;r < ?’3(K)T"(|”Uzmb,9{+f|Uzi|1,p,m,g§)+¢4(K)HIU1|H5,QT,

where the function ¢; depends also on T and || f3]|Le (o, T; Lip' (R Moreover, a > 0.
To estimate Eq. (4.16), we write it in the following form:

I o
m+1 m m—1 m
(4.21) Uy (&, 1) =vi0.5,m Y(X;)+320,50.(m) Yz, | U ndr
Uy 0

2

- [ -Q—t-[vf;.(m,}"z(;,(m))f'(m)+vym._,mpz(i;_l(m))y,,_l(m), S ACEYS
0 0
m  m—1
+ V" meyP2 (¥ (m#l))]ds

. m m—1
+ f[fz(y(X;(E,t),t;S),s)—fz( y (Xa(6,1), 1:5),5)|ds,
0 uy uy
where

m m—1
(M) = Y (X7, 1), 2:5),  Fmx,158) € V(x, t;5), ¥y (x,1;9)],
i m m m m m—1
Xpe[Xa&, 1), X5 (&, 0], y(m) =y(Xz(&,0,1;5), Ym) =ym— y (m),

m—1 m—1
Fmeimye [y (XaE,0,t:5),  y (Xa_i(E,1), 8 9)].

From Eq. (4.21) one has

~

m+1 1 m m = m
4.22) ||U, ]|1,p,w,n{ < C(K)(“”zo”z,p,s), + ETz lg21l3,p,1 ,n{) (HYHl,p,oo,nzT + ”Ulffl,p,n,o{)

1 m m m
+ ? C(K)“Qz”z.p.l.uf‘*‘ Hf2”Lm(0 T;Lip‘(R’))(' [Y”l.p.oo,rzzf -+ ||U1 Il ,p,l,o{)
2

and from Eg. (4.17) one obtains

(4.23) ¥ llsp 007 < €Tl g1 .07
B
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Finally. from Eqgs. (4.18), (4.20), (4.22) and (4.23) it follows that the sequence {u,,

u,, qy, g} converges for sufficiently small 7 and for sufficiently large —g— (o0 = min{o,, v}
2

to a limit {u,, u,, q,, g,} which is a solution of the problem (1.12), (1.20), (1.21). We pass
to the limit easily because Eqgs. (1.12) and (1.21) are satisfied classically.

a
By the standard arguments we prove uniqueness for sufficiently small T and large e
2

Therefore we have proved

THEOREM 4.1. Assume that v,, € W3~ 2P(2,), v,0€ Wi(2,), fi, f2€L,0,T;
WZ(R3), Se Wi-Yr, I'e W3-UP p > 3. Moreover, the following compatibility condi-
tions divv;y = 0, i = 1,2, v, Hols = ¥50* Hols and v,q - Holr = 0, where nyls is the out-
ward vector to £2, and normal to S, ny|p is the unit outward vector normal to I, hold.

Then, for sufficiently small T and large Qi, o = min{p,,»} there exists a unique

2
solution of the problems (1.1), (1.2), (1.3) such that v, € L,(0, T; W3(2,)nL; (0, T;
Wﬁ({“)l ))’ P1 € Lp(o’ T, Wg(gl ))7 Pl\fr € W;—lfp.l/z—lllp(gT)’ L&) ELw(OS T’ Wl%(QZ))’
PZ eLp(O’ r; Wg(QZI))v t s T'
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