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Dislocations and disclinations in a new light

M. J. MARCINKOWSKI (MARYLAND)

THE CONVENTIONAL treatments of the interrelationships between dislocations, disclinations,
disclination dipoles and grain boundaries have been re-examined in detail and shown to con-
tain a number of serious inconsistencies. When the concept of surface dislocations is introduced
into the classical analysis, however, these difficulties are immediately eliminated and a new
richness emerges from the theory.

Szczegélowo przeanalizowano ponownie tradycyjne ujecie zwigzkow migdzy dyslokacjami,
dipolami dysklinacyjnymi oraz granicami ziaren, stwierdzajac szereg istotnych niekonsekwencji
w tym ujeciu. Znikaja one natychmiast po wprowadzeniu pojecia dyslokacji powierzchniowych,
co prowadzi do istotnego wzbogacenia calej teorii.

ITogpo6HO TIpoaHAIH3NPOBaH BHOBG TPAAMITMOHHLINA MOIXO0M K COOTHOLIEHHAM MEXIY JHUCIIO-
KaUMAMH, OUCKIWHAIMAMH, OUCKIWHAIHOHHBLIMH JUMONAMM M TPAaHMLAMY 3€peH, KOHCTAaTH-
PyA PAA CYLIECTBEHHBIX HEMOC/IEIOBATEIBHOCTEH B 9ToM moaxoae. OHM MCUE3al0T MTHOBEHHO
ToCJIe BBENCHHUA MOHATHA MOBEPXHOCTHBIX MHUCIIOKAUM, UTO MPHBOANT K CYIIECTBEHHOMY
oforaueHHIO 11eJ10¥ TEOPHH.

1. Introduction

A CLOSE GEOMETRICAL relationship has been shown to exist between lattice dislocations,
surface dislocations, disclinations and grain boundaries [1]. It has also been demonstra-
ted by pDE WIT that a close mathematical relationship exists between the theory of dis-
locations and disclinations [2]; however, the concept of surface dislocations is not con-
tained therein. It will therefore be the purpose of this study to bring forth a greater unity
between the physics and mathematics that underlie the close interrelationship between
these various types of defect.

2. Disclinations and continuous dislocation distributions

Consider first the simple quantized edge-type lattice dislocation shown in Fig. la.
The components of stress associated with this dislocation may be written as [3]
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FiG. 1. a) Single, b) vertical wall of edge-type dislocation, c) dislocation representation of the wedge

disclination in d).

where u is the shear modulus, 5—the Burgers vector of the dislocation, and » is Poisson’s
ratio. The fourth component of stress can be readily obtained from the following relation:

2.2) Oz

= ¥(Oxx+0yy).

A uniform distribution of a finite number of vertical lattice dislocations with nearest-
neighbor spacing 4 yields the finite wall of length 2L shown in Fig. 1b. Assuming this
discrete array of dislocations to be continuously distributed, Egs. (2.1) can be rewritten
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‘The above equations can be readily integrated to yield [6]

x2

3

x2

(2.4) Oxx = Tn(l=n)k

pb [il x2+(y—L)?
x2+(y+L)?

2+ (+L)?  x2+(y-L)2



DISLOCATIONS AND DISCLINATIONS IN A NEW LIGHT 281

Q4) o, = P [--l—n’izf(y"”z AN . ]
(cont.] 7 =k | 2 2+(+L)? T x*+(y-LP x*+(+L? |
o ubx [ y+L _y-L }
7 2a(-nh | 2+ +L? x*+(@-L)?}

Consider the case in which L = R, where R is the radius of the body, and where R > x, y.
Furthermore, let —L = L, i.e., the condition where the bottom of the dislocation wall
lies along the positive y-axis. Equation (2.4) then become
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The above equations represent the stress field of a wedge disclination located at the posi-
tion L within a finite body of dimensions R. The wedge angle £ associated with this dis-
clination can be written as

b
2.6 8=,
(26) .
Compared to the stress field expressions for an edge dislocation given by Egs. (2.1), those
associated with a wedge disclination are relatively complex since, as Egs. (2.5) show, they
depend on both R and L. They may be simplified somewhat by placing the disclination
at the center of the body; i.e., letting L = 0. Further simplification occurs by allowing
the body to become infinite, which corresponds to letting R = co. Equations (2.5) thus
become

