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Isobaric flows of an ideal fluid 

Z. PERADZYNSKI (WARSZA WA) 

THE EQUATIONS of isobaric flows (i.e., such that p = const) are investigated. We prove that the 
solutions are global in time, are of rank 2 (as the mappings R4 ~ R3) and that their gradients 
are increasing, at the most, linearly with time along the trajectories of particles. 

W pracy rozwazane Sll r6wnania przeplyw6w izobarycznych plynu doskonalego. Pokazano, 
ze ich rozwillzania traktowane jako odwzorowania z R4 do R3 majll dwuwymiarowe obrazy, 
istniejll globalnie w czasie, a ich gradienty narastajll (wzdluz trajektorii Clllstek) co najwy:Zej 
liniowo w czasie. 

B pa6oTe paccMaTpMBaiOTCH ypaaHemm H3o6apHqeci<HX Teqerrnii ~~,qeaJILHoii >KHro<oCTH. Tio­
Ka3aHo, liTo me pememm, TpaKToBaHHbie KaK oTo6pameHHH M3 R 4 B R 3 , RMeiOT ~ByMepHbie 
o6pa3hi, cy~ecrnyroT rno6aJThHbiM o6pa3oM so apeMeHH, a HX rp~eHThi HapacTaiOT (a,n;oJIL 
TpaeKTOpKH qacTH~) no I<paHHeH Mepe JIFHeHHO BO BpeMeHH. 

1. Statement of the problem 

ONE oF THE FUNDAMENTAL problems of hydrodynamics concerns the question of global 
existence, in time, of solutions of the Euler equations 

(1.1) 
av Tt +(v · V)v+Vp = 0, 

divv = 0, n · vla.a = 0. 

This problem is investigated here for particular classes of solutions of Eqs. (1.1). For 
example, the constraint rot v = 0, compatible with Eqs. (1.1) is preserved during the evo­
lution, therefore the search for potential solutions (i.e., such that v = V</J) reduces the 
problem (1.1) to the linear problem 

(1.2) 

and the nonlinear relation determining the pressure 

(1.3) 

Obviously, in the case of potential flows the global existence can be easily established. 
Therefore, when one is interested in finding counterexamples of global existence of solu­
tions of Eqs. (1.1), one should look for solutions with nonzero vorticity. 

Isobaric flows form one of the simplest classes of flows with nonvanishing (in general) 
vorticity, what makes them interesting for us. As shown below, the general solution of 
the linear counterpart of Eqs. (1.1) 
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(1.4} 
ov at +(v0 • V)v+Vp = 0, 

divv = 0, v0 = const, 

is composed of two components v = u+ w, where u is rotation-free and w is the rotational 
isobaric solution(!). Thus we have 

rotu = 0, divu = 0, 

(1.5) au 
at+V[v0 • u+p) = 0 

and 

(1.6) 
ow Tt +(v0 • V)w = 0, 

divw = 0, p = const. 

This splitting is related to the fact that the Fourier transform of Eqs. (1.4) 

(1.7) {
(Eo+vo · E)v+~p = 0, 

E · v = o, f = (Eh E2, E3) 

has the characteristic determinant 

(1.8) 

in the form of a product of two polynomials. The irrotational solutions defined by Eqs. 

(1.5) are related to the "elliptic branch" IEI 2 of W(E). The linear branch Eo +v0 • { = 0 

of multiplicity 2 leads to E p = 0 and thus p = p0 c5(E}, which indeed implies that the 
pressure is constant: p(x) = Po. 

As far as v 0 is constant, both systems, i.e. Eqs. (1.5) and (1.6) are compatible. That 
is, for given initial conditions u0 (or w0 } satisfying the constraints rot u0 = 0, divu0 = 0 
in case of Eqs. (1.5), or div w0 = 0 in case of Eqs. (1.6}, there exists a unique solution of 
the Cauchy problem. 

Equations (1.5) and (1.6) are examples of systems generated by components (bran­
ches) of the characteristic polynomial (see [1]). In the quasi-linear case such systems 
are connected with the appropriate decomposition of the tangent mapping of the solution. 
This decomposition has a bearing on the decomposition of the space of values of the 
solutions into eigenspaces related to the branches of W(E). 

In this way in the nonlinear case one obtains 

(1.9) 
ov 
Tt+(v·V)v=O, 

divv = 0, p = const 

instead of Eqs. (1.6). One can see immediately that every solution of the system (1.9) 
satisfies also Eqs. (1.1). However, contrary to the case of Eqs. (1.6), the system (1.9) is 
incompatible, i.e., the constraint divv(O, x) = 0 for the initial condition v(O, x) is not 

(1) This splitting is not necessarily unique. 
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sufficient to guarantee the solubility of the Cauchy problem. There are certain extra 
conditions which must be satisfied in order to guarantee the existence of the solution. 
The compatibility conditions for Eqs. (1.9) lead to further constraints for v(O, x). In order 

to obtain them, let us denote D = { i)~i v')· We have from Eqs. (1.9) 

(1.10) 

and hence 

(1.11) 

() 
- D+(v · V)D = -D2 

ot 

d - nn = -nD"+l 
dt ' 

where ~ = ~~ +v · V. By taking the trace of Eq. (1.11), we have 

(1.12) 
d dt Tr D" = - nTr D" + 1 

• 

Let us note that Tr D = divv. Thus divv = 0 implies that Tr D 2 = 0. This implies 
Tr D3 = 0 and so on. On the other hand, for any 3 x 3 matrix A the vanishing of Tr A, 
Tr A 2 , Tr A 3 implies that the eigenvalues of A are vanishing and thus Tr A" = 0 for 
any k ~ I. As follows from Eq. (1.12), if v(O, x) satisfies Tr D = 0, Tr D2 = 0, 
Tr D 3 = 0 then these relations are preserved automatically at later times. Since the eigen­
values of D are vanishing, the matrix D has one of the possible canonical forms 

(1.13) 
(
0 0 0) 

D"' 100 
0 1 0 

or D "' (~ ~ ~) 
0 0 0 

and not only Tr D3 = 0, but also D3 = 0. Therefrom, as the hodographs of isobaric 
flows are degenerated, these flows are either simple or double waves [1]. 

2. Global existence in time 

As we have noted, Eqs. (1.9) imply two other consequences Tr D2 = 0, Tr D3 = 0 
which, in fact, are constraints for the initial conditions. Thus the full, compatible set of 
equations of isobaric flows are the following: 

{

TrD = 0, TrD2 = 0, TrD 3 = 0, 

(2.1) ov at +(v · V)v = 0, p = const. 

The first three conditions 

(2.2) TrD = 0, TrD2 = 0, TrD3 = 0 

can be treated as constraints for the initial conditions. To see how restrictive they are, 
and to estimate the freedom of the general solution, let us demonstrate that Eqs. (2.2) 
can be written in the Cauchy form. In order to prove that, we will look for noncharac-
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teristic surfaces for Eqs. (2.2). Taking D --+ D + eG, G = (u~p) and linearizing Eqs. (2.2), 
one obtains the following linear equations for G: 

(2.3) TrG = 0, Tr{DG) = 0, Tr{D2 G) = 0. 

The characteristic determinant for this system is 

detjj{, D[, D2~l = 0, 

where D~ = (v~fJ~cx). Therefore the characteristic covectors of Eqs. (2.3) and thus also 

Eqs. (2.2) satisfy D2 [ = 0 

I is characteristic ~ ~ E Ker D 2
• 

Let us now take a point Xo E R3
, say Xo = (0, 0, 0) and a matrix jj = ci5:.) satisfying 

Tr jjk = 0, k = 1, 2, 3. Let rank D = 2, then dim {Ker D2
} = 2, and there exists 

a vector, say ~' which is not characteristic, ~ 1J Ker D2
• Without loosing generality, we 

may assume that lis perpendicular to the plane x3 = 0. In such a case, the plane x3 = 0 

would be noncharacteristic and for values of ( v~cx) from some neighbourhood of D, Eqs. 
(2.2) can be solved for v~3 • Then the Cauchy-Kowalewska theorem can be applied to 
state that the general (analytic) solution of Eqs. (2.2) in the vicinity of x 0 depends on 
three functions v·1 (x1 , x 2 ), v2 (x 1 , x 2

), .ZJ3(x1
, x 2

) of two variables. We have assumed here 
that 

ovi l = Di 
OXI' X=O I" 

Suppose now that the initial condition v(O, x) E C1 (.Q) is defined in some domain .Q c R 3 

where it satisfies Eqs. (2.2). As it follows from Eqs. (2.1), the velocity vis constant along 
the characteristics of the second Eqs. (2.1) which are defined by 

(2.4) 
dx -dt = v(t, x), x(O) = x 0 • 

Therefore these characteristics are straight lines defined by 

(2.5) x = v(O, x0)t+xo. 

To find the velocity field in the coordinates t, x one must solve Eq. (2.5) for x 0 , x0 = 
= x0 (t, x) and substitute it for x0 in v(O, x0 ) 

v(t,x) := v(O,x0 (t,x)). 

It appears that the transformation (2.5) is nonsingular for all t. Indeed, we have 

(2.6) 
OX 

-- = D0 t+l, ox0 

h ox (ox'') · h J b. · f c . (2 5) d h D w ere oxo = a~ IS t e aco I matnx o transtormatwn . an w ere 0 = 

= Bv(O, Xo) I Since D0 is nilpotent, we have det IIDot+lll = 1 and 
OXo t=O· 

(2.7) 
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Thus Eq. (2.4) is invertible, which implies that the solution of Eqs. (2.1) is defined for all 
t in the region of space-time covered by the characteristics (2.5) passing through Q. 

Let us also notice that along the characteristic curve the gradient of the solution 

D = ';}.
0 

. vi increases linearly with time. We have 
uX1 

OV ov(O, x) OXo - D (1-D D2 2) - D -D2 Tx - OXo ox - o o t + ot - o o t' 

which shows that the gradient of v increases linearly with time in the case of double 
waves (D~ =/: 0) or it stays bounded in the case of simple waves (D~ = 0). Thus the 
isobaric flows can not provide us with the counterexample of global existence. They can 
be still interesting, however, from the point of view of applications (geostrophic flows), 
and they provide us with the wide class of solutions of the Euler equations. 
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