Oex = — 00,
2.7 Oyy = —00,
o = — uS2xy
2 21— (2 +y2) ’

which corresponds to the configuration depicted in Fig. lc. This wedge disclination is
represented again in a nondislocation manner by the circle and dark wedge symbol in
Fig. 1d. It was VOLTERRA [7] who first proposed the six basic types of distortion. One of
them was the edge dislocation and another the wedge disclination. It has been reasoned
that the uniqueness of the disclination lies in its rotational character in contrast to the
translational nature of the dislocation [2]. However, to the extent that a disclination can
be represented in terms of an array of dislocations, this uniqueness is eliminated so that
only the pre-eminence of the dislocation is maintained. This pre-eminence will be made
even sharper in the following sections when the concept of a grain boundary is discussed.
In principle, however, it should be possible to arrive at the same stress fields for a discli-
nation whether one uses the non-dislocation model of Fig. 1d or the dislocation model
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of Fig. 1c. Utilizing the former approach, bE WIT [2] was able to obtain an expression for
oy, analogous to Eq. (2.7);. Since he was also dealing with an infinite body, his equations
corresponding to oy, and o,, should have also reduced to the same infinite values given
by Eqgs. (2.7), and (2.7),, which they do not. The reason for the present results is that
the logarithmic terms in Egs. (2.5), and (2.5), increase without limit as R in the deno-
minators increase without limit. This is a physically reasonable result since the dilata-
tional stresses would be expected to become infinite as the extra matter associated with
the dislocation wall approaches infinity. The fact that this result is not reflected in De Wit’s
stress field expressions may be related to his stated omission of all those terms in his pre-
paratory equations that gave rise to infinities.

3. Disclination dipoles

In the limiting case where L = o0 and —L = — o0, the infinite wall of uniformly
spaced edge type dislocations shown in Fig. 2a is obtained. When these dislocations are
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F1G. 2. a) Vertical wall of uniformly spaced edge dislocations, b) configuration obtained after removal

of dislocations over a length 2L in a), ¢) disclination dipole representation of b), d) surface dislocation

representation of configuration in b), ¢) disclination dipole model of d), f) disclination representation
of Fig. 1b.
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continuously distributed, Eqgs. (2.4) can be used to arrive at the following results:
(3.1) Oxx = Oyy = Oxy = 0.

The vanishing of these stresses is the cornerstone of the conventional, albeit incorrect
belief, that the dislocation configuration of Fig. 2a corresponds to the correct represen-
tation of a grain boundary [3-6]. In fact, the results of Eq. (3.1) are in surprising contra-
diction to the findings of Egs. (2.7) for a semi-infinite wall of dislocations. In particular,
it is intuitively obvious that the dilatational stresses must approach infinity as both y — o
and y - —o0 in Fig. 2a, as was also argued to be the case for the semi-infinite wall of
Fig. lc. The seeming contradiction between the results of Egs. (2.7) and Eq. (3.1) arises
from the fact that the latter were obtained by assuming L > x,y in Egs. (3.1), so that
in the limit where L — oo, they represent the stress at the center of an infinite wall of
dislocations only [8]. At large distances from the center, Eq. (3.1) no longer holds, so
that the wall in Fig. 2a generates long-range stresses.

If now a portion of the dislocations in Fig. 2a that lie within a region 2L at the
center of the wall is removed, the configuration depicted in Fig. 2b is obtained. Appli-
cation of Eqs. (2.4) to this configuration yields

’

Oxx = ~Oxxs
’

(3.2) Gyy = —0yy,
. !

ny - _—O-xya

where oy,, etc. simply denote the stresses given by Eq. (2.4); etc. The negative sign indi-
cates that the configuration of Fig. 2b corresponds to that of a finite wall of dislocations
of length 2L, such as depicted in Fig. 1b, but of opposite sign, as shown in Fig. 2d. The
dislocations are drawn dotted in this figure to differentiate them from the extra matter
dislocations which were the original source of the distortion. These will be termed surface
dislocations for reasons that will be made clear later.

Extending the reasoning obtained in connection with Figs. 1c and 1d to Fig. 2b, it
follows that the latter configuration can also be represented in terms of a pure wedge
disclination dipole, as illustrated in Fig. 2c. The disclination, symbolized by the light
wedge, simply represents the material that was removed, as contrasted to the dark wedge
which corresponds to extra matter [9]. Application of the wedge disclination expressions
given by Egs. (2.5) to Fig. 2c, where the sign of £2 is taken as negative for the lowermost
disclination, yields the same results as those given by Egs. (3.2), as expected. It also fol-
lows that the dislocation configuration in Fig. 2d can be alternately represented as a dis-
clination dipole, such as depicted in Fig. 2b, which is in turn identical to the disclination
dipole of Fig. 2c. This result is to be expected since both configurations are identical.
In a similar fashion, the finite wall of dislocations shown in Fig. 1b can be represented
in terms of the wedge disclination dipole illustrated in Fig. 2f. It is clear that this dipole
is of opposite sense to that in Fig. 2e, i.e., rotated by 180°. It is a relatively straightfor-
ward procedure to apply the disclination stress field Eqgs. (2.5) to the configuration in
Fig. 2f to obtain the results given by Eqs. (2.4). Application of DEWIT’s [2] disclination
stress field equations to this configuration yields results similar to Eqs. (2.4) (see his
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(Eqgs. 9.6)) but with x> and —x? in Eq. (2.4), replaced by —(y+L)? and +(y—L)? res-
pectively, and presumably arises from his discrepancies with Eqs. (2.7) mentioned earlier.

Consider next the vertical wall of disclination dipoles illustrated in Fig. 3a. It is
clear from reference to Figs. 2e and 2f that this array may be depicted alternately in terms
of a nonuniform array of lattice and surface dislocations, as shown in Fig. 3b. L1 [10]
has in fact used the representation in Fig. 3a to describe the structure of grain boundaries;
however, he incorrectly interprets Fig. 3a in terms of only the single array of lattice dis-
locations in Fig. 3b, apparently unaware of the concept of surface dislocations. For rea-
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FiG. 3. a) Vertical wall of disclination dipoles, b) alternate representation of a) in terms of lattice and
surface dislocations.

sons similar to that given in connection with Fig. 2a, the omission of the surface dislo-
cations in Fig. 3b would generate enormous long-range stresses. L1 [10] then writes the
energy of the dipole array in Fig. 3a in terms of a single finite wall of edge dislocations
such as shown in Fig. 1b to obtain

_ Lt R
3.3) E= (1—) In 3L
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where R > L. This is clearly an unacceptable result since E becomes infinite as R ap-
proaches infinity; i.e., the same result obtained for a single dislocation within an infinite
body.

4. Dislocation walls in terms of surface dislocations

It has been shown conclusively that the classical model of grain boundaries first pro-
posed by BURGERs [11], based upon a single wall of lattice dislocations, such as depicted
in Fig. 2a, is incomplete [12-15]. In order to eliminate the long-range stresses associated
with such a boundary, it is necessary to incorporate into it a continuous distribution of
surface dislocations, such as shown in Fig. 4a. These surface dislocations are denoted by
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F1G. 4. a) Vertical wall of uniformly spaced edge-type lattice and surface dislocations, b) configuration
obtained after removal of lattice dislocations over a length 2L in a), ¢) same as b) but with periodic removal
of lattice dislocations over intervals of 2L.

dotted symbols and possess Burgers vectors opposite in sign to those of the lattice dis-
locations. To a good approximation, then, the grain boundary may be visualized as
a periodic array of dislocation dipoles. It therefore follows that the lattice and surface
dislocations obey the following powerful conservation law [16]:

4.1 Zb+2b, =0,
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where the subscripts L and s denote lattice and surface dislocations, respectively. It is
thus the dipole nature of the grain boundary that insures the vanishing of long-range
stresses and therefore low energy.

The energy of a grain boundary can be written as

b x
(4.2) E = ﬂ'afﬁx’.dx,

where the expression used for o, in the above integral has customarily not been the
general one given by Eq. (2.4);, but one analogous to g,, = 0 given by Eq. (3.1). Strictly
speaking these authors used the expression for o,, obtained from an infinite wall of discrete
lattice dislocations. The general results were nevertheless the same, namely that Eq. (4.2)
yielded a very low value for the grain boundary energy. As mentioned earlier, however, the
results expressed by Egs. (3.1) are not general. In order to incorporate this generalization
into Eq. (4.2), let us consider Eq. (2.4), for the case where y = 0 to obtain

ub xL

(4-3) O'X)? = n(l —'V)h x2+L2 »

substituting this result into Eq.. (4.2) and integrating gives
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Letting x = L, i.e., the length of the grain boudary being of the order of the size of the
body, we find

ub*Lln2

! E= =l

which, for an infinite body, i.e., L = co, yields E = co. We thus arrive at a result which
is just the opposite of that obtained from the conventional theory [3-6], giving yet another
reason to reject the model of a grain boundary in Fig. 2a portrayed in terms of a single
wall of lattice dislocations.

If the lattice dislocations are removed from the center of the grain boundary in Fig.
4a over a length 2L, the configuration illustrated in Fig. 4b is obtained. In particular,
the surface dislocations, which originally formed dipoles with the removed lattice dislo-
cations, are left behind at their original positions within the grain boundary. These sur-
face dislocations were originally thought to be basically distinct from lattice dislocations
and were therefore given the name of virtual dislocation [17]. This problem was later
resolved when it was demonstrated that the surface dislocation could be visualized in
terms of another geometrical representation based upon the coincidence site lattice [18].
Comparison of Fig. 4b with Fig. 2b, or its equivalent in Fig. 2d, however, shows that
they are not identical, since in the former case the segments of the wall from L to oo and
—L to —oo generate no long-range stresses, whereas those in Fig. 2b do. On the other
hand, since these long-range stresses are screened from the center of the wall in Fig. 2b,
Egs. (3.2) can be used to represent the stress fields of the configurations in either Fig.
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2b, 2d or 4b. At the same time, in view of the prohibitively high energy of the dislocation
wall in Fig. 2b compared to that in Fig. 4b, the former must be ruled out as ever being
physically realizable.

If now lattice dislocations are removed from the grain boundary of Fig. 4a in a perio-
dic manner, such as illustrated in Fig. 4c, the resulting structure will become unstable
because of the generation of large long-range stresses. These stresses can be eliminated
by allowing the surface dislocations that are coupled with the remaining lattice dislo-
cations to move out of the boundary so as to generate the relatively low energy configu-
ration of Fig. 3b, or its disclination dipole counterpart in Fig. 3a.

Assuming the dislocation dipole spacing in Fig. 4a to be L, the energy of the boundary
can be determined to be the sum of the self and interaction energies of each dipole to yield

ub? L
(4.6) E= L In =
where r, is the dislocation core or cut-off radius. In contrast to Eq. (3.3) the above rela-
tion shows the grain boundary energy to be a function of the dislocation dipole spacing
only.

Comparison of Figs. 3b and 4a shows that in the limit of small values of L, both con-
figurations are essentially identical, so that the grain boundary of Fig. 4a could also be
viewed as an array of disclination dipoles. However, since the disclination is a derived
quantity, i.e., derivable from a specific dislocation array, it is dangerous to rely on the
disclination dipole model alone in those cases where a more accurate description of the
grain boundary could be obtained in terms of surface and lattice dislocations [12-15].

5. Dislocation walls within finite bodies

We have not yet considered the surface effects on the various dislocation and discli-
nation arrays discussed thus far. It will now be shown that these considerations can be
significant. In the case where the size of the body R is large compared to the length of the
finite wall L in Fig. 1b, we obtain the configuration shown in Fig. 5a. In order to satisfy
the stress-free boundary conditions, it is necessary to distribute a continuous array of
surface dislocations on the surface of the body which satisfy Eq. (4.1) [16, 18]. The distri-
bution of these surface dislocations in fact determines the shape of the outer surfaces
of the finite body, as is evident in Fig. 5a.

In the case where the dislocation wall in Fig. 5a extends to the upper surface of the
finite body, we obtain the wedge disclination configuration of Fig. 5b. This is the finite
counterpart of Fig. 1c. Unlike the situation in Fig. 5a, L in Fig. 5b is on the order of R.

When the dislocation wall in Fig. 5a is allowed to extend to both the top and bottom
faces of the finite body, the configuration shown in Fig. 5c¢ is obtained. This is the finite
counterpart of Fig. 2a. Unlike the two cases shown in Figs. 5a and 5b, it is not possible
to arrange the surface dislocations on the surface so as to render it stress-free. Although
the surface dislocations in Fig. Sc still obey Eq. (4.1), they generate surface stresses. These
surface stresses are simply a realization of the fact that the finite body in Fig. 5c cannot
be maintained in a state of equilibrium in the absence of external forces or tractions.
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Upon removal of the surface tractions in Fig. 5c, the surface dislocations pair them-
selves with the lattice dislocations and form the grain boundary shown in Fig. 5d. It is

FIG. 5. a), b), ¢), d), e) Finite body representations of configurations in Figs. 1b, 1c, 2a, 4a and 4b,
respectively.

clear that Fig. 5d is simply the finite body counterpart of Fig. 4a. Unlike the three cases
depicted in Figs. 5a, 5b and 5c, the outer surfaces of Fig. 5d are entirely stress-free.
Finally, upon removal of a finite number of lattice dislocations from the center of the
grain boundary in Fig. 5d, we obtain the configuration depicted in Fig. 5¢ which is simply
the finite body counterpart of Fig. 4b. The surface dislocations on the outer surfaces
of the body in Fig. 5e are drawn solid to indicate that they originated from lattice dislo-
cations which were originally situated within the grain boundary. This interchange be-
tween surface and lattice dislocations underscores the close similarity between the two.
It also follows that the surface dislocations in Fig. 5e render the outer surfaces of this

body stress-free.
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6. Summary and conclusions

The conventional theory of the interrelationship between dislocations and disclinations
has been re-examined in detail and found to contain significant conceptual drawbacks.
The root of the problem lies in the failure of the more classical approach to incorporate
into it the concept of surface dislocations. This in turn has led such important defects
as disclination dipoles and grain boundaries to be incorrectly interpreted in terms of lat-
tice dislocations alone. In addition, various boundary conditions associated with certain
dislocation and disclination arrays have been neglected in the conventional theories,
in turn leading to serious misconceptions. These difficulties have been shown to vanish
when surface dislocations are incorporated into the classical treatment.
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